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Abstract. We establish the following Gelfand-Naimark representation
theorem: Every ternary ring of operators is isometrically isomorphic
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By a ternary ring of operators (TRO) we mean a norm-closed subspace in some
L(H, K) (={bounded linear operators H → K} with complex Hilbert spaces H, K) which
is closed under the ternary product [xyz]: = xy∗z. TRO’s were introduced by Hestenes [9,
1962] who proved that, in the finite dimensional setting, TRO’s can be faithfully repre-
sented as direct sums of spaces Mm,n(C) of m×n complex matrices. In infinite dimensions,
Zettle [13, 1983] gave a characterization of TRO’s among ternary Banach algebras, whence
one could discover that Hilbert C∗-modules are the same as TRO’s. Henceforth many deep
results have appeared studying TRO’s and their applications, see [3, 2001], [11, 2002] and
[6, 1999], among others showing that every TRO is isometrically isomorphic to a corner
pA(1 − p) of a C∗-algebra and that the ternary product is uniquely determined by the
metric structure in a TRO. As a consequence, since the bidual of a C∗-algebra is a W∗-
algebra, a TRO can be represented as a weak*-dense*-dense subTRO in

⊕
i∈I piAi(1−pi),

where (Ai)i∈I is the family of M-summands of A∗∗. The aim of this note is to show that
this description can be refined somewhat to an infinite dimensional version of Hestenes’
theorem. Namely we have the following

1.1. Theorem. Every TRO is isometrically isomorphic to a weak*-dense subTRO of the
natural TRO of a direct sum

⊕
i∈I L(Hi, Ki). In particular, up to isometric isomorphisms,

TRO’s with predual are �∞-direct sums of L(H, K)-spaces and a reflexive TRO is a finite
�∞-direct sum of copies of L(H, K) spaces with dimK <∞.

Our proofs rely upon the Jordan theory of Banach spaces with symmetric unit ball
the so called JB∗-triples. According to a result of Harris [7, 1973], TRO’s when equipped
with the Jordan triple product (∗) {xyz} := (xy∗z + zy∗x)/2 are JC∗-triples and hence
their unit ball is necessarily symmetric. Since the bidual of a C∗-algebra is isometrically
isomorphic to a weak*-closed subalgebra in some L(Ĥ), the bidual of a TRO is a TRO
again. Therefore, by Friedmann-Russo’s Gelfand-Naimark type theorem for JB∗-triples [4,
1985], it follows that any TRO E is isometrically isomorphic to a weak*-dense subTRO
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in the (�∞-direct) sum ⊕j∈JFj of the minimal weak*-closed M-summands the so called
Cartan factors of the bidual E∗∗, furthermore each Cartan factor Fj is a subTRO of
E∗∗. ¿From the theorem and its Jordan theoretical proof we obtain also the following
characterization of TROs among JB∗-triples.

1.2. Corollary. A JB∗-triple E is the triple associated to a TRO if and only if in the
canonical decomposition of the bidual E∗∗ = Eat⊕En, the atomic ideal Eat consists only of
Cartan factors of type 1. A TRO admits no Jordan*-representation (JB*-homomorphism)
with weak*-dense range into a Cartan factor that is not of type 1.

1.3. Remark. ¿From a holomorphic view point, JC*-triples (norm-closed subspaces of
some L(H) closed under the Jordan-triple product {xyz} := xy∗z/2+zy∗x/2) are known as
(isometric) copies of Banach spaces with symmetric unit balls which admit only vanishing
Jordan representations in exceptional Cartan factors. It would be tempting to conjecture
that TRO’s are copies of those Banach spaces with symmetric unit ball whose Jordan
representations in Cartan factors not isomorphic to some L(H, K) vanish. However this is
not the case. Namely the assumption of the weak*-density of the range in Corollary 1.2 is
indispensable: There is an isometric JB*-homomorphism of the TRO Mn(C) of complex
n-square matrices into the space S2n(C) of symmetric 2n-square matrices.

2. Proofs

Before stating the proofs we recall some basic facts and notions involved. We know
that given a surjective linear isometry T :F1 → F2 between two TRO’s, necessarily T [xyz]=
[(Tx)(Ty)(Tz)], (x, y, z ∈ F1). Furthermore if Fi ⊂ L(Hi, Ki), (i ∈ I), are TRO’s then
their �∞-sum

⊕
i∈I Fi is a TRO in the space L

( ⊕2
i∈I Hi,

⊕2
i∈I Ki

)
with the �2-sums⊕2

i∈I Hi and
⊕2

i∈I Ki, and the natural pointwise operation [(xi)(yi)(zi)]: = (xiyizi).
For later use, recall that JB∗-triples can be equipped with a unique three variable

operation (x, y, z) �→ {xyz} which is symmetric linear in x, z and conjugate-linear in y
satisfying among other axioms (for a complete list see [4]) the Jordan identity

{ab{xyz}} = {{abx}yz} − {x{bay}}+ {xy{abz}}

and the C∗-axiom ‖{xxx}‖ = ‖x‖3.
An element e in a JB∗-triple is called a tripotent if 0 �= e = {eee} in which case it

has norm 1 and we write Tri (E) for their family. Tripotents with respect to the Jordan
triple product in a TRO are partial isometries. A tripotent e is said to be minimal in E if
{eEe} = Ce and we write Min (E) for the set of them. Recall that given e, f ∈ Tri (E) we
say that e governs f (written e � f) if e ∈ E1(f): = {x ∈ E: {eex} = x} and f ∈ E1/2(e): =
{x ∈ E: {eex} = x/2}. We say that e, f are collinear (written e�f) if e ∈ E1/2(f) and
f ∈ E1/2(e).

In order to establish our main result we need some technical lemmas on JB∗-triples.
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2.1. Lemma. Let F be a TRO in L(H) and suppose e, f ∈ Tri (F ) are such that {eef} =
f/2. Then the elements x := ee∗f and y := fe∗e are orthogonal tripotents in F that satisfy
f = x + y.

Proof. By assumption f = 2{eef} = ee∗f + fe∗e = x + y. Hence x = ee∗f =
ee∗ee∗f + ee∗fe∗e = x + xe∗e, that is xe∗e = ee∗y = ee∗fe∗e = 0. It follows xy∗ =
ee∗fe∗ef∗ = 0, yx∗ = (xy∗)∗ = 0. Similarly x∗y = f∗ee∗fe∗e = 0, y∗x = (x∗y)∗ = 0.
Therefore

x + y = f = ff∗f = (x + y)(x + y)∗(x + y) =
= xx∗x + yy∗y,

ee∗(x + y) = ee∗xx∗x + e

since x = ee∗x and ee∗y = 0. This means that x = xx∗x and y = yy∗y, thus x, y ∈ Tri (F ).
On the other hand 2{xxy} = x(x∗y) + (yx∗)x = x0 + 0x = 0, that is x ⊥ y.

2.2. Lemma. Let F be a TRO in L(H), and suppose 0 �= e, f ∈ Min (F ) with e�f . Then
for the projections p := ee∗, q := ff∗, P := e∗e, Q := f∗f we have either p = q and
PQ = QP = 0 or P = Q and pq = qp = 0.

Proof. By Lemma 2.1 and since atoms are indecomposable into sums of non-zero
orthogonal tripotents, the tripotents

x := ee∗f y := fe∗e X := ff∗e Y := ef∗f

satisfy the alternatives

1) x = f, y = 0, X = e, Y = 0, 2) x = f, y = 0, X = 0, Y = e,
3) x = 0, y = f, X = e, Y = 0, 4) x = 0, y = f, X = 0, Y = e.

The alternative 2) implies ee∗f = f , fe∗e = 0, ff∗e = 0, ef∗f = e and ff∗ = f ∗(ee∗f)∗ =
ff∗ee∗ = (ff∗e)e∗ = 0e∗ = 0 that is f = 0, contradicting the assumption 0 �= f .

3) implies ee∗f = 0, fe∗e = f , ff∗e = e, ef∗f = 0 and ee∗ = (ff∗e)e∗ = e(ee∗f)∗ =
e0∗ = 0 that is e = 0, contradicting the assumption 0 �= e.

1) means ee∗f = f , fe∗e = 0, ff∗e = e, ef∗f = 0. Hence q = ff∗ = (ee∗f)f∗ =
(ee∗)(ff∗) = pq and also q = ff∗ = f(ee∗f)∗ = (ff∗)(ee∗) = qp. Therefore p = ee∗ =
(ff∗e)e∗ = (ff∗)(ee∗) = (ee∗)(ff∗) = ff∗ = q. On the other hand PQ = (e∗e)(f∗f) =
e∗(ef∗f) = e∗0 = 0, QP = (f∗f)(e∗e) = f∗(fe∗e) = f∗0 = 0.

4) means ee∗f = 0, fe∗e = f , ff∗e = 0, ef∗f = e. Hence P = e∗e = e∗(ef∗f) =
(ee∗)(f∗f) = PQ and also P = e∗e = (ef∗f)∗e = (f∗f)(e∗e) = QP . Therefore Q = f∗f =
(fe∗e)∗f = e∗ef∗f = PQ = P . On the other hand qp = (ff∗)(ee∗) = (ff∗e)e∗ = 0e∗ = 0
and pq = (ee∗)(ff∗) = (ee∗f)f∗ = 0f∗ = 0.

2.3. Corollary. If F is a TRO in L(H) and 0 �= e1, . . . , eN ∈ Min (F ) with ej�ek (k �= j)
then either p1 = · · · = pN and p′kp′j = 0 (k �= j) or p′1 = · · · = p′N and pkpj = 0 (k �= j)
for the projections pk := eke∗k, p′k := e∗kek (k = 1, . . . , N).

Proof. By Lemma 2.2 we have the alternatives: 1) p1 = p2 and p′1p
′
2 = 0 or 2) p′1 = p′2

and p1p2 = 0.
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1) Suppose pj �= p1. Then p′j = p′1, p1pj = pjp1 = 0 and also (since pj �= p2 = p1)
p′j = p′2, p2pj = pjp2 = 0. In particular p′j = p′1 = p′2. By our assumption 1), p′1p

′
2 = 0.

But then p′1 = p′2 = p′1p
′
2 = 0 that is e∗1e1 = p′1 = 0 and e1 = 0 which is impossible.

2) Similarly we can exclude p′j �= p′1 in this case.

2.4. Lemma. Let F be a TRO in L(H), and suppose 0 �= e1, e2, e3, e4 ∈ Min (F ). Then
the situation e3 ⊥ e4, ek�e (k < �, (k, �) �= (3, 4)) is impossible.

Proof. Let pk := eke∗k, p′k := e∗kek (k = 1, . . . , 4). We have the alternatives 1) p1 = p2

and p′1p
′
2 = p′2p

′
1 = 0 or 2) p′1 = p′2 and p1p2 = p2p1 = 0.

Suppose 1). Since e1�e2�e3�e1, by the corollary also p1 = p3. Since e1�e2�e4�e1,
also p1 = p4. Thus 1) implies p1 = p4. However, the relationship e1 ⊥ e4 means (as it is
well-known) that 0 = p1p4 = p4p1 and 0 = p′1p

′
4 = p′4p

′
1. Therefore 1) is impossible. The

case 2) can be treated analogously.
Finally we need some elementary results on Hilbert C∗-modules of bounded linear

operators. If (Hj∈J) is an indexed family of Hilbert spaces, then H =
⊕2

j∈J Hj denotes
the direct hilbertian sum of the given spaces Hj . Of course H is a Hilbert space and each
Hj is a closed subspace of H.

Proof of Theorem 1.1

Let (E, 〈., .〉, A) be a Hilbert C∗-module. Let us equip it with the ternary product
(x, y, z) := x · 〈y, z〉, (x, y, z ∈ E). We know that, without loss of generality, we may
regard E∗∗ as a weak* closed TRO in a space L(Ĥ) with some Hilbert space Ĥ, moreover
E is a weak* dense sub-TRO of E∗∗ for the natural ternary product (x, y, z) := xy∗z,
(x, y, z ∈ L(Ĥ)). ¿From a Jordan viewpoint, E∗∗ is an �∞-direct sum of the form
E∗∗ = Eat⊕En where Eat = ⊕j∈JFj and {Fj : j ∈ J} is the family of all minimal atomic
ideals M-ideals of E∗∗ with respect to the Jordan triple product {xyz} := 1

2 (xy∗z + zy∗x),
(x, y, z ∈ L(Ĥ)). Since the projection onto the atomic ideal Pat : E∗∗ → ⊕j∈JFj is an
isometric JB∗-homomorphism which is a bijection on E, it suffices to see that each factor
Fj is a Cartan factor of type 1. Concerning Cartan factors, by the familiar classification,
each Fj is isometrically isomorphic to some of the following classical JB*-triples:

L(Hj , Kj) [type 1],
L±(Hj) := {x ∈ L(Hj) : x = ±x∗} [types 2,3] with a conjugation x �→ x,
Spin(Hj) :=

[
Hj with {xyz} := 〈x, y〉z + 〈z, y〉x− 〈x, z〉y

]
[type 4],

Mat(1, 2,O) [type 5, of 16 dimensions], here O means the Cayley algebra of octonions.
H3(O) [type 6, of 27 dimensions], the algebra of 3×3 hermitian matrices with entries

in the octonions O equipped with the standard conjugation.
Our key observation is that, in all cases if Fj is not isomorphic to some L(Hj , Kj) then the
standard covering atomic grid of Fj (see 12) contains a couple of atoms e1, e2 with e1 � e2

or it contains a family {e1, e2, e3, e4} of atoms with e3 ⊥ e4, ek�e (k < �, (k, �) �= (3, 4)).
By the previous lemmas it immediately follows that this is impossible.

Thus we have the isometric embedding E ↪→ Eat ↪→ ⊕j∈JFj where Fj = L(Hj , Kj) for
all j ∈ J . Endow the �∞-sum Eat =

⊕
j∈J L(Hj , Kj) with a Hilbert C∗-module structure

over the C∗-algebra ID of all operators d:H → H that are diagonal with respect to the
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direct sum decomposition H: =
⊕2

j∈J Hj . We recall that d is uniquely determined by the
family d|Hj

of its restrictions to the summands Hj , and that

‖d‖ = sup
j∈J
‖d‖ <∞.

Conversely, to every family (dj) ∈
⊕

j∈J L(Hj , Kj) with supj∈J ‖dj‖ <∞ there is a unique
diagonal operator d ∈ L(H, K) such that d|Hj = gj , (j ∈ J), namely d is the operator

d
(
(hj)

)
: =

(
(dj(hj)

)
, (hj) ∈

2⊕
j∈J

Hj .

Clearly
(
(dj(hj)

)
∈

⊕2
j∈J Kj and

∑
‖dj(hj)‖2 ≤

∑
‖dj‖2 ‖hj‖2 ≤ (sup

j∈J
‖dj‖)2

∑
‖hj‖2 = ‖(dj)‖2 ‖(hj)‖2

and it is elementary to show that actually we have equality above. We define the module
action Eat × ID→ Eat and the inner product Eat × Eat → ID by means of the formulas

(gj) · (dj): = (gjdj), 〈(fj), (gj)〉: = (f∗j gj , ), ‖(fj)‖: = sup
j∈J
‖fj‖.

In this way, the map φ:Eat → L(H, K) that takes every family (dj) ∈
⊕

j∈J L(Hj , Kj) to
the diagonal operator φ

(
(dj)

)
: (hj) �→ (djhj) ∈ K, (hj) ∈ H, is an isometric module map,

thus inducing an isometric module representation E ⊂ Eat ⊂ L(H, K) as stated.
The statements concerning TROs with predual are immediate.

For the sake of completeness, we describe the mentioned systems {e1, e2} respectively
{e1, . . . , e4} of atoms for the types 2-6.

To this aim, let H be a Hilbert space, let x �→ x be a conjugation on H, let {hm :
m ∈ M} be a complete orthonormal system in H such that hm = hm, (m ∈ M), and let
e⊗ f denote the operator x �→ 〈x, e〉f on H.

Case type 2. With e1 := h1⊗h1, e2 := h1⊗h2 +h2⊗h1 we have e1, e2 ∈ Min (L−+(H))
and e1 � e2.

Case type 3, dim E > 3. With e1 := h1 ⊗ h2 − h2 ⊗ h1, e2 := h2 ⊗ h3 − h3 ⊗ h2,
e3 := h1 ⊗ h3 − h3 ⊗ h1, e4 := h2 ⊗ h4 − h4 ⊗ h2 we have e1, e2, e3, e4 ∈ Min (L(H)) and
e3 ⊥ e4, ek�e (k < �, (k, �) �= (3, 4)).

Case type 4, dim E > 3. With ek := 2−1/2(hk+ih4), (k = 1, 2, 3) and e4 := 2−1/2(h3−
ih3) we have e1, e2, e3, e4 ∈ Min (Spin(H)) and e3 ⊥ e4, ek�e, (k < �, (k, �) �= (3, 4)).

In the cases of types 5-6 the standard grid of the unit matrices contains 8 atoms
spanning a spin factor (type 4) of 8 dimensions. So as in the previous case, again there
are atoms e1, . . . , e4 with e3 ⊥ e4, ek�e (k < �, (k, �) �= (3, 4)).

2.5. Lemma. If G is a Cartan factor then the atomic part of G∗∗ is a copy of G.
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Proof. We have G∗∗ = G∗∗n ⊕
⊕

j∈J Gj where G∗∗n is a non-atomic JBW*-triple and
each Gj is a Cartan factor. Also there is an isometric JB*-homomorphism U : G → G∗∗

onto some weak*-closed JB*-subtriple of G∗∗. Let πj denote the canonical projection
G∗∗ → Gj and consider the representation Uj := πjU of G. The kernel Kj of Uj is a
weak*-closed ideal in G. Since G is a factor, we have either Kj = {0} or Kj = G. Since UG
is weak*-dense in G∗∗, necessarily UjG �= {0} and this excludes the possibility of Kj = G.
Thus Kj = {0}, that is, the JB*-homomorphism Uj is injective. By a theorem of Horn-
Dang-Neher on normal representations 10, injective JB*-homomorphisms are isometries.
Thus UjG is a copy of G lying weak*-dense in the Cartan factor Gj . This is possible
only if UjG = Gj and U : G ↔ Gj is a JB*-isomorphism. By writing π for the canonical
projection G∗∗ →

⊕
j∈J Gj , it follows that πU is not weak*-dense in

⊕
j∈J Gj unless the

index set J is a singleton.

Proof of Corollary 1.2.
Let E be a TRO, G a Cartan factor and consider a JB*-homomorphism T : E → G. It is
well-known that the bidual operator T ∗∗ : E∗∗ → G∗∗ is also a JB*-homomorphism. We
have E∗∗ = E∗∗n ⊕

⊕
i∈I Ei where each term Ei is a Cartan factor and E∗∗n is a non-atomic

JBW*-triple. By the previous lemma, we may assume that G∗∗ = G∗∗at ⊕G and, with the
canonical projection π : G∗∗ → G, the operator πT ∗∗ is a JB*-homomorphism E∗∗ → G
which maps E onto a weak*-closed subtriple of G. Since πT ∗∗ is weak*-continuous, it
follows that πT ∗∗E∗∗ = G. The kernel K of the operator πT ∗∗ is a weak*-weak*-closed
ideal of E∗∗. It is well known [1, 1985] that E∗∗ = K ⊕ K⊥ where K⊥ := {x ∈ E∗∗ :
{efx} = 0, e, f ∈ K} is a weak*-closed ideal in E∗∗. Moreover, πT ∗∗ is an isometry on K⊥

because injective JB*-homomorphisms are isometric 10. Since G = πT ∗∗E = πT ∗∗K⊥,
the weak*-closed ideal K⊥ must be a copy of the Cartan factor G. Hence K⊥ is a minimal
weak*-closed ideal in E∗∗ and so G � K⊥ = Ei for some i ∈ I. By the theorem, each
factor Ei is of type 1, hence so must be G.

Proof for Remark 1.3.
Let ek denote the n × n-matrix with 1 at the position (k, �) and with 0 at other entries
and let sk be the symmetric (2n) × (2n)-matrix with 1 at the positions (2k − 1, 2�) and
(2�, 2k − 1) and 0 elsewhere. It is straightforward to verify that the linear extension T of
the map [ek �→ sk : 1 ≤ k, � ≤ n] satisfies the identity T (xy∗z+zy∗x) = (Tx)(Ty)∗(Tz)+
(Tz)(Ty)∗(Tx) (by checking it for n := 3 and the unit matrices without loss of generality).

References

[1] Barton,T. and Timoney, R. Weak∗-continuity of Jordan triple products and applica-
tions. Math. Scand. 59 (1985) 177- 191.

[2] Dang, T. and Friedmann, Y. Classification of atomic JBW∗-triples and applications.
Math. Scan. 61 (1987) 292-330.

[3] Effros, E., Ozawa, N and Ruan, Z. On injectivity and nuclearity for operator spaces.
Duke Math. J. 110(3) (2001) 489-521.

6



[4] Friedmann, Y. and Russo, B. Structure of the predual of a JBW∗-triple. J. Reine
Angew. Math. 356 (1985) 67-89.

[5] Friedmann, Y. and Russo, B. The Gelfand-Naimark theorem for JB∗-triples. Duke
Math. J. 53 (1986) 139-148.

[6] Hamana, M. Triple envelops and Silov boundaries of operator spaces Math. J. Toyama
Univ. 22 (1999) 77-93.

[7] Harris, L. A. Bounded symmetric homogeneous domains in infinite dimensional spaces.
In: Proceedings on Infinite dimensional Holomorphy, Lecture Notes in Mathematics
364 (1973) 13-40, Springer-Verlag Berlin 1973.

[8] Harris, L. A. A generalization of C∗-algebras. Proc. London Math. Soc. (3) 42
(1981) 331-361.

[9] Hestenes, M. R. A ternary algebra with applications to matrices and linear transfor-
mations Arch. Rational Mech. Anal. 11 (1962) 138-194.

[10] Barton, T., Dang, T. and Horn, G. Normal representations of Banach Jordan triple
systems. Proc. Amer. Math. Soc. 102 (1987) 551-555.

[11] Kaur, M and Ruan, Z. Local properties of ternary rings of operators and their linking
C∗-algebras. J. Funct. Anal. 195 (2002) 262-305.

[12] Neher, E. Jordan triple systems by the grid approach. Lecture Notes in Mathematics,
Vol 1280, Springer-Verlag, Berlin 1987.

[13] Zettl, H. A characterization of ternary rings of operators. Adv. in Math. 48 (1983),
117-143.
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