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Peirce gradings and Peirce inner ideals in JBW∗-triple factors

C. Martin Edwards and Alastair G. Morton

Abstract. A Peirce inner ideal J in an anisotropic Jordan∗-triple A gives rise
to a Peirce grading (J0, J1, J2) of A by defining

J0 = J⊥, J1 = Ker(J) ∩ Ker(J⊥), J2 = J,

where J⊥ is the set of elements a of A for which {J a A} is equal to {0}
and Ker(J) is the set of elements a of A for which {J a J} is equal to {0}.
It is shown that conversely, when A is a JBW∗-triple factor, for each Peirce
grading (J0, J1, J2) of A such that both J0 and J2 are non-zero, both J0 and
J2 are Peirce inner ideals the corresponding Peirce decompositions of A being
given by

(J0)0 = J2, (J0)1 = J1, (J0)2 = J0;

(J2)0 = J0, (J2)1 = J1, (J2)2 = J2.
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1. Introduction. A Peirce grading (J0, J1, J2) of a Jordan∗-triple A consists of
subspaces J0, J1 and J2 of A such that

J0 ⊕ J1 ⊕ J2 = A,(1.1)

{J0 J2 A} = {J2 J0 A} = {0},(1.2)

and, for j, k, and l equal to 0, 1, or 2,

{Jj Jk Jl} ⊆ Jj−k+l,(1.3)

if j − k + l is equal to 0, 1 or 2, and

{Jj Jk Jl} = {0},(1.4)

otherwise. A study of Peirce gradings and involutive gradings of Jordan pairs and
Jordan∗-triples was carried out by Neher [27], one of his main conclusions being



308 C. M. Edwards and A. G. Morton Arch. Math.

that, provided that the pair or triple in question was simple, semi-simple, and
satisfied both the ascending and descending chain conditions on principal inner
ideals, the two concepts were essentially the equivalent.

A complex Banach space A that is the dual of a Banach space A∗ and the open
unit ball in which is a bounded symmetric domain possesses an intrinsic triple prod-
uct with respect to which it forms an anisotropic Jordan∗-triple which is known as a
JBW∗-triple. The family of JBW∗-triples includes that of JBW∗-algebras which, in
turn, includes that of W∗-algebras, or von Neumann algebras. A JBW∗-triple that
does not contain a non-trivial weak∗-closed triple ideal is said to be a JBW ∗-triple
factor, examples of which are the six discrete Cartan factors considered by Cartan
[5] in finite dimensions and by Kaup [23] in infinite dimensions, and the continuous
factors studied by Horn and Neher [22]. A JBW∗-triple factor need not be sim-
ple, nor need it satisfy the ascending or descending chain condition on principal
inner ideals. However, it was shown in [18] that Neher’s results can be extended to
JBW∗-triple factors, thereby providing an example of a phenomenon which often
appears in the theory of Jordan structures in which a particular result that holds
for a Jordan∗-triple under strong algebraic conditions continues to hold when these
conditions are replaced by the geometrical requirement that the Jordan∗-triple is
a JBW∗-triple.

An inner ideal J in an anisotropic Jordan∗-triple A is said to be complemented if

J ⊕ Ker(J) = A,

where

Ker(J) = {a ∈ A : {J a J} = {0}}.

In the case in which J and its algebraic annihilator

J⊥ = {a ∈ A : {J a A} = {0}}
are complemented, the Jordan∗-triple A enjoys the generalized Peirce
decomposition

A = J0 ⊕ J1 ⊕ J2(1.5)

corresponding to J , where

J0 = J⊥, J1 = Ker(J) ∩ Ker(J⊥), J2 = J.(1.6)

In this case, for j equal to 0, 1, or 2, Jj is said to be the Peirce j-space corresponding
to J . However, (J0, J1, J2) is not, in general, a Peirce grading of A since, although
conditions (1.1), (1.2), and (1.4) hold, condition (1.3) fails to hold when (j, k, l)
is equal to (0, 1, 1), (1, 1, 0), (1, 0, 1), (1, 1, 1), (2, 1, 1) (1, 1, 2), (1, 2, 1), (2, 1, 0),
and (0, 2, 1). In the case in which all these Peirce relations hold J is said to be a
Peirce inner ideal. If follows that every Peirce inner ideal J gives rise to a Peirce
grading (J0, J1, J2) given by (1.6). It was shown in [10, 12] that when A is a
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JBW∗-triple an inner ideal is complemented if and only if it is weak∗-closed and
the Peirce conditions in (1.3) in which (j, k, l) is equal to (2, 1, 0) and (0, 1, 2) are
automatically satisfied. Examples do, however, exist in which the remaining seven
conditions all fail to hold [14].

This note is devoted to showing that, for a Peirce grading (J0, J1, J2) of a
JBW∗-triple factor A in which both J0 and J2 are non-zero, both J0 and J2 are
Peirce inner ideals in A such that

(J0)0 = J2, (J0)1 = J1, (J0)2 = J0, (J2)0 = J0, (J2)1 = J1, (J2)2 = J2,

thereby providing a converse to the result referred to above.

When A is a rectangular or a continuous hermitian factor every weak∗-closed
inner ideal J in A is Peirce, and, provided that J⊥ is non-zero, J⊥⊥ coincides
with J , and the result proved is hardly surprising. On the other hand, when A is a
spin triple or one of the two exceptional Cartan factors, most of the weak∗-closed
inner ideals in which are not Peirce, the result shows that such inner ideals cannot
occur as the constituents J0 and J2 of a Peirce grading (J0, J1, J2). The reader is
referred to [11, 13, 14, 15, 16, 19] for details.

2. Preliminaries. A complex vector space A equipped with a triple product
(a, b, c) �→ {a b c} from A × A × A to A which is symmetric and linear in the
first and third variables, conjugate linear in the second variable and, for elements
a, b, c and d in A, satisfies the identity

[D(a, b), D(c, d)] = D({a b c}, d) − D(c, {d a b}),(2.1)

where [ . , . ] denotes the commutator, and D is the mapping from A × A to the
algebra of linear operators on A defined by

D(a, b)c = {a b c},

is said to be a Jordan∗-triple. A Jordan∗-triple A for which the vanishing of {a a a}
implies that a itself vanishes is said to be anisotropic. A subspace J of a Jordan∗-
triple A such that {J J J} is contained in J is said to be a subtriple of A. A
subtriple J of A for which {J A J} is contained in J is said to be an inner ideal
of A and an inner ideal J in A for which both {A J A} and {A A J} are contained
in J is said to be an ideal in A. For details of the properties of Jordan∗-triples the
reader is referred to [26].

A Jordan∗-triple A which is also a dual Banach space such that D is norm-
continuous from A×A to the Banach algebra B(A) of bounded linear operators on
A, and, for each element a in A, D(a, a) is positive in the sense of [3] and satisfies
the condition that

‖D(a, a)‖ = ‖a‖2,

is said to be a JBW ∗-triple. A complex dual Banach space possesses a triple
product with respect to which it forms a JBW∗-triple if and only if its open
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unit ball is a bounded symmetric domain. The predual A∗ of a JBW∗-triple is
unique and the triple product is separately weak∗-continuous. Every subtriple of
a JBW∗-triple is an anisotropic Jordan∗-triple, and a weak∗-closed subtriple of a
JBW∗-triple is a JBW∗-triple. A norm-closed subspace J of a JBW∗-triple A is
an ideal if and only if {J J A} is contained in J . For details of these and related
results the reader is referred to [1, 2, 4, 6, 7, 20, 21, 24, 25, 28, 29].

A pair a and b of elements of the JBW∗-triple A is said to be orthogonal if
D(a, b) is equal to zero. For a non-empty subset L of A, the subset L⊥ consisting
of elements of A orthogonal to all elements of L is a weak∗-closed inner ideal in A,
known as the (algebraic) annihilator of L, and the weak∗-closed subspace Ker(L)
consisting of elements a of A for which {L a L} is equal to {0} is known as the
kernel of L. Clearly, L⊥ is contained in Ker(L) and L∩Ker(L) is contained in {0}.
A subtriple J of A is said to be complemented if

J ⊕ Ker(J) = A.

The results of [10, 12] show that a subtriple is complemented if and only if it is a
weak∗-closed inner ideal.

Let I(A) be the complete lattice of weak∗-closed inner ideals in the JBW∗-
triple A. For each element J in I(A), the annihilator J⊥ also lies in I(A), and A
enjoys the generalized Peirce decomposition described in (1.5)–(1.6). Two elements
J and K of I(A) with Peirce spaces J0, J1, and J2 and K0, K1, and K2 are said
to be compatible if

A =
⊕

j,k=0,1,2

Jj ∩ Kk.

An element I of I(A) is said to be central if I is compatible with every element J
in I(A). An element I is central if and only if I is an ideal in A or, equivalently,
if the Peirce 1-space I1 corresponding to I is equal to {0}. The family ZI(A) of
ideals in I(A) forms a Boolean sub-complete lattice of I(A). For details, the reader
is referred to [8, 9].

3. Main Result. In this section the main result is proved. Its proof depends upon
a series of lemmas the background to which must first be presented.

A pair (B+, B−) of subtriples of a Jordan∗-triple A is said to be an involutive
grading of A if

A = B+ ⊕ B−,

{B+ B− B+} ⊆ B−, {B− B+ B−} ⊆ B+,(3.1)
{B+ B+ B−} ⊆ B−, {B− B− B+} ⊆ B+.(3.2)

Observe that, by symmetry, if (B+, B−) is an involutive grading then so also is
(B−, B+) which is said to be the grading opposite to (B+, B−). A linear mapping
φ from A to itself, which is a triple automorphism of A and satisfies the condition
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that φ2 coincides with the identity operator idA on A, is said to be an involutive
automorphism of A. Observe that, if φ is an involutive automorphism of A then
so also is the mapping −φ defined, for each element a in A, by

(−φ)a = −φa.

For each involutive automorphism φ of A, let

Bφ
+ = {a ∈ A : φa = a} Bφ

− = {a ∈ A : φa = −a}.

Then, (Bφ
+, Bφ

−) is an involutive grading and the mapping φ �→ (Bφ
+, Bφ

−) is a
bijection from the set of involutive automorphisms of A onto the set of involutive
gradings of A, such that (B−φ

+ , B−φ
− ) coincides with (Bφ

−, Bφ
+). Observe that the

linear mappings Tφ and T−φ defined by

Tφ = 1
2 (idA + φ), T−φ = 1

2 (idA − φ)

are linear projections onto the subtriples Bφ
+ and Bφ

−, respectively. The following
lemma describes how Peirce gradings give rise to involutive gradings.

Lemma 3.1. Let A be a Jordan∗-triple, let (J0, J1, J2) be a Peirce grading of A,
and let P0, P1, and P2 be the linear projections onto the subspaces J0, J1, and J2,
respectively. Then, (J0 ⊕ J2, J1) is an involutive grading of A, the corresponding
involutive automorphism φ being given by

φ = 2P0 + 2P2 − idA = idA − 2P1 = P0 − P1 + P2,

and the corresponding projections Tφ and T−φ being given by

Tφ = P0 + P2, T−φ = idA − Tφ = P1.

Proof. See [18, Lemma 4.1]. �

When A is a JBW∗-triple, the results of [1, 2, 21, 24, 25] show that every
involutive automorphism φ of A is automatically a weak∗-continuous isometry.
It follows that, for any involutive grading (Bφ

+, Bφ
−), the subtriples Bφ

+ and Bφ
−

of A are weak∗-closed and the corresponding projections Tφ and T−φ are weak∗-
continuous and contractive.

In the next result the general properties of Peirce gradings in JBW∗-triples are
described.

Lemma 3.2. Let A be a JBW∗-triple and let (J0, J1, J2) be a Peirce grading of A.
Then, the following results hold.

(i) The subspaces J0 and J2 are weak∗-closed inner ideals in A, and J1 and
J0 ⊕ J2 are weak∗-closed subtriples of A.
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(ii) The weak∗-closed inner ideals J0 and J2 are weak∗-closed ideals in the JBW∗-
triple J0 ⊕ J2.

(iii) The weak∗-closed inner ideals J0 and J2 satisfy:

Ker(J0) = J1 ⊕ J2, Ker(J2) = J1 ⊕ J0,

and

J1 = Ker(J0) ∩ Ker(J2).

(iv) The Peirce spaces (J0)0, (J0)1, and (J0)2 and (J2)0, (J2)1, and (J2)2 corre-
sponding to the weak∗-closed inner ideals J0 and J2 satisfy:

(J0)0 = J2 ⊕ (J0)0 ∩ J1, (J0)1 ⊕ (J0)0 ∩ J1 = J1, (J0)2 = J0;

(J2)0 = J0 ⊕ (J2)0 ∩ J1, (J2)1 ⊕ (J2)0 ∩ J1 = J1, (J2)2 = J2.

Proof. See [18, Lemmas 4.2, 4.3, and 4.5]. �

The following result is a strengthened version of the main result of [18].

Lemma 3.3. Let A be a JBW∗-triple factor and let (B+, B−) be an involutive grad-
ing of A. Then, either, there exist non-zero weak∗-closed ideals J0 and J2 in B+
such that

J0 = (J2)⊥ ∩ B+, J2 = (J0)⊥ ∩ B+,

in which case, writing J1 equal to B−, (J0, J1, J2) is a Peirce grading of A and J0
and J2 are JBW∗-triple factors, uniquely defined up to the exchange of J0 and J2,
or B+ is a JBW∗-triple factor.

Proof. All except for the uniqueness of the pair J0 and J2 of non-zero weak∗-closed
ideals in B+ was proved in [18, Theorem 5.5]. Let I be a non-zero, weak ∗-closed
ideal in the JBW∗-triple B+ with I not equal to B+. Then,

{I ∩ J0 I ∩ J0 J0} ⊆ I ∩ J0

and, by [4], I ∩ J0 is a weak∗-closed ideal in the JBW∗-triple factor J0. It follows
that I ∩ J0 is equal to either {0} or J0. Similarly, I ∩ J2 is equal to either {0} or
J2. However, since I, J0 and J2 are compatible in the JBW∗-triple B+,

I = (I ∩ J0) ⊕ (I ∩ J2).(3.3)

If I ∩J0 and I ∩J2 are both equal to {0} then, by (3.3), I is equal to {0}, giving a
contradiction. If I ∩ J0 is equal to J0 and I ∩ J2 is equal to J2 then, by (3.3), I is
equal to B+, giving a contradiction. If I ∩ J0 is equal to J0 and I ∩ J2 is equal to
{0} then, by (3.3), I is equal to J0. Similarly, if I ∩ J0 is equal to {0} and I ∩ J2
is equal to J2 then, by (3.3), I is equal to J2. This completes the proof of the
lemma. �
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By symmetry, the result above also holds with the rôles of B+ and B− inter-
changed. Before proceeding to the statement and proof of the main result, one
further property of involutive gradings is required.

Lemma 3.4. Let A be a JBW∗-triple and let (B+, B−) be an involutive grading
of A. Then the kernel Ker(B+) of the weak∗-closed subtriple B+ of A is a weak∗-
closed ideal in the JBW∗-triple B−.

Proof. By [12, Lemma 4.2], Ker(B+) is a weak∗-closed subspace of A. Suppose
that a is an element of Ker(B+), and let a+ and a− be the unique elements of B+
and B−, respectively, such that

a = a+ + a−.

Then,

0 = {a+ a a+} = {a+ a+ a+} + {a+ a− a+}.

Since B+ is a subtriple, {a+ a+ a+} lies in B+ and, by (3.1), {a+ a− a+} lies in
B−. It follows that both elements are equal to zero, and, by anisotropy, a+ is equal
to zero. Hence, a is equal to a− and, therefore, lies in B−. It follows that Ker(B+)
is contained in B−. By [4], it remains to show that

{Ker(B+) Ker(B+) B−} ⊆ Ker(B+).(3.4)

Let a+ and c+ be elements of B+, let d− and e− be elements of Ker(B+), and let
b− be an element of B−. Then, using (2.1) and (3.2),

{a+ {d− e− b−} c+} = D(a+, {d− e− b−})c+

= D({e− b− a+}, d−)c+ + D(a+, d−)D(e−, b−)c+

−D(e−, b−)D(a+, d−)c+

∈ D(B+, Ker(B+))B+ + D(B+, Ker(B+))B+

−D(Ker(B+), B−){B+ Ker(B+) B+}
= {0},

thereby completing the proof of (3.4). �

It is now possible to prove the main result of the paper.

Theorem 3.5. Let A be a JBW∗-triple factor and let (J0, J1, J2) be a Peirce grading
of A for which both J0 and J2 are non-zero. Then, J0 and J2 are Peirce weak∗-
closed inner ideals in A with Peirce spaces given by

(J0)0 = J2, (J0)1 = J1, (J0)2 = J0;(3.5)

(J2)0 = J0, (J2)1 = J1, (J2)2 = J2.(3.6)
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Proof. If J1 is equal to {0} then, by Lemma 3.2(ii), J0 and J2 are non-zero
orthogonal weak∗-closed ideals in A with direct sum equal to A contradicting
the condition that A is a JBW∗-triple factor.

Therefore, it can be assumed that J0, J1, and J2 are all non-zero. Observe that,
by symmetry, since (J0, J1, J2) is a Peirce grading, so also is (J2, J1, J0). Moreover,
also by symmetry, it is sufficient to prove the result for J0. By Lemma 3.2(iv), in
order to show that (3.5) holds, it is sufficient to show that the subtriple (J0)0 ∩J1
of A is equal to {0}. Since (J2, J1, J0) is a Peirce grading it will then follow from
(1.2)–(1.4) that J0 is a Peirce weak*-closed inner ideal.

Let a1 be an element of (J0)0 ∩ J1, let b0 and c0 be elements of J0, and let b2
and c2 be elements of J2. Using (1.2)–(1.4) and the orthogonality of a1 with both
b0 and c0, it can be seen that

{b0 + b2 a1 c0 + c2} = {b0 a1 c0} + {b0 a1 c2} + {b2 a1 c0} + {b2 a1 c2} = 0.

It follows that the subtriple (J0)0 ∩ J1 is contained in the kernel Ker(J0 ⊕ J2) of
the subtriple J0 ⊕J2 of A. The proof will, therefore, be complete if it can be shown
that Ker(J0 ⊕ J2) is equal to {0}.

It follows from Lemma 3.1 that (J0 ⊕J2, J1) is an involutive grading of A, and,
therefore, using Lemma 3.4, Ker(J0⊕J2) is a weak∗-closed ideal in the JBW∗-triple
J1. Applying Lemma 3.3 to the involutive grading (J1, J0 ⊕J2) of A it follows that
three possibilities arise. These are:

(i) Ker(J0 ⊕ J2) = K0, Ker(J0 ⊕ J2)⊥ ∩ J1 = K2,
where K0 and K2 are non-zero weak∗-closed ideals in the JBW∗-triple J1
with direct sum J1 and (K0, J0 ⊕ J2, K2) is a Peirce grading of A;

(ii) Ker(J0 ⊕ J2) = J1;
(iii) Ker(J0 ⊕ J2) = {0}.

Suppose that (i) holds. Let a be an element of J0 ⊕ J2 and let b be an element
of K2. Then, applying (1.3) to the Peirce grading (K0, J0 ⊕ J2, K2) of A,

{a b a} ∈ {J0 ⊕ J2 K2 J0 ⊕ J2} ⊆ K0 = Ker(J0 ⊕ J2).(3.7)

It follows from (3.7) that

{a {a b a} a} ∈ {J0 ⊕ J2 Ker(J0 ⊕ J2) J0 ⊕ J2} = {0}.(3.8)

Using the standard Peirce quadratic relation, that can be proved using (2.1) and
(3.8),

{{a b a} {a b a} {a b a}} = {a{b{a {a b a} a}b}a} = 0.

By anisotropy, it follows that the element {a b a} is equal to zero. Using the
linearity of the triple product it can be seen that

{J0 ⊕ J2 K2 J0 ⊕ J2} = {0},
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and, hence, that

K2 ⊆ Ker(J0 ⊕ J2) = K0,

yielding a contradiction.

Now, suppose that (ii) holds. Then, it follows from (1.1) that

J0 ⊕ J2 ⊕ Ker(J0 ⊕ J2) = J0 ⊕ J1 ⊕ J2 = A,

and, therefore, that J0 ⊕ J2 is a complemented subtriple of A. By [12, Lemma
4.1], it can be seen that J0 ⊕ J2 is a weak∗-closed inner ideal in A. In this
case, J0 is a weak∗-closed ideal in the weak∗-closed inner ideal J0 ⊕ J2 in
A, and, by [17, Corollary 3.6], there exists a weak∗-closed ideal I in A such
that

J0 = I ∩ (J0 ⊕ J2).(3.9)

Since A is a JBW∗-triple factor, I is equal either to {0}, in which case J0 is equal to
{0}, or to A, in which case J2 is equal to {0}, both of which lead to a contradiction.

It therefore follows that (iii) holds and the proof of the theorem is complete. �

A consequence of this result is that Lemma 3.3 can be further strengthened.

Corollary 3.6. Let A be a JBW∗-triple factor and let (B+, B−) be an involutive
grading of A. Then, either there exists a non-zero Peirce weak∗-closed inner ideal
J0 in A with Peirce spaces (J0)0, (J0)1, and (J0)2 such that (J0)0 is non-zero,
(J0)0 and (J0)2 are JBW∗-triple factors, and

B+ = (J0)0 ⊕ (J0)2, B− = (J0)1,

or the weak∗-closed subtriple B+ of A is a JBW∗-triple factor. The decomposition
above is unique up to the exchange of (J0)0 and (J0)2,
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