Peirce gradings and Peirce inner ideals in JBW*-triple factors

C. Martin Edwards and Alastair G. Morton

Abstract

A Peirce inner ideal J in an anisotropic Jordan*-triple A gives rise

 to a Peirce grading $\left(J_{0}, J_{1}, J_{2}\right)$ of A by defining$$
J_{0}=J^{\perp}, \quad J_{1}=\operatorname{Ker}(J) \cap \operatorname{Ker}\left(J^{\perp}\right), \quad J_{2}=J
$$

where J^{\perp} is the set of elements a of A for which $\{J a A\}$ is equal to $\{0\}$ and $\operatorname{Ker}(J)$ is the set of elements a of A for which $\{J a J\}$ is equal to $\{0\}$. It is shown that conversely, when A is a $J B W^{*}$-triple factor, for each Peirce grading $\left(J_{0}, J_{1}, J_{2}\right)$ of A such that both J_{0} and J_{2} are non-zero, both J_{0} and J_{2} are Peirce inner ideals the corresponding Peirce decompositions of A being given by

$$
\begin{aligned}
& \left(J_{0}\right)_{0}=J_{2},\left(J_{0}\right)_{1}=J_{1},\left(J_{0}\right)_{2}=J_{0} \\
& \left(J_{2}\right)_{0}=J_{0},\left(J_{2}\right)_{1}=J_{1},\left(J_{2}\right)_{2}=J_{2}
\end{aligned}
$$

Mathematics Subject Classification (2000). Primary 17C65; Secondary 46L70.
Keywords. Jordan*-triple, JBW*-triple, Peirce grading, Peirce inner ideal.

1. Introduction. A Peirce grading $\left(J_{0}, J_{1}, J_{2}\right)$ of a Jordan*-triple A consists of subspaces J_{0}, J_{1} and J_{2} of A such that

$$
\begin{equation*}
J_{0} \oplus J_{1} \oplus J_{2}=A \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\left\{J_{0} J_{2} A\right\}=\left\{J_{2} J_{0} A\right\}=\{0\} \tag{1.2}
\end{equation*}
$$

and, for j, k, and l equal to 0,1 , or 2 ,

$$
\begin{equation*}
\left\{J_{j} J_{k} J_{l}\right\} \subseteq J_{j-k+l} \tag{1.3}
\end{equation*}
$$

if $j-k+l$ is equal to 0,1 or 2 , and

$$
\begin{equation*}
\left\{J_{j} J_{k} J_{l}\right\}=\{0\} \tag{1.4}
\end{equation*}
$$

otherwise. A study of Peirce gradings and involutive gradings of Jordan pairs and Jordan*-triples was carried out by Neher [27], one of his main conclusions being
that, provided that the pair or triple in question was simple, semi-simple, and satisfied both the ascending and descending chain conditions on principal inner ideals, the two concepts were essentially the equivalent.

A complex Banach space A that is the dual of a Banach space A_{*} and the open unit ball in which is a bounded symmetric domain possesses an intrinsic triple product with respect to which it forms an anisotropic Jordan*-triple which is known as a JBW*-triple. The family of JBW*-triples includes that of JBW*-algebras which, in turn, includes that of W^{*}-algebras, or von Neumann algebras. A JBW*-triple that does not contain a non-trivial weak*-closed triple ideal is said to be a $J B W^{*}$-triple factor, examples of which are the six discrete Cartan factors considered by Cartan [5] in finite dimensions and by Kaup [23] in infinite dimensions, and the continuous factors studied by Horn and Neher [22]. A JBW*-triple factor need not be simple, nor need it satisfy the ascending or descending chain condition on principal inner ideals. However, it was shown in [18] that Neher's results can be extended to JBW*-triple factors, thereby providing an example of a phenomenon which often appears in the theory of Jordan structures in which a particular result that holds for a Jordan*-triple under strong algebraic conditions continues to hold when these conditions are replaced by the geometrical requirement that the Jordan*-triple is a JBW*-triple.

An inner ideal J in an anisotropic Jordan*-triple A is said to be complemented if

$$
J \oplus \operatorname{Ker}(J)=A,
$$

where

$$
\operatorname{Ker}(J)=\{a \in A:\{J \text { a } J\}=\{0\}\} .
$$

In the case in which J and its algebraic annihilator

$$
J^{\perp}=\{a \in A:\{J \quad a A\}=\{0\}\}
$$

are complemented, the Jordan*-triple A enjoys the generalized Peirce decomposition

$$
\begin{equation*}
A=J_{0} \oplus J_{1} \oplus J_{2} \tag{1.5}
\end{equation*}
$$

corresponding to J, where

$$
\begin{equation*}
J_{0}=J^{\perp}, \quad J_{1}=\operatorname{Ker}(J) \cap \operatorname{Ker}\left(J^{\perp}\right), \quad J_{2}=J \tag{1.6}
\end{equation*}
$$

In this case, for j equal to 0,1 , or $2, J_{j}$ is said to be the Peirce j-space corresponding to J. However, $\left(J_{0}, J_{1}, J_{2}\right)$ is not, in general, a Peirce grading of A since, although conditions (1.1), (1.2), and (1.4) hold, condition (1.3) fails to hold when (j, k, l) is equal to $(0,1,1),(1,1,0),(1,0,1),(1,1,1),(2,1,1)(1,1,2),(1,2,1),(2,1,0)$, and $(0,2,1)$. In the case in which all these Peirce relations hold J is said to be a Peirce inner ideal. If follows that every Peirce inner ideal J gives rise to a Peirce grading $\left(J_{0}, J_{1}, J_{2}\right)$ given by (1.6). It was shown in $[10,12]$ that when A is a

JBW*-triple an inner ideal is complemented if and only if it is weak*-closed and the Peirce conditions in (1.3) in which (j, k, l) is equal to $(2,1,0)$ and $(0,1,2)$ are automatically satisfied. Examples do, however, exist in which the remaining seven conditions all fail to hold [14].

This note is devoted to showing that, for a Peirce grading $\left(J_{0}, J_{1}, J_{2}\right)$ of a JBW*-triple factor A in which both J_{0} and J_{2} are non-zero, both J_{0} and J_{2} are Peirce inner ideals in A such that

$$
\left(J_{0}\right)_{0}=J_{2},\left(J_{0}\right)_{1}=J_{1},\left(J_{0}\right)_{2}=J_{0}, \quad\left(J_{2}\right)_{0}=J_{0},\left(J_{2}\right)_{1}=J_{1},\left(J_{2}\right)_{2}=J_{2},
$$

thereby providing a converse to the result referred to above.
When A is a rectangular or a continuous hermitian factor every weak*-closed inner ideal J in A is Peirce, and, provided that J^{\perp} is non-zero, $J^{\perp \perp}$ coincides with J, and the result proved is hardly surprising. On the other hand, when A is a spin triple or one of the two exceptional Cartan factors, most of the weak*-closed inner ideals in which are not Peirce, the result shows that such inner ideals cannot occur as the constituents J_{0} and J_{2} of a Peirce grading $\left(J_{0}, J_{1}, J_{2}\right)$. The reader is referred to $[11,13,14,15,16,19]$ for details.
2. Preliminaries. A complex vector space A equipped with a triple product $(a, b, c) \mapsto\{a b c\}$ from $A \times A \times A$ to A which is symmetric and linear in the first and third variables, conjugate linear in the second variable and, for elements a, b, c and d in A, satisfies the identity

$$
\begin{equation*}
[D(a, b), D(c, d)]=D(\{a b c\}, d)-D(c,\{d a b\}) \tag{2.1}
\end{equation*}
$$

where [., .] denotes the commutator, and D is the mapping from $A \times A$ to the algebra of linear operators on A defined by

$$
D(a, b) c=\{a b c\}
$$

is said to be a $J_{\text {I }}{ }^{*}{ }^{*}$-triple. A Jordan*-triple A for which the vanishing of $\left\{\begin{array}{lll}a & a & a\end{array}\right\}$ implies that a itself vanishes is said to be anisotropic. A subspace J of a Jordan*triple A such that $\{J J J\}$ is contained in J is said to be a subtriple of A. A subtriple J of A for which $\{J A J\}$ is contained in J is said to be an inner ideal of A and an inner ideal J in A for which both $\{A J A\}$ and $\{A A J\}$ are contained in J is said to be an ideal in A. For details of the properties of Jordan*-triples the reader is referred to [26].
A Jordan*-triple A which is also a dual Banach space such that D is normcontinuous from $A \times A$ to the Banach algebra $B(A)$ of bounded linear operators on A, and, for each element a in $A, D(a, a)$ is positive in the sense of [3] and satisfies the condition that

$$
\|D(a, a)\|=\|a\|^{2}
$$

is said to be a $J B W^{*}$-triple. A complex dual Banach space possesses a triple product with respect to which it forms a JBW*-triple if and only if its open
unit ball is a bounded symmetric domain. The predual A_{*} of a JBW*-triple is unique and the triple product is separately weak*-continuous. Every subtriple of a JBW*-triple is an anisotropic Jordan*-triple, and a weak*-closed subtriple of a JBW^{*}-triple is a JBW^{*}-triple. A norm-closed subspace J of a JBW^{*}-triple A is an ideal if and only if $\{J J A\}$ is contained in J. For details of these and related results the reader is referred to $[1,2,4,6,7,20,21,24,25,28,29]$.

A pair a and b of elements of the JBW*-triple A is said to be orthogonal if $D(a, b)$ is equal to zero. For a non-empty subset L of A, the subset L^{\perp} consisting of elements of A orthogonal to all elements of L is a weak ${ }^{*}$-closed inner ideal in A, known as the (algebraic) annihilator of L, and the weak*-closed subspace $\operatorname{Ker}(L)$ consisting of elements a of A for which $\{L a L\}$ is equal to $\{0\}$ is known as the kernel of L. Clearly, L^{\perp} is contained in $\operatorname{Ker}(L)$ and $L \cap \operatorname{Ker}(L)$ is contained in $\{0\}$. A subtriple J of A is said to be complemented if

$$
J \oplus \operatorname{Ker}(J)=A
$$

The results of $[10,12]$ show that a subtriple is complemented if and only if it is a weak*-closed inner ideal.

Let $\mathcal{I}(A)$ be the complete lattice of weak*-closed inner ideals in the JBW*triple A. For each element J in $\mathcal{I}(A)$, the annihilator J^{\perp} also lies in $\mathcal{I}(A)$, and A enjoys the generalized Peirce decomposition described in (1.5)-(1.6). Two elements J and K of $\mathcal{I}(A)$ with Peirce spaces J_{0}, J_{1}, and J_{2} and K_{0}, K_{1}, and K_{2} are said to be compatible if

$$
A=\bigoplus_{j, k=0,1,2} J_{j} \cap K_{k}
$$

An element I of $\mathcal{I}(A)$ is said to be central if I is compatible with every element J in $\mathcal{I}(A)$. An element I is central if and only if I is an ideal in A or, equivalently, if the Peirce 1 -space I_{1} corresponding to I is equal to $\{0\}$. The family $\mathcal{Z I}(A)$ of ideals in $\mathcal{I}(A)$ forms a Boolean sub-complete lattice of $\mathcal{I}(A)$. For details, the reader is referred to $[8,9]$.
3. Main Result. In this section the main result is proved. Its proof depends upon a series of lemmas the background to which must first be presented.

A pair $\left(B_{+}, B_{-}\right)$of subtriples of a Jordan*-triple A is said to be an involutive grading of A if

$$
\begin{gather*}
A=B_{+} \oplus B_{-} \\
\left\{B_{+} B_{-} B_{+}\right\} \subseteq B_{-}, \quad\left\{B_{-} B_{+} B_{-}\right\} \subseteq B_{+} \tag{3.1}\\
\left\{B_{+} B_{+} B_{-}\right\} \subseteq B_{-}, \quad\left\{B_{-} B_{-} B_{+}\right\} \subseteq B_{+} \tag{3.2}
\end{gather*}
$$

Observe that, by symmetry, if (B_{+}, B_{-}) is an involutive grading then so also is $\left(B_{-}, B_{+}\right)$which is said to be the grading opposite to $\left(B_{+}, B_{-}\right)$. A linear mapping ϕ from A to itself, which is a triple automorphism of A and satisfies the condition
that ϕ^{2} coincides with the identity operator id_{A} on A, is said to be an involutive automorphism of A. Observe that, if ϕ is an involutive automorphism of A then so also is the mapping $-\phi$ defined, for each element a in A, by

$$
(-\phi) a=-\phi a .
$$

For each involutive automorphism ϕ of A, let

$$
B_{+}^{\phi}=\{a \in A: \phi a=a\} \quad B_{-}^{\phi}=\{a \in A: \phi a=-a\} .
$$

Then, $\left(B_{+}^{\phi}, B_{-}^{\phi}\right)$ is an involutive grading and the mapping $\phi \mapsto\left(B_{+}^{\phi}, B_{-}^{\phi}\right)$ is a bijection from the set of involutive automorphisms of A onto the set of involutive gradings of A, such that $\left(B_{+}^{-\phi}, B_{-}^{-\phi}\right)$ coincides with $\left(B_{-}^{\phi}, B_{+}^{\phi}\right)$. Observe that the linear mappings T_{ϕ} and $T_{-\phi}$ defined by

$$
T_{\phi}=\frac{1}{2}\left(\mathrm{id}_{A}+\phi\right), \quad T_{-\phi}=\frac{1}{2}\left(\mathrm{id}_{A}-\phi\right)
$$

are linear projections onto the subtriples B_{+}^{ϕ} and B_{-}^{ϕ}, respectively. The following lemma describes how Peirce gradings give rise to involutive gradings.

Lemma 3.1. Let A be a Jordan*-triple, let $\left(J_{0}, J_{1}, J_{2}\right)$ be a Peirce grading of A, and let P_{0}, P_{1}, and P_{2} be the linear projections onto the subspaces J_{0}, J_{1}, and J_{2}, respectively. Then, $\left(J_{0} \oplus J_{2}, J_{1}\right)$ is an involutive grading of A, the corresponding involutive automorphism ϕ being given by

$$
\phi=2 P_{0}+2 P_{2}-\mathrm{id}_{A}=\mathrm{id}_{A}-2 P_{1}=P_{0}-P_{1}+P_{2},
$$

and the corresponding projections T_{ϕ} and $T_{-\phi}$ being given by

$$
T_{\phi}=P_{0}+P_{2}, \quad T_{-\phi}=\operatorname{id}_{A}-T_{\phi}=P_{1} .
$$

Proof. See [18, Lemma 4.1].

When A is a JBW*-triple, the results of $[1,2,21,24,25]$ show that every involutive automorphism ϕ of A is automatically a weak*-continuous isometry. It follows that, for any involutive grading $\left(B_{+}^{\phi}, B_{-}^{\phi}\right)$, the subtriples B_{+}^{ϕ} and B_{-}^{ϕ} of A are weak ${ }^{*}$-closed and the corresponding projections T_{ϕ} and $T_{-\phi}$ are weak*continuous and contractive.

In the next result the general properties of Peirce gradings in JBW*-triples are described.

Lemma 3.2. Let A be a $J B W^{*}$-triple and let $\left(J_{0}, J_{1}, J_{2}\right)$ be a Peirce grading of A. Then, the following results hold.
(i) The subspaces J_{0} and J_{2} are weak*-closed inner ideals in A, and J_{1} and $J_{0} \oplus J_{2}$ are weak*-closed subtriples of A.
(ii) The weak*-closed inner ideals J_{0} and J_{2} are weak*-closed ideals in the $J B W^{*}$ triple $J_{0} \oplus J_{2}$.
(iii) The weak*-closed inner ideals J_{0} and J_{2} satisfy:

$$
\operatorname{Ker}\left(J_{0}\right)=J_{1} \oplus J_{2}, \quad \operatorname{Ker}\left(J_{2}\right)=J_{1} \oplus J_{0}
$$

and

$$
J_{1}=\operatorname{Ker}\left(J_{0}\right) \cap \operatorname{Ker}\left(J_{2}\right)
$$

(iv) The Peirce spaces $\left(J_{0}\right)_{0},\left(J_{0}\right)_{1}$, and $\left(J_{0}\right)_{2}$ and $\left(J_{2}\right)_{0},\left(J_{2}\right)_{1}$, and $\left(J_{2}\right)_{2}$ corresponding to the weak*-closed inner ideals J_{0} and J_{2} satisfy:

$$
\begin{array}{lll}
\left(J_{0}\right)_{0}=J_{2} \oplus\left(J_{0}\right)_{0} \cap J_{1}, & \left(J_{0}\right)_{1} \oplus\left(J_{0}\right)_{0} \cap J_{1}=J_{1}, & \left(J_{0}\right)_{2}=J_{0} \\
\left(J_{2}\right)_{0}=J_{0} \oplus\left(J_{2}\right)_{0} \cap J_{1}, & \left(J_{2}\right)_{1} \oplus\left(J_{2}\right)_{0} \cap J_{1}=J_{1}, & \left(J_{2}\right)_{2}=J_{2}
\end{array}
$$

Proof. See [18, Lemmas 4.2, 4.3, and 4.5].
The following result is a strengthened version of the main result of [18].
Lemma 3.3. Let A be a $J B W^{*}$-triple factor and let $\left(B_{+}, B_{-}\right)$be an involutive grading of A. Then, either, there exist non-zero weak*-closed ideals J_{0} and J_{2} in B_{+} such that

$$
J_{0}=\left(J_{2}\right)^{\perp} \cap B_{+}, \quad J_{2}=\left(J_{0}\right)^{\perp} \cap B_{+}
$$

in which case, writing J_{1} equal to $B_{-},\left(J_{0}, J_{1}, J_{2}\right)$ is a Peirce grading of A and J_{0} and J_{2} are $J B W^{*}$-triple factors, uniquely defined up to the exchange of J_{0} and J_{2}, or B_{+}is a JBW**-triple factor.

Proof. All except for the uniqueness of the pair J_{0} and J_{2} of non-zero weak*-closed ideals in B_{+}was proved in [18, Theorem 5.5]. Let I be a non-zero, weak ${ }^{*}$-closed ideal in the JBW ${ }^{*}$-triple B_{+}with I not equal to B_{+}. Then,

$$
\left\{I \cap J_{0} I \cap J_{0} J_{0}\right\} \subseteq I \cap J_{0}
$$

and, by [4], $I \cap J_{0}$ is a weak*-closed ideal in the JBW*-triple factor J_{0}. It follows that $I \cap J_{0}$ is equal to either $\{0\}$ or J_{0}. Similarly, $I \cap J_{2}$ is equal to either $\{0\}$ or J_{2}. However, since I, J_{0} and J_{2} are compatible in the JBW^{*}-triple B_{+},

$$
\begin{equation*}
I=\left(I \cap J_{0}\right) \oplus\left(I \cap J_{2}\right) \tag{3.3}
\end{equation*}
$$

If $I \cap J_{0}$ and $I \cap J_{2}$ are both equal to $\{0\}$ then, by (3.3), I is equal to $\{0\}$, giving a contradiction. If $I \cap J_{0}$ is equal to J_{0} and $I \cap J_{2}$ is equal to J_{2} then, by (3.3), I is equal to B_{+}, giving a contradiction. If $I \cap J_{0}$ is equal to J_{0} and $I \cap J_{2}$ is equal to $\{0\}$ then, by (3.3), I is equal to J_{0}. Similarly, if $I \cap J_{0}$ is equal to $\{0\}$ and $I \cap J_{2}$ is equal to J_{2} then, by (3.3), I is equal to J_{2}. This completes the proof of the lemma.

By symmetry, the result above also holds with the rôles of B_{+}and B_{-}interchanged. Before proceeding to the statement and proof of the main result, one further property of involutive gradings is required.

Lemma 3.4. Let A be a $J B W^{*}$-triple and let $\left(B_{+}, B_{-}\right)$be an involutive grading of A. Then the kernel $\operatorname{Ker}\left(B_{+}\right)$of the weak*-closed subtriple B_{+}of A is a weak*closed ideal in the $J B W^{*}$-triple B_{-}.

Proof. By [12, Lemma 4.2], $\operatorname{Ker}\left(B_{+}\right)$is a weak ${ }^{*}$-closed subspace of A. Suppose that a is an element of $\operatorname{Ker}\left(B_{+}\right)$, and let a_{+}and a_{-}be the unique elements of B_{+} and B_{-}, respectively, such that

$$
a=a_{+}+a_{-} .
$$

Then,

$$
0=\left\{a_{+} a a_{+}\right\}=\left\{a_{+} a_{+} a_{+}\right\}+\left\{a_{+} a_{-} a_{+}\right\} .
$$

Since B_{+}is a subtriple, $\left\{a_{+} a_{+} a_{+}\right\}$lies in B_{+}and, by (3.1), $\left\{a_{+} a_{-} a_{+}\right\}$lies in B_{-}. It follows that both elements are equal to zero, and, by anisotropy, a_{+}is equal to zero. Hence, a is equal to a_{-}and, therefore, lies in B_{-}. It follows that $\operatorname{Ker}\left(B_{+}\right)$ is contained in B_{-}. By [4], it remains to show that

$$
\begin{equation*}
\left\{\operatorname{Ker}\left(B_{+}\right) \operatorname{Ker}\left(B_{+}\right) B_{-}\right\} \subseteq \operatorname{Ker}\left(B_{+}\right) \tag{3.4}
\end{equation*}
$$

Let a_{+}and c_{+}be elements of B_{+}, let d_{-}and e_{-}be elements of $\operatorname{Ker}\left(B_{+}\right)$, and let b_{-}be an element of B_{-}. Then, using (2.1) and (3.2),

$$
\begin{aligned}
\left\{a_{+}\left\{d_{-} e_{-} b_{-}\right\} c_{+}\right\}= & D\left(a_{+},\left\{d_{-} e_{-} b_{-}\right\}\right) c_{+} \\
= & D\left(\left\{e_{-} b_{-} a_{+}\right\}, d_{-}\right) c_{+}+D\left(a_{+}, d_{-}\right) D\left(e_{-}, b_{-}\right) c_{+} \\
& -D\left(e_{-}, b_{-}\right) D\left(a_{+}, d_{-}\right) c_{+} \\
\in & D\left(B_{+}, \operatorname{Ker}\left(B_{+}\right)\right) B_{+}+D\left(B_{+}, \operatorname{Ker}\left(B_{+}\right)\right) B_{+} \\
& -D\left(\operatorname{Ker}\left(B_{+}\right), B_{-}\right)\left\{B_{+} \operatorname{Ker}\left(B_{+}\right) B_{+}\right\} \\
= & \{0\},
\end{aligned}
$$

thereby completing the proof of (3.4).

It is now possible to prove the main result of the paper.
Theorem 3.5. Let A be a $J B W^{*}$-triple factor and let $\left(J_{0}, J_{1}, J_{2}\right)$ be a Peirce grading of A for which both J_{0} and J_{2} are non-zero. Then, J_{0} and J_{2} are Peirce weak*closed inner ideals in A with Peirce spaces given by

$$
\begin{array}{lll}
\left(J_{0}\right)_{0}=J_{2}, & \left(J_{0}\right)_{1}=J_{1}, & \left(J_{0}\right)_{2}=J_{0} ; \\
\left(J_{2}\right)_{0}=J_{0}, & \left(J_{2}\right)_{1}=J_{1}, & \left(J_{2}\right)_{2}=J_{2} . \tag{3.6}
\end{array}
$$

Proof. If J_{1} is equal to $\{0\}$ then, by Lemma $3.2(\mathrm{ii}), J_{0}$ and J_{2} are non-zero orthogonal weak*-closed ideals in A with direct sum equal to A contradicting the condition that A is a JBW*-triple factor.

Therefore, it can be assumed that J_{0}, J_{1}, and J_{2} are all non-zero. Observe that, by symmetry, since $\left(J_{0}, J_{1}, J_{2}\right)$ is a Peirce grading, so also is $\left(J_{2}, J_{1}, J_{0}\right)$. Moreover, also by symmetry, it is sufficient to prove the result for J_{0}. By Lemma 3.2(iv), in order to show that (3.5) holds, it is sufficient to show that the subtriple $\left(J_{0}\right)_{0} \cap J_{1}$ of A is equal to $\{0\}$. Since $\left(J_{2}, J_{1}, J_{0}\right)$ is a Peirce grading it will then follow from (1.2)-(1.4) that J_{0} is a Peirce weak*-closed inner ideal.

Let a_{1} be an element of $\left(J_{0}\right)_{0} \cap J_{1}$, let b_{0} and c_{0} be elements of J_{0}, and let b_{2} and c_{2} be elements of J_{2}. Using (1.2)-(1.4) and the orthogonality of a_{1} with both b_{0} and c_{0}, it can be seen that

$$
\left\{b_{0}+b_{2} a_{1} c_{0}+c_{2}\right\}=\left\{b_{0} a_{1} c_{0}\right\}+\left\{b_{0} a_{1} c_{2}\right\}+\left\{b_{2} a_{1} c_{0}\right\}+\left\{b_{2} a_{1} c_{2}\right\}=0
$$

It follows that the subtriple $\left(J_{0}\right)_{0} \cap J_{1}$ is contained in the kernel $\operatorname{Ker}\left(J_{0} \oplus J_{2}\right)$ of the subtriple $J_{0} \oplus J_{2}$ of A. The proof will, therefore, be complete if it can be shown that $\operatorname{Ker}\left(J_{0} \oplus J_{2}\right)$ is equal to $\{0\}$.

It follows from Lemma 3.1 that $\left(J_{0} \oplus J_{2}, J_{1}\right)$ is an involutive grading of A, and, therefore, using Lemma 3.4, $\operatorname{Ker}\left(J_{0} \oplus J_{2}\right)$ is a weak*-closed ideal in the JBW^{*}-triple J_{1}. Applying Lemma 3.3 to the involutive grading ($J_{1}, J_{0} \oplus J_{2}$) of A it follows that three possibilities arise. These are:
(i) $\operatorname{Ker}\left(J_{0} \oplus J_{2}\right)=K_{0}, \operatorname{Ker}\left(J_{0} \oplus J_{2}\right)^{\perp} \cap J_{1}=K_{2}$, where K_{0} and K_{2} are non-zero weak*-closed ideals in the JBW*-triple J_{1} with direct sum J_{1} and $\left(K_{0}, J_{0} \oplus J_{2}, K_{2}\right)$ is a Peirce grading of A;
(ii) $\operatorname{Ker}\left(J_{0} \oplus J_{2}\right)=J_{1}$;
(iii) $\operatorname{Ker}\left(J_{0} \oplus J_{2}\right)=\{0\}$.

Suppose that (i) holds. Let a be an element of $J_{0} \oplus J_{2}$ and let b be an element of K_{2}. Then, applying (1.3) to the Peirce grading $\left(K_{0}, J_{0} \oplus J_{2}, K_{2}\right)$ of A,

$$
\begin{equation*}
\{a b a\} \in\left\{J_{0} \oplus J_{2} K_{2} J_{0} \oplus J_{2}\right\} \subseteq K_{0}=\operatorname{Ker}\left(J_{0} \oplus J_{2}\right) \tag{3.7}
\end{equation*}
$$

It follows from (3.7) that

$$
\left\{a\left\{\begin{array}{ll}
a b & a\} \tag{3.8}\\
a
\end{array}\right\} \in\left\{J_{0} \oplus J_{2} \operatorname{Ker}\left(J_{0} \oplus J_{2}\right) J_{0} \oplus J_{2}\right\}=\{0\} .\right.
$$

Using the standard Peirce quadratic relation, that can be proved using (2.1) and (3.8),

$$
\{\{a b a\}\{a b a\}\{a b a\}\}=\{a\{b\{a\{a b a\} a\} b\} a\}=0 .
$$

By anisotropy, it follows that the element $\{a b a\}$ is equal to zero. Using the linearity of the triple product it can be seen that

$$
\left\{J_{0} \oplus J_{2} K_{2} J_{0} \oplus J_{2}\right\}=\{0\},
$$

and, hence, that

$$
K_{2} \subseteq \operatorname{Ker}\left(J_{0} \oplus J_{2}\right)=K_{0},
$$

yielding a contradiction.
Now, suppose that (ii) holds. Then, it follows from (1.1) that

$$
J_{0} \oplus J_{2} \oplus \operatorname{Ker}\left(J_{0} \oplus J_{2}\right)=J_{0} \oplus J_{1} \oplus J_{2}=A
$$

and, therefore, that $J_{0} \oplus J_{2}$ is a complemented subtriple of A. By [12, Lemma 4.1], it can be seen that $J_{0} \oplus J_{2}$ is a weak*-closed inner ideal in A. In this case, J_{0} is a weak*-closed ideal in the weak*-closed inner ideal $J_{0} \oplus J_{2}$ in A, and, by [17, Corollary 3.6], there exists a weak*-closed ideal I in A such that

$$
\begin{equation*}
J_{0}=I \cap\left(J_{0} \oplus J_{2}\right) \tag{3.9}
\end{equation*}
$$

Since A is a JBW*-triple factor, I is equal either to $\{0\}$, in which case J_{0} is equal to $\{0\}$, or to A, in which case J_{2} is equal to $\{0\}$, both of which lead to a contradiction.

It therefore follows that (iii) holds and the proof of the theorem is complete.

A consequence of this result is that Lemma 3.3 can be further strengthened.
Corollary 3.6. Let A be a $J B W^{*}$-triple factor and let $\left(B_{+}, B_{-}\right)$be an involutive grading of A. Then, either there exists a non-zero Peirce weak*-closed inner ideal J_{0} in A with Peirce spaces $\left(J_{0}\right)_{0},\left(J_{0}\right)_{1}$, and $\left(J_{0}\right)_{2}$ such that $\left(J_{0}\right)_{0}$ is non-zero, $\left(J_{0}\right)_{0}$ and $\left(J_{0}\right)_{2}$ are $J B W^{*}$-triple factors, and

$$
B_{+}=\left(J_{0}\right)_{0} \oplus\left(J_{0}\right)_{2}, \quad B_{-}=\left(J_{0}\right)_{1},
$$

or the weak*-closed subtriple B_{+}of A is a $J B W^{*}$-triple factor. The decomposition above is unique up to the exchange of $\left(J_{0}\right)_{0}$ and $\left(J_{0}\right)_{2}$,

References

[1] T. J. Barton and R. M. Timoney, Weak*-continuity of Jordan triple products and its applications. Math. Scand. 59, 177-191 (1986).
[2] T. J. Barton, T. Dang, and G. Horn, Normal representations of Banach Jordan triple systems. Proc. Amer. Math. Soc. 102, 551-555 (1987).
[3] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, Cambridge 1971.
[4] L. J. Bunce and C-H. Chu, Compact operations, multipliers and the Radon Nikodym property in JB*-triples. Pac. J. Math. 153, 249-265 (1992).
[5] É. Cartan, Sur les domaines bornés homogènes de l'espace de n variables complexes. Abh. Math. Semin. Hamb. Univ. 11, 116-162 (1935).
[6] S. Dineen, Complete holomorphic vector fields in the second dual of a Banach space. Math. Scand. 59, 131-142 (1986).
[7] S. Dineen, The second dual of a JB*-triple system. In Complex analysis, Functional Analysis and Approximation Theory, J. Mujica, ed., Amsterdam 1986.
[8] S. Dineen and R. M. Timoney, The centroid of a JB*-triple system. Math. Scand. 62, 327-342 (1988).
[9] C. M. Edwards, D. Lörch, and G. T. RÜttimann, Compatible subtriples of Jordan*-triples. J. Algebra 216, 707-740 (1999).
[10] C. M. Edwards, K. McCrimmon, and G. T. Rüttimann, The range of a structural projection. J. Funct. Anal. 139, 196-224 (1996).
[11] C. M. Edwards and G. T. Rüttimann, Inner ideals in W*-algebras. Michigan Math. J. 36, 147-159 (1989).
[12] C. M. Edwards and G. T. Rüttimann, Structural projections on JBW*-triples. J. London Math. Soc. 53, 354-368 (1996).
[13] C. M. Edwards and G. T. Rüttimann, Peirce inner ideals in Jordan*-triples. J. Algebra 180, 41-66 (1996).
[14] C. M. Edwards and G. T. Rüttimann, Inner ideals in the bi-Cayley triple. Atti. Sem. Mat. Fis. Univ. Modena 47, 235-259 (1999).
[15] C. M. Edwards and G. T. Rüttimann, Gleason's theorem for rectangular JBW*triples. Comm. Math. Phys. 203, 269-295 (1999).
[16] C. M. Edwards and G. T. Rüttimann, Measures on the lattice of closed inner ideals in a spin triple. J. Math. Anal. Appl. 252, 649-674 (2000).
[17] C. M. Edwards and G. T. Rüttimann, The centroid of a weak ${ }^{*}$-closed inner ideal in a JBW*-triple. Arch. Math. 76, 299-307 (2001).
[18] C. M. Edwards and G. T. Rüttimann, Involutive and Peirce gradings in JBW*triples. Comm. Algebra 172, 2819-2848 (2003).
[19] C. M. Edwards, S. Yu. Vasilovsky, and G. T. Rüttimann, Invariant inner ideals in W^{*}-algebras. Math. Nachr. 172, 95-108 (1995).
[20] Y. Friedman and B. Russo, Structure of the predual of a JBW*-triple. J. Reine Angew. Math. 356, 67-89 (1985).
[21] G. Horn, Characterization of the predual and the ideal structure of a JBW*-triple. Math. Scand. 61, 117-133 (1987).
[22] G. Horn and E. Neher, Classification of continuous JBW*-triples. Trans. Amer. Math. Soc. 306, 553-578 (1988).
[23] W. Kaup, Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension. I. Math. Ann. 257, 463-486 (1981).
[24] W. Kaup, Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z. 183, 503-529 (1983).
[25] W. Kaup, Contractive projections on Jordan C*-algebras and generalizations. Math. Scand. 54, 95-100 (1984).
[26] O. Loos, Jordan pairs. LNM 460, Springer-Verlag, Berlin-Heidelberg-New York 1975.
[27] E. Neher, Involutive gradings of Jordan structures. Comm. Algebra 9, 575-599 (1981).
[28] L. L. Stachó, A projection principle concerning biholomorphic automorphisms. Acta Sci. Math. 44, 99-124 (1982).
[29] H. Upmeier, Symmetric Banach manifolds and Jordan C*-algebras. Amsterdam 1985.
C. Martin Edwards, The Queen's College, Oxford, United Kingdom e-mail: martin.edwards@queens.ox.ac.uk

Alastair G. Morton, St. Anne's College, Oxford, United Kingdom
e-mail: alastairgmorton@googlemail.com

Received: 21 April 2008

