
24 September 1999

Ž .Chemical Physics Letters 311 1999 335–340
www.elsevier.nlrlocatercplett

Comment

Reply to the paper by Stacho et al. ‘‘On the Elber–Karplus´
reaction path-following method and related procedures’’

w ž / xChem. Phys. Lett. 311 1999 328

Ron Elber a,), Martin Karplus b,c

a Department of Computer Science, 4130 Upson Hall, Cornell UniÕersity, Ithaca, NY 14853, USA
b Laboratoire de Chimie Biophysique, ISIS, UniÕersite Louis Pasteur, 67000 Strasbourg, France

c Department of Chemistry and Chemical Biology, HarÕard UniÕersity, Cambridge, MA 02138, USA

Received 30 April 1999; in final form 23 July 1999

Abstract

w Ž . xStacho, Domotor and Ban Chem. Phys. Lett. 311 1999 328 criticize the method developed by Elber and Karplus for´ ¨ ¨ ¨ ´
finding reaction paths in large molecules. In this Comment we demonstrate that the statements and mathematical
development on which Stacho et al. base their criticism are either false or well known from published work. q 1999 Elsevier´
Science B.V. All rights reserved.

w xThe abstract of the manuscript of Stacho et al. 1´
opens with the strong statement: ‘‘It is shown through
a mathematical proof and by using simple test exam-
ples that the fundamental principles of the method of

Ž . w xElber and Karplus EK 2 for determining reaction
paths are incorrect’’. One would expect that such a
statement would be supported by the appropriate
evidence. This is not the case. The so-called ‘proof’

w xpresented by Stacho et al. 3 is erroneous and the´
test examples they present are numerically flawed.
Stacho et al. also make statements that indicate they´
did not read or pay attention to key discussions in

w xEK 2 , as well as in related papers. Moreover, in a
w xrecent conference report 4 , Stacho et al. wrote:´

) Corresponding author. Fax: q1-607-2554428; e-mail:
ron@cs.cornell.edu

‘‘The popular global curve variation Elber–Karplus
w x wmethod 22 equations and reference numbers cor-

xrespond to those used in the quoted paper is based
Župon the minimization of the energy average with

.respect to the arc length along the curve joining the
two minima corresponding to the reactant and the
product. Unfortunately, it can easily be shown that
this method is mathematically false.’’ The statement
was published without justification.

Given the above, we feel it is necessary to re-
spond to Stacho et al.´

Before addressing specific claims of Stacho et al.,´
it is useful to review briefly the nature of the method
proposed by EK and the description of its limitations
given in the original paper published more than 10

w xyears ago 2 . EK proposed a simple method for
computing reaction paths that was designed to be

Ž .applicable to large systems e.g. proteins because it
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does not require the use of Hessian matrices. It was
clearly stated in the original manuscript that the EK
formulation was an approximate procedure. ‘‘It is
important to point out that the method proposed in

Ž . Ž .Eqs. 4 – 7 defines the reaction path by minimizing
the aÕerage value of the potential energy along the
path. The more standard approaches are usually con-
cerned with finding the path with the lowest barrier
w x1,2,3 ’’.

The EK method proposed to optimize a line inte-
™™

gral to obtain a path l . l is defined to be themin min

reaction coordinate; the line integral is given by

™ ™P
< <U l P d lŽ .H

R ™² :Ss ' U 1Ž .l
™P

< <d lH
R

™Ž .where S is the functional to be optimized, U l is the
energy function, R and P denote the positions of the

™
reactants and product minima, respectively, and l is
a vector pointing along the path. In the implementa-
tion of the method, a discretized form of the line
integral defined by

M1™ ™ ™ ™ ™
< <S R , R ;l ( U R D l 2Ž .Ý ž /o M i iž / L is1

™Ž .was used. Here U R is the energy as a function ofi ™
the N-dimensional position vector R representing the

™™
coordinates of the system of interest, R and R areo M

the coordinates of the fixed end points, and R is thei ™
value of R at the end point of the interval Dl ,i
defined as

™ ™ ™
D l sR yR 3Ž .i i iy1

™Ž < <Restraints were introduced of the form l D l yi™
2² < <:.D l , where l is a parameter that determines the

™
range of the allowed fluctuations in D l , relative toi

Ž . ² < <:the average value over all i , D l . This keeps the
points approximately equidistant and avoids artefac-
tual solutions in which the grid points cluster around
the initial and final configurations. To eliminate
rigid-body translations and rotations in the optimiza-

w xtion, additional restraints were introduced 2 .
EK argued that the path so defined may be a

useful approximation to the steepest descent path
Ž .SDP , and a number of numerical examples were
provided. For cyclohexane and the alanine dipeptide,

the results were shown to agree with those obtained
with other methods. Since the main purpose of intro-
ducing this approximate method was to be able to
study large molecules, it was applied to a conforma-
tional transition of the protein myoglobin with 1531
atoms; the latter could not be checked because there
were no other methods that could be applied to such
a large system when the paper was published.

Since its introduction, the EK method has been
used successfully by others for a variety of applica-
tions. An example is the study of the potential
surface for water dynamics by Tanaka and Ohmine

w xin 1989 5 ; other references to applications are given
w xin Stacho et al. 1 . In addition, the EK method has´

w xserved as the basis for refinements 6,7 and for the
development of alternative improved methods for

w xlarge systems 8–12 . A useful overview of methods
for path optimization from small molecules to pro-

w x w xteins is given by Schlegel 13 and by Elber 14 .
There is some confusion as to what Stacho et al.´

mean by ‘‘incorrect’’. Since it was clearly pointed
w xout in EK 3 that the reaction path obtained from the

line integral is not the steepest descent path, in
general, a proof confirming this would be nothing
new. Nevertheless, it is of interest to consider the

w x‘‘proof’’ of Stacho et al. 3 that the average energy´
Ž .functional cannot be the steepest descent path SDP .

To demonstrate that this statement is false, we intro-
duce a simple counter-example. Consider a two-di-
mensional energy surface with the potential energy

U x , y skx 2 qy4 yy2 4Ž . Ž .

The line integral connecting the two minima along
Ž .the y-axis xs0 is the steepest descent path. The

SDP is also a minimum of the average energy along
the same path and is obtainable by the EK procedure.

w xTo paraphrase their ‘‘proof’’, Stacho et al. 1´
introduce some ‘‘elementary mathematical tools’’.
One of these is an unusual construction of points that
cannot lead to a continuous path from R to P, as
required by the definition of the line integral and so
the discussion appears to be irrelevant to the formu-

w xlation of EK 2 . They also performed a variational
Ž .analysis. This analysis see below could have been a

useful investigation to pinpoint exactly the difference
between the SDP and the EK path. However, their
analysis is wrong, as based on the text of the forth-



( )R. Elber, M. KarplusrChemical Physics Letters 311 1999 335–340 337

w xcoming paper 3 that was provided to us. Below we
provide the correct formulation and discuss the dif-
ference between the SDP path and EK path.

™
In the variational analysis, the path vector, l, is

w xparameterized by a scalar, say tg 0,1 . Euler–
™Ž .Lagrange ‘equations of motion’ are derived for l t

from the requirement that the functional be a mini-
w xmum. Stacho et al. 3 attempted this derivation, but´

they made an error so that their result is incorrect. To
make the comparison simpler, we use their path
parameterization in which the distribution of points
along the spatial path is determined by:

1r2™ ™
d l d l ™P

< <P ' d l 'LH
d t d t R

™ 1 ™
™² :U l s U l t d tŽ .Ž . l H ž /

0

The second formula follows from the definition of
the path length.

Ž Ž .The differential equation of Stacho et al. Eq. 2´
w x.in Ref. 3 , has an essential error in that the Hessian

™2 Ž Ž ..D U l t should not be there. The error leads to the
™Ž Ž ..incorrect result that U l t is a monotonically de-
Ž Ž . w x.creasing function of t Eq. 5 in Ref. 3 and to

their conclusion that the EK path is not valid.
The correct ‘equation of motion’ derived by

straightforward variational analysis is:

™ ™
1 d l d l™

LP= U l t y = U,Ž .ž / ¦ ;L d t d t

™21 d l™
™² :y Uy U l s0Ž . lž / 2L d t

Following the definition of the length of the path, L,
Ž .given in Eq. 5 , we note that if = U is exactly

™Ž . Ž . Ž . Žparallel or antiparallel to d l r d t the usual situa-
.tion in the SDP , the first two terms vanish. The

™ ™2 2™Ž .Ž ² Ž .: .third term, 1rL Uy U l d lrd t which inl

general is not zero, contributes to the deviation of the
EK path from the SDP. It is small when the path

™2 2curvature, d lrd t is small. The counter-example in
Ž .Eq. 4 has zero curvature, so that the EK path is

Ž .exact for this case. Hence, Eq. 4 provides a counter
example to the ‘‘proof’’ of Ban et al. that the line

integral does not exist. Not only the line integral
( )exists for the model potential 4 but the resulting

curÕe is also the steepest descent path. This counter
example demonstrates that the ‘‘general proof’’ of
Ban et al. is incorrect.´

Application of the EK method has shown that the
path produced by the EK functional is physically
reasonable and close to the SDP path if the path
curvature is small. Adding a penalty for a high
curvature is not unreasonable, since highly curved
paths are unlikely in systems at finite temperatures.
For example, the MaxFlux algorithm of Huo and

w xStraub 10 depends on the path length and leads
preferably to shorter paths.

w xThe other argument in Stacho et al. 1 against the´
EK method is based on the fact that they failed when
they tried to employ the EK method, in contrast to

Ž .the success of other workers see discussion above .
Indeed Stacho et al. failed, but this is due to the fact´
that they did not follow the guidelines given in the

w x Ž . Ž .EK paper 2 . In a sense, the conclusions i – iii of
w xStacho et al. 1 do not refer to the EK algorithm but´

to a ‘new’ algorithm of their own design.
Ž .The first two conclusions of Stacho et al. are: i´

‘‘It has been proven that the line integral used in the
methods employing the EK strategy without con-

Ž .straints has no minimum’’ and ii ‘‘Using polygons
with pointsrvertices of discrete numbers and without
using penalty functions the results obtained are not
useful.’’

We agree that use of the EK method without
Ž .‘‘penalty functions’’ restraints is not useful. The

EK algorithm always uses the penalty functions. It is
meaningless to optimize the functional without high
values for the penalty functions and we do not
understand the purpose of this exercise performed by
Stacho et al. Large penalties, to avoid rigid body´
translations and rotations, do not affect the value of
the functional, and a large penalty on deviations
from equal distances between the points is essential

Ž .to approximate the line integral in Eq. 1 . A visual
inspection of Fig. 1 in Stacho et al. shows the results´
do not provide an adequate description of the line

Ž . Žintegral defined in Eq. 1 . In our hands Fig. 1, this
.paper , the EK method provides a reasonable approx-

imation to the steepest descent path for the Muller–¨
Brown potential. It is not exact for this case, as
expected from the derivation given above.
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Fig. 1. Reaction path calculations on the Muller potential. Long dash, the steepest descent path. Three different EK paths are shown with¨
Ž . Ž . Ž .force constants for equi-distance constraints of 4000 dash , 8000 dotted line and 16 000 solid line . Rigid-body constraints are not

necessary in this case. The force constant value does not affect significantly the shape of the path. In the calculations of the EK path 30 grid
Ž .points were used including the fixed points at the path edges . The optimization was performed by simulated annealing that was followed

by 200 conjugate gradient minimization steps.

To amplify the point concerning the importance
of restraints, which seems to have been missed by

w xStacho et al., we quote from Chiu et al. 6 : ‘‘EK´
recognized that a straightforward minimization of

Ž .Eq. 2 would lead to two problems. The first arises
™ ™ ™Ž .from the fact that the lowest value of S R , R ;lo M

will be obtained if all of the grid points moved to the
initial or final configurations. This would be possible

™
< <if there was no constraint put on the values of Dl

and would lead to a nonsensical representation of Eq.
Ž .1 .’’ Ban et al. argued that the aggregation of points´
Ž .piling up of the points is a novel discovery of their

w xstudy. Even before Chiu et al. 6 , Czerminski and
w xElber discussed this problem in their 1990 paper 11

and proposed a solution by introducing an additional
repulsion term. This problem has nothing to do with
the existence of the line integral but rather with how
to construct a useful numerical representation of it.

Ž .In their conclusion iii Stacho et al. state: ‘‘When´
using penalty functions, the resulting curve can be
interpreted as a sort of RP approximation; however,

the larger the values of the parameters, the more the
minimization of the penalty functions and not of the
energy of the system will take place.’’ We agree
with the first part, but again this is nothing more than
what was stated in the original EK paper. As to the
second part, restraint parameters have to be chosen
appropriately; if they are very large, the optimization
will be slow and inefficient. However, the final
result should not be affected. The use of inappropri-
ate restraints provides a partial explanation of the
problems Stacho et al. appear to have in applying the´

Ž .EK method e.g., see their Table 1 .
Ž .As to conclusion iv , we do not quote most of

this since it only presents the opinion that the DDRP
w xstrategy of Stacho and Ban 1,15 is the best method´ ´

to obtain the reaction path. We have not tested the
DDRP method, so we have no comment on their
opinion. The comment ‘‘The DDRP method does not
require . . . an initial straight line for the zero ap-
proximation of the RP’’ may be true but, of course,
neither does the EK method.



( )R. Elber, M. KarplusrChemical Physics Letters 311 1999 335–340 339

In addition to the_fundamental problems with the
w xStacho et al. papers 1,3 outlined above, they make´

many statements that are incorrect andror confusing.
We cite only a few of them in what follows.

w xØ The abstract of Stacho et al. 1 states: ‘‘There-´
fore the method, including its improÕed Õersions,
. . . should be accepted with reservation’’.

It is not clear what is meant by ‘‘improved ver-
sions’’. Other algorithms developed by Elber and
coworkers for determining reaction paths for large
molecule systems, such as that of Ulitsky and Elber
w x w x12 and of Olender and Elber 8 , compute the exact
SDP. Correspondingly, the method of Fischer and

w xKarplus 9 computes exact saddle points and from
them the SDP.

Ø The following complicated sentence is in the
introduction: ‘‘As to our mathematical investigation
w x w x29 the method of Olender and Elber 30 does not
supply conventional RPs, however it operates with a
new concept of the RP which is probably not a true
SDP in the mathematical sense yet the solutions of
such a variational problem may approximate or even
replace the old concept of the RP’’.

w x w xRef. 29 of their paper, which is Ref. 3 of ours,
does not investigate the procedure of Olender and

w xElber 8 . Moreover, as just pointed out, the Olen-
der–Elber method does determine the SDP, so the
purpose and meaning of this sentence of Stacho et al.´
is unclear.

Ø Also in the introduction, Stacho et al. argue´
that the EK method ‘‘is based on the principle
stating that the RPs are energy average minimizing
curves’’.

As is clear from the quote given above from the
EK paper, this is not true. We defined the reaction
coordinate as the path that minimizes the average
energy. We did not say that the resulting path is the
same as the SDP, which is one possible way of
choosing a reaction path. It is, in fact, not obvious
that in large molecules the SDP is the best choice to
describe kinetics and the use of functionals suggests

w xuseful alternatives 2,10,11,14 .
Ø Also, in the introduction, Stacho et al. claim´

‘‘there has been some confusion about which variant
w xwas used in a particular application 25–27 ’’.

The confusion is not in the papers. Their Refs.
w x w x25 and 27 did not use the EK method, as is
clearly stated in these manuscripts.

We conclude by restating the claims of Ban et al.´
and our replies:

Ž .1 There is a ‘‘proof’’ that the line integral does
not exist. It is enough to provide one counter exam-
ple to invalidate a ‘‘general proof’’. We provide such

Ž .a counter example. The potential model in Eq. 4
Ž . Žand the correct variational analysis show for that

.counter example that not only the line integral exists
but that it yields the steepest descent path.

Ž .2 A Õariational principle proÕes that the EK
method is not Õalid. Ban et al. are ‘‘ready to admit’’´
that their derivation is wrong.

Ž .3 The numerical study giÕes results that depend
on the parameters. We demonstrate in Fig. 1 that the

Žresults are parameter independent provided that the
.constraints are satisfied . Ban et al. did not imple-´

ment correctly the EK algorithm.
We further note that our reaction path code has

been freely available on the network for a number of
years as a part of the MOIL package for biomolec-
ular modeling. At present it includes an upgraded

w xversion of the reaction path algorithm 11 , and we
encourage Ban et al. to use it. The commercial´
program CHARMm also includes the algorithm of
w x11 as implemented by B. Brooks.

There are numerous techniques to obtain reaction
w xpaths in small molecular systems 13 . A key diffi-

culty in large molecular systems is the rapid growth
in computational effort and the decrease in numerical
stability. The EK method and related approaches
were developed for computing reaction paths in
macromolecules with thousands of degrees of free-
dom, with many minima, and with path multiplicity.

w xPerhaps the DDRP approach 15 is applicable to
such systems and can yield accurate values for the
SDP in reasonable times. If so, such studies would
be of greater interest than the EK method criticism

Ž .presented by Stacho et al. preceding paper , which´
we have shown to be invalid.
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