Central kernels of subspaces of JB*-triples **

C. Martin Edwards ${ }^{\text {a,* }}$, Christopher S. Hoskin ${ }^{\text {b }}$
${ }^{\text {a }}$ The Queen's College, Oxford, United Kingdom
${ }^{\mathrm{b}}$ Mansfield College, Oxford, United Kingdom

Received 17 August 2006
Available online 29 November 2006
Submitted by R.M. Aron

Abstract

An investigation of the norm central kernel $k_{n}(L)$ of an arbitrary norm-closed subspace L of a JB*-triple and the central kernel $k(L)$ of a weak*-closed subspace L of a JBW*-triple is carried out. It is shown that these geometrically defined objects have purely algebraic characterizations, the results providing new information about C^{*}-algebras and W^{*}-algebras.

© 2006 Elsevier Inc. All rights reserved.
Keywords: M-ideal; M-summand; JB*-triple; JBW*-triple

1. Introduction

This paper represents a further investigation into the central structure of Banach spaces. In the late sixties and early seventies, in ground-breaking work, Alfsen, Cunningham, Effros, and Roy $[1,2,9,10]$ introduced the concepts of M-ideals, M-summands, and L-summands in real Banach spaces. In the following years their results were extended to complex Banach spaces, a full description being given in Behrends' treatise [6].

For a complex Banach space A and any closed subspace L of A, there exists a greatest Mideal $k_{n}(L)$ of A contained in L, known as the norm central kernel of L in A. In the case in which A is a dual space and L is weak*-closed, there exists a greatest M-summand $k(L)$ of A

[^0]contained in A, known as the central kernel $k(L)$ of L in A. It is the investigation of these two central kernels that is the subject of this paper.

A complex Banach space A having the property that its open unit ball is a bounded symmetric domain possesses a canonical triple product $\{\cdots\}: A \times A \times A \rightarrow A$ with respect to which A forms a JB*-triple. In the case in which A is a dual space, A is said to be a JBW*-triple, and its predual A_{*} is unique up to isometric isomorphism. The second dual of a JB^{*}-triple is a JBW*-triple. The predual of a JBW*-triple has been proposed as a model for the state space of a physical system [26-29]. Such a space has the highly desirable property that its image under a contractive linear projection is of the same category $[34,40]$. In this case central properties of the JBW*-triple correspond to classical properties of the physical system. Examples of JB*-triples are C^{*}-algebras, JB^{*}-algebras, Hilbert C^{*}-modules and spin triples. It is the interplay between the geometric, holomorphic, and algebraic structure of JB*-triples that has fascinated many authors over recent years.

Whilst much is known about the central structure of JB*-triples [13,23-25], no attention has yet been given to an investigation into the properties of the norm central kernel $k_{n}(L)$ of an arbitrary norm-closed subspace L of a JB*-triple or the central kernel $k(L)$ of an arbitrary weak*closed subspace L of a JBW**-triple. The main results of the paper show that these objects, which are defined purely in geometrical terms can be described purely algebraically. The support space of a subset of the predual of a JBW*-triple plays an important part in the construction of contractive projections $[15,16,20,31]$. In the course of the investigations into the central structure of a weak*-closed subspace L of a JBW*-triple A, a new algebraic characterization of the algebraic annihilator $s\left(L_{\circ}\right)^{\perp}$ of the support space $s\left(L_{\circ}\right)$ of the topological annihilator L_{\circ} of a weak*-closed subspace L is discovered.

The paper is organised as follows. In Section 2, definitions are given, notation is established, and certain preliminary results are described. In Section 3, the norm central kernel of a normclosed subspace of a JB^{*}-triple is investigated, and, in Section 4, the results of Section 3 are applied to study the central kernel of a weak*-closed subspace of a JBW*-triple. The final section considers the applications of the main results to C^{*}-algebras and W^{*}-algebras.

2. Preliminaries

Let A be a complex Banach space. A linear projection S on A is said to be an M-projection if, for each element a in A,

$$
\|a\|=\max \{\|S a\|,\|a-S a\|\} .
$$

A closed subspace which is the range of an M-projection is said to be an M-summand of A, and A is said to be the M-sum

$$
A=S A \oplus_{\infty}\left(\operatorname{id}_{A}-S\right) A
$$

of the M-summands $S A$ and $\left(\mathrm{id}_{A}-S\right) A$. A linear projection T on a complex Banach space E is said to be an L-projection if, for each element x of E,

$$
\|x\|=\|T x\|+\|x-T x\| .
$$

A closed subspace which is the range of an L-projection is said to be an L-summand of E, and E is said to be the L-sum

$$
E=T E \oplus_{1}\left(\operatorname{id}_{E}-T\right) E
$$

of the L-summands $T E$ and $\left(\operatorname{id}_{E}-T\right) E$.

For a subset M of the complex Banach space E, having dual space E^{*}, let

$$
M^{\circ}=\left\{x \in E^{*}: x(a)=0, \forall a \in M\right\}
$$

and, for a subset L of E^{*}, let

$$
L_{\circ}=\{a \in E: x(a)=0, \forall x \in L\}
$$

be the topological annihilators of M and L, respectively. The mapping $M \mapsto M^{\circ}$ is a bijection from the family of L-summands of E onto the family of weak*-closed M-summands of E^{*}. When ordered by set inclusion, the family of L-summands of E forms a complete Boolean lattice, the lattice operations being defined for a family $\left\{M_{j}: j \in \Lambda\right\}$ of L-summands in E, by

$$
\bigwedge_{j \in \Lambda} M_{j}=\bigcap_{j \in \Lambda} M_{j}, \quad \bigvee_{j \in \Lambda} M_{j}=\overline{\operatorname{lin}\left(\bigcup_{j \in \Lambda} M_{j}\right)}
$$

the closure being in the norm topology. It follows that for any family $\left\{L_{j}: j \in \Lambda\right\}$ of weak*closed M -summands of the dual space E^{*} of E, the weak ${ }^{*}$-closure of their linear span is also an M-summand. A norm-closed subspace L of the complex Banach space A is said to be an M-ideal if its topological annihilator L° is an L-summand of its dual space. It follows from the remarks above that for any family $\left\{L_{j}: j \in \Lambda\right\}$ of M-ideals in A, the norm-closure of their linear span is also an M-ideal in A. For details, the reader is referred to [1,2,9,10].

It can now be seen that, for each closed subspace L of a complex Banach space A, there exists a greatest M-ideal $k_{n}(L)$ of A contained in L. The M-ideal $k_{n}(L)$ is said to be the norm central kernel of L in A. Similarly, for each complex Banach space E^{*} which is a dual space and each weak*-closed subspace L of E^{*}, there exists a greatest weak*-closed M-summand $k(L)$ of E^{*} contained in L. The M-summand $k(L)$ is said to be the central kernel of L in E^{*}.

A complex vector space A equipped with a triple product $(a, b, c) \mapsto\{a b c\}$ from $A \times A \times A$ to A which is symmetric and linear in the first and third variables, conjugate linear in the second variable and, for elements a, b, c and d in A, satisfies the identity

$$
\begin{equation*}
[D(a, b), D(c, d)]=D(\{a b c\}, d)-D(c,\{d a b\}) \tag{2.1}
\end{equation*}
$$

where [,] denotes the commutator, and D is the mapping from $A \times A$ to the algebra of linear operators on A defined by

$$
D(a, b) c=\{a b c\}
$$

is said to be a Jordan*-triple. For an element a in the Jordan*-triple A and for n equal to $1,2, \ldots$, define

$$
a^{1}=a, \quad a^{2 n+1}=\left\{a a^{2 n-1} a\right\} .
$$

Observe that for non-negative integers l, m, and n,

$$
\begin{equation*}
\left\{a^{2 l+1} a^{2 m+1} a^{2 n+1}\right\}=a^{2(l+m+n)+3} . \tag{2.2}
\end{equation*}
$$

A Jordan*-triple for which the vanishing of a^{3} implies that a itself vanishes is said to be anisotropic. For elements a and b in A, the conjugate linear mapping $Q(a, b)$ from A to itself is defined, for each element c in A, by

$$
Q(a, b) c=\{a c b\} .
$$

For details about the properties of Jordan*-triples the reader is referred to [35].

A Jordan*-triple A which is also a Banach space such that D is continuous from $A \times A$ to the Banach algebra $B(A)$ of bounded linear operators on A, and, for each element a in $A, D(a, a)$ is hermitian in the sense of [7, Definition 5.1], with non-negative spectrum, and satisfies

$$
\|D(a, a)\|=\|a\|^{2}
$$

is said to be a $J B^{*}$-triple. A subspace B of a $J B^{*}$-triple A is said to be a subtriple if $\left\{\begin{array}{l}B \quad B\end{array}\right\}$ is contained in B. A subspace B is clearly a subtriple if and only if, for each element a in B, the element a^{3} lies in B. Observe that every subtriple of a JB*-triple is an anisotropic Jordan*-triple. A subspace J of a JB^{*}-triple A is said to be an inner ideal if $\{J A J\}$ is contained in J and is said to be an ideal if $\{A A J\}$ and $\{A J A\}$ are contained in J. Every norm-closed subtriple of a JB^{*}-triple A is a JB^{*}-triple [33], and a norm-closed subspace J of A is an ideal if and only if $\{J J A\}$ is contained in J [8]. For each element a in a JB*-triple A, the smallest normclosed subtriple $A(a)$ of A containing a is isometrically triple isomorphic to the commutative C^{*}-algebra $C_{0}\left(\sigma_{A}(a)\right)$ of complex-valued continuous functions on the bounded, locally compact subset $\sigma_{A}(a)$ of \mathbb{R}^{+}which have limit zero at zero. Under the isomorphism the element $a^{2 n+1}$ is mapped into the function $\iota^{2 n+1}$ defined, for each element t in $\sigma_{A}(a)$, by

$$
\iota^{2 n+1}(t)=t^{2 n+1}
$$

The isometric triple isomorphism from $C_{0}\left(\sigma_{A}(a)\right)$ onto $A(a)$ is said to be the functional calculus corresponding to a. A JB*-triple A which is the dual of a Banach space A_{*} is said to be a $J B W^{*}$ triple. In this case the predual A_{*} of A is unique up to isometric isomorphism and, for elements a and b in A, the operators $D(a, b)$ and $Q(a, b)$ are weak*-continuous. It follows that a weak*closed subtriple B of a JBW*-triple A is a JBW*-triple. Examples of JB*-triples are JB*-algebras and examples of JBW*-triples are JBW^{*}-algebras. The second dual $A^{* *}$ of a JB^{*}-triple A is a JBW^{*}-triple. For details of these results the reader is referred to $[4,5,11,12,30,32-34,41,42$].

When A is a JB*-triple the M -ideals of A coincide with its norm-closed ideals, and, when A is a JBW*-triple its M -summands coincide with its weak*-closed ideals $[4,32]$. Hence, the norm central kernel $k_{n}(L)$ of a norm-closed subspace L of the JB^{*}-triple A is the greatest normclosed ideal of A contained in L, and the central kernel $k(L)$ of a weak*-closed subspace L of a JBW *-triple A is the greatest weak*-closed ideal of A contained in $L[24,25]$.

3. Subspaces of JB*-triples

This section is devoted to an investigation of the norm central kernel of a norm-closed subspace of a JB*-triple. The results are proved using a series of mainly algebraic lemmas.

Lemma 3.1. Let A be a JB*-triple, let L be a norm-closed subspace of A, and let

$$
J_{L}=\{a \in A: D(b, c) a \in L, \forall b, c \in A\} .
$$

Then, J_{L} is a norm-closed inner ideal of A contained in L.

Proof. Since L is a norm-closed subspace, by the linearity and separate norm-continuity of the triple product, it is clear that J_{L} is a norm-closed subspace of A. Furthermore, by polarization, it can be seen that an element a of A lies in J_{L} if and only if, for all elements b in A, the element $D(b, b) a$ lies in L. Let a be an element of J_{L}, and let b and c be elements of A. Then, by (2.1),

$$
\begin{aligned}
D(b, b)\{a c a\} & =D(b, b) D(a, c) a \\
& =D(a, c) D(b, b) a+D(D(b, b) a, c) a-D(a, D(b, b) c) a \\
& =2 D(D(b, b) a, c) a-D(a, D(b, b) c) a
\end{aligned}
$$

which lies in L. It follows that the element $\left\{\begin{array}{lll}a & c & a\end{array}\right\}$ lies in J_{L}, and, again by polarization, J_{L} is an inner ideal in A.

For an element a in J_{L}, using the functional calculus, there exists a sequence $\left(d_{j}\right)$ in the norm-closed subtriple $A(a)$ generated by a such that the sequence $\left(D\left(d_{j}, d_{j}\right) a\right)$ converges in norm to a. However, for j equal to $1,2, \ldots$, the element $D\left(d_{j}, d_{j}\right) a$ lies in L, and, since L is closed, the element a therefore lies in L. This completes the proof of the lemma.

The following lemmas, which are of a technical algebraic nature, aim to give an alternative algebraic description of the norm-closed inner ideal J_{L}.

Lemma 3.2. Let A be a Jordan*-triple, let L be a subspace of A, and let a be an element of A such that, for all elements b in A, the element $D(a, a) b$ lies in L. Then, for all elements b in A, the elements $Q\left(a, a^{3}\right) b$ and $D\left(a, a^{5}\right) b$ lie in L.

Proof. Observe that, by using [35, JP1], twice, for each element b in A,

$$
\begin{align*}
& Q\left(a, a^{3}\right) b=\{a b\{a a a\}\}=\left\{\begin{array}{ll}
a & b a a\}
\end{array}\right\} \\
& =\{a\{a \quad a b\} a\}=\{a a\{a b a\}\} \\
& =D(a, a)\{a b a\}, \tag{3.1}
\end{align*}
$$

which lies in L by hypothesis. Using (2.1) observe that

$$
\begin{equation*}
D\left(a, a^{5}\right) b=2 D(a, a)\left\{a^{3} a b\right\}-Q\left(a, a^{3}\right)\{a b a\} \tag{3.2}
\end{equation*}
$$

which, by hypothesis and (3.1), lies in L.
Lemma 3.3. Let A be a Jordan*-triple, let L be a subspace of A, and let a be an element of A such that, for all elements b in A, the element $D(a, a) b$ lies in L. Then, for j equal to $1,2, \ldots$ and all elements b in A, the elements $Q\left(a, a^{4 j-1}\right) b$ and $D\left(a, a^{4 j+1}\right) b$ lie in L.

Proof. That the result holds when j is equal to 1 follows from Lemma 3.2. Suppose, inductively, that the result holds when j is equal to n. Then, using [35, JP1], twice, for each element b in A,

$$
\begin{align*}
Q\left(a, a^{4(n+1)-1}\right) b & =\left\{a b a^{4 n+3}\right\}=\left\{a b\left\{a a^{4 n+1} a\right\}\right\} \\
& =\left\{a\left\{b a a^{4 n+1}\right\} a\right\}=\left\{a\left\{a^{4 n+1} a b\right\} a\right\} \\
& =D\left(a, a^{4 n+1}\right)\{a b a\} \tag{3.3}
\end{align*}
$$

which, by hypothesis, lies in L. Using [35, JP9],

$$
\begin{equation*}
D\left(a, a^{4(n+1)+1}\right) b=2 D(a, a)\left\{a^{4 n+3} a b\right\}-Q\left(a, a^{4 n+3}\right)\{a b a\} \tag{3.4}
\end{equation*}
$$

which, by hypothesis and (3.3), lies in L. This completes the proof of the lemma.
The next result requires the use of the functional calculus and is therefore not necessarily valid for a Jordan*-triple.

Lemma 3.4. Let A be a JB*-triple, let L be a norm-closed subspace of A, and let a be an element of A such that, for all elements b of A, the element $D(a, a) b$ lies in L. Then, the following results hold.
(i) For j equal to $0,1,2, \ldots$ and all elements b of A, the elements $Q\left(a, a^{2 j+3}\right) b$ and $D\left(a, a^{2 j+1}\right) b$ lie in L.
(ii) For all elements b in A, the element $Q(a, a) b$ lies in L.

Proof. Let $C_{0}\left(\sigma_{A}(a)\right)$ be the commutative C^{*}-algebra of continuous functions on the bounded locally compact subset $\sigma_{A}(a)$ of \mathbb{R}^{+}that have limit zero at zero. Then, the norm-closed ${ }^{*}$-subalgebra of $C_{0}\left(\sigma_{A}(a)\right)$ generated by the set of functions $\left\{\iota^{4 j}: j=1,2, \ldots\right\}$ satisfies the conditions of the Stone-Weierstrass theorem for locally compact Hausdorff spaces, and, hence, coincides with $C_{0}\left(\sigma_{A}(a)\right)$. It follows that, given a positive real number ϵ, there exist a positive integer n and complex numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, such that

$$
\left\|\iota^{2}-\sum_{j=1}^{n} \alpha_{j} \iota^{4 j}\right\|<\frac{\epsilon}{\|a\|}
$$

Using the functional calculus, it follows that,

$$
\left\|a^{3}-\sum_{j=1}^{n} \alpha_{j} a^{4 j+1}\right\| \leqslant\|\iota\|\left\|\iota^{2}-\sum_{j=1}^{n} \alpha_{j} \iota^{4 j}\right\|<\epsilon
$$

By Lemma 3.3, for j equal to $1,2, \ldots, n$ and any element b in A, the element $D\left(a, a^{4 j+1}\right) b$ lies in L, and, since

$$
\left\|D\left(a, a^{3}\right) b-\sum_{j=1} \overline{\alpha_{j}} D\left(a, a^{4 j+1}\right) b\right\|<\|a\|\|b\| \epsilon,
$$

it can be seen that the element $D\left(a, a^{3}\right) b$ lies in L.
Observe that, as in the proof of Lemma 3.3, for each element b in A,

$$
\begin{equation*}
Q\left(a, a^{5}\right) b=\left\{a b\left\{a a^{3} a\right\}\right\}=D\left(a, a^{3}\right)\{a b a\} \tag{3.5}
\end{equation*}
$$

which, from above, lies in L. An induction argument similar to that used in the proof of Lemma 3.3 now shows that, for j equal to $1,2, \ldots$, and all elements b in A, the elements $Q\left(a, a^{4 j+1}\right) b$ and $D\left(a, a^{4 j-1}\right) b$ lie in L. Combining these facts with the results of Lemma 3.3 completes the proof of (i).

Observe that, using (2.2), for j equal to $0,1,2, \ldots$,

$$
\left(a^{3}\right)^{2 j+1}=a^{6 j+3}=a^{2(3 j)+3} .
$$

Therefore, using (i), for j equal to $0,1,2, \ldots$, and all elements b in A, the element $Q\left(a,\left(a^{3}\right)^{2 j+1}\right) b$ lies in L. Since the family of finite linear combinations of elements of the form $\left(a^{3}\right)^{2 j+1}$ is dense in the JB^{*}-triple $A\left(a^{3}\right)$ generated by the element a^{3}, it follows from the linearity and separate norm-continuity of the triple product that, for all elements c in $A\left(a^{3}\right)$ and b in A, the element $Q(a, c) b$ lies in L. However, the function $\iota^{1 / 3}$ is continuous on the bounded locally compact set $\sigma_{A}\left(a^{3}\right)$, and has limit zero at zero. Therefore, the functional calculus shows that the element a lies in $A\left(a^{3}\right)$. Consequently, the element $Q(a, a) b$ lies in L, as required.

The final lemma paves the way for the main result of this section.

Lemma 3.5. Let A be a JB*-triple, let L be a norm-closed subspace of A, and let

$$
J_{L}=\{a \in A: D(b, c) a \in L, \forall b, c \in A\} .
$$

Then,

$$
J_{L}=\{a \in A: D(a, a) b \in L, \forall b \in A\}
$$

Proof. Observe that if a is an element of J_{L} then, for all elements b in A,

$$
D(a, a) b=D(b, a) a,
$$

which is contained in L. Conversely, suppose that a is an element of A such that, for all elements b in A, the element $D(a, a) b$ lies in L. Then, by (2.1),

$$
D(b, b) a^{3}=D(b, b) D(a, a) a=2 D(a, a)\{b b a\}-Q(a)\{b b a\}
$$

which, by hypothesis and Lemma 3.4(ii), lies in L. By polarization it follows that, for all elements b and c in A, the element $D(b, c) a^{3}$ lies in L, and, hence, that the element a^{3} lies in J_{L}. However, by Lemma 3.1, J_{L} is a norm-closed inner ideal in A, and, therefore, the JB^{*}-triple $A\left(a^{3}\right)$ is contained in J_{L}. Using the functional calculus as in the proof of Lemma 3.4, the cube root a of a^{3} lies in $A\left(a^{3}\right)$ and, hence, in J_{L}. This completes the proof of the lemma.

It is now possible to present the main result concerning JB*-triples which gives the required algebraic characterization of the norm central kernel of an arbitrary norm-closed subspace of a JB*-triple.

Theorem 3.6. Let A be a JB*-triple, let L be a norm-closed subspace of A, having norm central kernel $k_{n}(L)$, and let

$$
J_{L}=\{a \in A: D(b, c) a \in L, \forall b, c \in A\}
$$

and

$$
I_{L}=\{a \in A: Q(b, c) a \in L, \forall b, c \in A\} .
$$

Then, J_{L} is a norm-closed inner ideal of A, such that

$$
I_{L}=k_{n}(L) \subseteq J_{L} \subseteq L
$$

Proof. That J_{L} is a norm-closed inner ideal of A contained in L was proved in Lemma 3.1.
By the linearity and separate norm-continuity of the triple product it is clear that I_{L} is a normclosed subspace of A. Let a be an element of I_{L}. Then, for each element b in A, it can be seen that the element

$$
D(a, a) b=Q(b, a) a
$$

lies in L. It follows from Lemma 3.5 that the element a lies in J_{L}, and, hence, I_{L} is contained in J_{L}.

Now let a be an element of I_{L} and let b and c be elements of A. Then, the element a lies in J_{L}, and, using (2.1), the element

$$
Q(b, b)\{c a a\}=2 Q(b,\{a c b\}) a-D(\{b a b\}, c) a
$$

lies in L. By polarization it can be seen that the element $\left\{\begin{array}{lll}c & a & a\end{array}\right\}$ lies in I_{L}. It follows from [8, Proposition 1.3], that I_{L} is a norm-closed ideal in A. Therefore, I_{L} is contained in the norm central kernel $k_{n}(L)$ of L.

Finally, let J be a norm-closed ideal of A contained in L. Then, for each element a in J and b in A, the element $\{b a b\}$ lies in J and, hence, in L. It follows by polarization that the element a lies in I_{L}. Therefore, J is contained in I_{L}, from which it follows that $k_{n}(L)$ is contained in I_{L} as required.

When the norm-closed subspace L of the JB*-triple A discussed above is a subtriple of A, rather more can be said about its norm central kernel.

Theorem 3.7. Let A be a JB*-triple, let L be a norm-closed subtriple of A, having norm central kernel $k_{n}(L)$, and let

$$
J_{L}=\{a \in A: D(b, c) a \in L, \forall b, c \in A\}
$$

and

$$
I_{L}=\{a \in A: Q(b, c) a \in L, \forall b, c \in A\} .
$$

Then,

$$
I_{L}=k_{n}(L)=J_{L} \subseteq L
$$

Proof. By Theorem 3.6, the set J_{L} is a norm-closed inner ideal of A contained in L. It will first be shown that J_{L} is an ideal in the JB^{*}-triple L. Let a be an element of J_{L} and let c be an element of L. Then, using (2.1), for all elements b in A,

$$
\begin{aligned}
D(b, b)\{a a c\} & =D(b, b) D(a, a) c \\
& =D(a, a) D(b, b) c+D(\{b b a\}, a) c-D(a,\{a b b\}) c \\
& =D(a, a) D(b, b) c+\{D(b, b) a a c\}-\{a D(b, b) a c\} .
\end{aligned}
$$

Since a lies in J_{L} it follows from Lemma 3.5 that the element $D(a, a) D(b, b) c$ lies in L, and, from the definition of J_{L}, the element $D(b, b) a$ lies in L. Since a, c and $D(b, b) a$ are elements of the subtriple L, it can be concluded that the element $D(b, b)\{a a c\}$ lies in L. By polarization, it can be seen that the element $\begin{cases}a & a c\} \\ & \text { lies in } J_{L} \text {. Again, by polarization, it follows from [8, }\end{cases}$ Proposition 1.3], that J_{L} is an ideal in L.

In order to show that J_{L} is an ideal in A, let a be an element of J_{L} and let b be an element of A. Since J_{L} is an inner ideal the element a^{3} lies in J_{L}. By Lemma 3.5, the element $D(a, a) b$, and, by Lemma 3.4(ii), the element $Q(a, a) b$ lie in L. Since J_{L} is an ideal in L, the elements $\left\{a^{3} a D(a, a) b\right\}$ and $\left\{a^{3} Q(a, a) b a\right\}$ lie in J_{L}. Therefore, using [35, JP9],

$$
\begin{aligned}
\left\{a^{3} a^{3} b\right\} & =D\left(a^{3}, a^{3}\right) b=2 D\left(a^{3}, a\right) D(a, a) b-Q\left(a^{3}, a\right) Q(a, a) b \\
& =2\left\{a^{3} a D(a, a) b\right\}-\left\{a^{3} Q(a, a) b a\right\},
\end{aligned}
$$

which implies that the element $\left\{a^{3} a^{3} b\right\}$ lies in J_{L}. Using the functional calculus, an arbitrary element c in J_{L} possesses a cube root a in J_{L}. Applying the argument above, it follows that for each element c in J_{L} and each element b in A, the element $\{c c c b\}$ lies in J_{L}. Therefore, by polarization and [8, Proposition 1.3], it can be seen that J_{L} is a norm-closed ideal in A.

However, by Theorem 3.6, the greatest norm-closed ideal $k_{n}(L)$ of A that is contained in L is contained in J_{L}. Therefore, $k_{n}(L)$ and J_{L} coincide and the proof is complete.

4. Subspaces of JBW*-triples

Recall that a JBW^{*}-triple A is a JB^{*}-triple that is the dual of a complex Banach space A_{*} and that the predual A_{*} is unique up to isometric isomorphism. The techniques used to study the norm central kernel of a norm-closed subspace of a JB^{*}-triple can easily be adapted to the study of the central kernel of a weak*-closed subspace of a JBW*-triple, and yield rather more detailed information.

Theorem 4.1. Let A be a JBW*-triple, with predual A_{*}, let L be a weak*-closed subspace of A, having central kernel $k(L)$, let

$$
J_{L}=\{a \in A: D(b, c) a \in L, \forall b, c \in A\}
$$

and

$$
I_{L}=\{a \in A: Q(b, c) a \in L, \forall b, c \in A\} .
$$

Then, J_{L} is a weak*-closed inner ideal of A, such that

$$
J_{L}=\{a \in A: D(a, a) b \in L, \forall b \in A\}
$$

and

$$
I_{L}=k(L) \subseteq J_{L} \subseteq L
$$

Proof. Since the triple product is separately weak*-continuous and since L is weak*-closed, it is clear that J_{L} and I_{L} are weak*-closed subspaces of L. Moreover, since the central kernel $k(L)$ of L is a norm-closed ideal in $A, k(L)$ is contained in $k_{n}(L)$. On the other hand, the weak*-closure of $k_{n}(L)$ is a weak*-closed ideal of A contained in L, and, hence, $k_{n}(L)$ is contained in $k(L)$. Therefore, the central kernel $k(L)$ and the norm central kernel $k_{n}(L)$ of L coincide, and the result follows from Theorem 3.6.

Recall that an element u in a JBW*-triple A is said to be a tripotent if u^{3} is equal to u. The set of tripotents in A is denoted by $\mathcal{U}(A)$. For each tripotent u in A, the linear operators $P_{0}(u)$, $P_{1}(u)$, and $P_{2}(u)$, defined by

$$
\begin{aligned}
& P_{0}(u)=\operatorname{id}_{A}-2 D(u, u)+Q(u)^{2}, \\
& P_{1}(u)=2\left(D(u, u)-Q(u)^{2}\right), \\
& P_{2}(u)=Q(u)^{2},
\end{aligned}
$$

are mutually orthogonal weak*-continuous projection operators on A with sum id_{A}. For j equal to 0,1 , or 2 , the range of $P_{j}(u)$ is the eigenspace $A_{j}(u)$ of $D(u, u)$ corresponding to the eigenvalue $\frac{1}{2} j$ and

$$
A=A_{0}(u) \oplus A_{1}(u) \oplus A_{2}(u)
$$

is the Peirce decomposition of A relative to u. In particular, $A_{2}(u)$ and $A_{0}(u)$ are a weak*-closed inner ideals in A. Observe that there exist mutually orthogonal contractive linear projections $P_{0}(u)_{*}, P_{1}(u)_{*}$, and $P_{2}(u)_{*}$ on the predual A_{*} of A with sum $\mathrm{id}_{A_{*}}$, the ranges of which are the preduals $A_{0}(u)_{*}, A_{1}(u)_{*}$, and $A_{2}(u)_{*}$ of $A_{0}(u), A_{1}(u)$, and $A_{2}(u)$, respectively [30].

For two tripotents u and v in the JBW*-triple A, write $u \leqslant v$ if $\{u v u\}$ is equal to u. This relation is a partial ordering on the set $\mathcal{U}(A)$ of tripotents in A, and the set $\mathcal{U}(A)^{r}$, consisting of
$\mathcal{U}(A)$ with a largest element adjoined, forms a complete lattice. Two tripotents u and v are said to be compatible if their Peirce projections commute, or, equivalently, if

$$
A=\bigoplus_{j, k=0}^{2}\left(A_{j}(u) \cap A_{k}(v)\right)
$$

If u lies in a Peirce space of v, then u and v are compatible [37]. Two tripotents u and v are said to be orthogonal if u lies in the Peirce-zero space $A_{0}(v)$ of v, and two such tripotents are, therefore, compatible. For each element x of the predual A_{*} of the JBW*-triple A there exists a smallest element $e(x)$ of $\mathcal{U}(A)^{\sim}$ for which

$$
x(e(x))=\|x\|,
$$

and $e(x)$ is said to be support tripotent of x [30]. More generally, for each subset M of the predual A_{*} of A, the weak*-closed linear span $s(M)$ of the set $\{e(x): x \in M\}$ is said to be the support space of M [16]. Observe that the annihilator $s(M)^{\perp}$ of the support space $s(M)$ of M, is given by

$$
\begin{equation*}
s(M)^{\perp}=\bigcap_{x \in M} A_{0}(e(x)) \tag{4.1}
\end{equation*}
$$

which, being the intersection of weak*-closed inner ideals in A, is itself a weak*-closed inner ideal in $A[20,31]$.

Recall that for any subset L of the JBW*-triple A, the kernel $\operatorname{Ker}(L)$ is the weak*-closed subspace of A consisting of elements a in A for which $\{L a L\}$ is equal to zero, and the (algebraic) annihilator L^{\perp} is the weak*-closed inner ideal of A contained in $\operatorname{Ker}(L)$ consisting of elements of A for which $\{L a A\}$ is equal to zero. A weak*-closed subtriple L of A is said to be complemented if

$$
A=L \oplus \operatorname{Ker}(L)
$$

Such a subtriple is an inner ideal in A and every weak*-closed inner ideal arises in this way. A linear projection R on the JBW*-triple A is said to be a structural projection [36] if, for each element a in A,

$$
R Q(a, a) R=Q(R a, R a)
$$

The range of a structural projection is a weak*-closed inner ideal, and every weak*-closed inner ideal arises in this manner. For each weak*-closed inner ideal L of A, the annihilator L^{\perp} is a weak*-closed inner ideal and A enjoys the generalized Peirce decomposition

$$
A=L_{2} \oplus L_{1} \oplus L_{0}
$$

relative to L, where

$$
L_{2}=L, \quad L_{0}=L^{\perp}, \quad L_{1}=\operatorname{Ker}(L) \cap \operatorname{Ker}\left(L^{\perp}\right)
$$

The structural projections the ranges of which are L_{2} and L_{0} are denoted by $P_{2}(L)$ and $P_{0}(L)$, respectively, and the projection

$$
P_{1}(L)=\operatorname{id}_{A}-P_{2}(L)-P_{0}(L)
$$

denotes the projection onto L_{1}. Then $P_{0}(L), P_{1}(L)$, and $P_{2}(L)$ are mutually orthogonal weak*continuous linear projections on A with sum id ${ }_{A}$. Observe that the pre-adjoints $P_{0}(L)_{*}, P_{1}(L)_{*}$,
and $P_{2}(L)_{*}$ are mutually orthogonal projections onto the preduals $L_{0, *}, L_{1, *}$, and $L_{2, *}$ of L_{0}, L_{1}, and L_{2}, respectively. For more details the reader is referred to [17,19-21].

Before proving the main result connecting the theory of support spaces to the earlier results, one more lemma is required.

Lemma 4.2. Let A be a JBW*-triple, with predual A_{*}, let M be a subset of A_{*} having support space $s(M)$ and topological annihilator M°, and let $k\left(s(M)^{\perp}\right), k(\operatorname{Ker}(s(M)))$, and $k\left(M^{\circ}\right)$ be the central kernels of the annihilator $s(M)^{\perp}$ of $s(M)$, the kernel $\operatorname{Ker}(s(M))$ of $s(M)$, and M°, respectively. Then,

$$
s(M)^{\perp} \subseteq \operatorname{Ker}(s(M)) \subseteq M^{\circ}
$$

and

$$
k\left(s(M)^{\perp}\right)=k(\operatorname{Ker}(s(M)))=k\left(M^{\circ}\right)
$$

Proof. It is clear that $s(M)^{\perp}$ is contained in $\operatorname{Ker}(s(M))$. If a is an element of $\operatorname{Ker}(s(M))$ then, since $e(x)$ lies in $s(M)$, for all elements x in M,

$$
Q(e(x), e(x)) a=\{e(x) a e(x)\}=0 .
$$

Therefore,

$$
P_{2}(e(x)) a=Q(e(x), e(x))^{2} a=0
$$

and

$$
x(a)=P_{2}(e(x))_{*} x(a)=x\left(P_{2}(e(x) a)\right)=0
$$

and a is contained in M°. This completes the first part of the proof. A proof of the second part can be found in [14].

It is now possible to present the most interesting result of this section of the paper.
Theorem 4.3. Let A be a JBW* -triple, with predual A_{*}, let M be a subset of A_{*} having support space $s(M)$ and topological annihilator M°, let $k\left(s(M)^{\perp}\right), k(\operatorname{Ker}(s(M)))$, and $k\left(M^{\circ}\right)$ be the central kernels of the annihilator $s(M)^{\perp}$ of $s(M)$, the kernel $\operatorname{Ker}(s(M))$ of $s(M)$, and M°, respectively, and let

$$
J_{M^{\circ}}=\left\{a \in A: D(b, c) a \in M^{\circ}, \forall b, c \in A\right\},
$$

and

$$
I_{M^{\circ}}=\left\{a \in A: Q(b, c) a \in M^{\circ}, \forall b, c \in A\right\} .
$$

Then, the following results hold.
(i) $J_{M^{\circ}}=s(M)^{\perp} \subseteq \operatorname{Ker}(s(M)) \subseteq M^{\circ}$.
(ii) $I_{M^{\circ}}=k\left(s(M)^{\perp}\right)=k(\operatorname{Ker}(s(M)))=k\left(M^{\circ}\right)$.

Proof. (i) To show that $J_{M} \circ$ is contained in $s(M)^{\perp}$, let a be an element of $J_{M} \circ$ and let x be an element of M. Since M° is a weak*-closed subspace of A, it follows from Theorem 4.1 that the element $D(a, a) e(x)$ lies in M°, and, hence,

$$
x(\{a \operatorname{a} e(x)\})=0 .
$$

By [3, Proposition 1.2], it follows that, for all elements x of M, the element a lies in $A_{0}(e(x))$, and, hence, a lies in the weak*-closed inner ideal $s(M)^{\perp}$.

Now suppose that u is a tripotent in $s(M)^{\perp}$ and let x be an element of M. Then the tripotent u lies in $A_{0}(e(x))$. The tripotents u and $e(x)$ are orthogonal, and, hence, compatible, and, therefore the pre-adjoint $D(u, u)_{*}$ of the weak*-continuous linear operator $D(u, u)$ satisfies

$$
D(u, u)_{*} x=P_{2}(u)_{*} P_{2}(e(x))_{*} x+\frac{1}{2} P_{1}(u)_{*} P_{2}(e(x))_{*} x=0,
$$

since, by compatibility, $P_{2}(u)_{*} P_{2}(e(x))_{*}$ and $P_{1}(u)_{*} P_{2}(e(x))_{*}$ are projections onto the zero subspace. Hence, for each element b in A and each element x in M,

$$
x(\{u u b\})=x(D(u, u) b)=D(u, u)_{*} x(b)=0,
$$

and the element $D(u, u) b$ is contained in M_{\circ}. Therefore, by Theorem 4.1, the element u lies in $J_{M^{\circ}}$. Since $s(M)^{\perp}$ and $J_{M^{\circ}}$ are both inner ideals in A, it follows from [19, Lemma 2.3], that

$$
s(M)^{\perp}=\bigcup_{u \in \mathcal{U}\left(s(M)^{\perp}\right)} A_{2}(u) \subseteq \bigcup_{u \in \mathcal{U}\left(J_{M^{\circ}}\right)} A_{2}(u)=J_{M^{\circ}},
$$

and the proof of (i) is complete.
(ii) This follows immediately from Theorem 4.1 and Lemma 4.2.

Similar to the situation that pertains in the case of JB*-triples, when the weak*-closed subspace M° of the JBW^{*}-triple A is a subtriple of A, rather more can be said.

Theorem 4.4. Let A be a JBW ${ }^{*}$-triple, with predual A_{*}, let M be a subset of A_{*}, having support space $s(M)$ and topological annihilator M°, let $k\left(s(M)^{\perp}\right), k(\operatorname{Ker}(s(M)))$, and $k\left(M^{\circ}\right)$ be the central kernels of the annihilator $s(M)^{\perp}$ of $s(M)$, the kernel $\operatorname{Ker}(s(M))$ of $s(M)$, and M°, respectively, and let

$$
J_{M^{\circ}}=\left\{a \in A: D(b, c) a \in M^{\circ}, \forall b, c \in A\right\},
$$

and

$$
I_{M^{\circ}}=\left\{a \in A: Q(b, c) a \in M^{\circ}, \forall b, c \in A\right\} .
$$

If M° is a subtriple of A then the weak*-closed inner ideal $J_{M}{ }^{\circ}$ is an ideal in A, and

$$
s(M)^{\perp}=J_{M^{\circ}}=I_{M^{\circ}}=k\left(s(M)^{\perp}\right)=k(\operatorname{Ker}(s(M)))=k\left(M^{\circ}\right) .
$$

Proof. Since M° is a weak*-closed subtriple of A such that $k_{n}\left(M^{\circ}\right)$ and $k\left(M^{\circ}\right)$ coincide, it follows from Theorem 3.7 that $J_{M^{\circ}}$ is a weak*-closed ideal of A contained in M° and containing the central kernel $k\left(M^{\circ}\right)$ of M°. Hence, the weak*-closed ideal $J_{M^{\circ}}$ coincides with $k\left(M^{\circ}\right)$, and the result follows from Theorem 4.3.

Since, for any weak*-closed subspace L of the JBW*-triple A, the double topological annihilator $\left(L_{\circ}\right)^{\circ}$ coincides with L, Theorems 4.3 and 4.4 apply when M° is replaced by any weak*-closed subspace L, in which case M is replaced by the topological annihilator L_{0}.

The central kernel $k(L)$ of a weak*-closed inner ideal in the JBW*-triple A has been extensively studied [24,25]. Applying Theorem 4.4 yields a new algebraic characterization of $k(L)$.

Corollary 4.5. Let A be a JBW*-triple, with predual A_{*}, let L be a weak ${ }^{*}$-closed inner ideal in A, let L_{0}, L_{1}, and L_{2}, and $L_{0, *}, L_{1, *}$, and $L_{2, *}$ be the Peirce spaces corresponding to L in A and A_{*}, respectively, let $k(L)$ be the central kernel of L, and let

$$
J_{L}=\{a \in A: D(b, c) a \in L, \forall b, c \in A\}
$$

and

$$
I_{L}=\{a \in A: Q(b, c) a \in L, \forall b, c \in A\} .
$$

Then,

$$
s\left(L_{1, *} \oplus L_{0, *}\right)^{\perp}=J_{L}=I_{L}=k\left(s\left(L_{1, *} \oplus L_{0, *}\right)^{\perp}\right)=k\left(\operatorname{Ker}\left(s\left(L_{1, *} \oplus L_{0, *}\right)\right)\right)=k(L)
$$

Proof. Observing that the topological annihilator L_{\circ} of L coincides with $L_{1, *} \oplus L_{0, *}$, the result is immediate from Theorem 4.4.

It is worth remarking that the case in which the weak*-closed subspace L is a subtriple far from exhausts the interesting situations. For example, if the subset M of the predual A_{*} of the JBW^{*}-triple A, consists of the single point $\{x\}$, then

$$
\begin{aligned}
& s(M)=\mathbb{C} e(x), \quad s(M)^{\perp}=A_{0}(e(x)), \\
& \operatorname{Ker}(s(M))=A_{0}(e(x)) \oplus A_{1}(e(x)), \quad M^{\circ}=\operatorname{ker}(x),
\end{aligned}
$$

and the following corollary holds.
Corollary 4.6. Let A be a $J B W^{*}$-triple with predual A_{*}, let x be an element of A_{*} having support tripotent $e(x)$ and kernel $\operatorname{ker}(x)$, for j equal to 0 , 1, and 2, let $A_{j}(e(x))$ be the Peirce j-space corresponding to $e(x)$, and let

$$
I=\{a \in A: x(Q(b, c) a)=0, \forall b, c \in A\}
$$

Then, the central kernels satisfy

$$
I=k\left(A_{0}(e(x))\right)=k\left(A_{0}(e(x)) \oplus A_{1}(e(x))\right)=k(\operatorname{ker}(x)) .
$$

Since it is very rarely the case that the weak*-closed inner ideal $A_{0}(e(x))$ is an ideal in the JBW*-triple A, this result confirms the strength of the condition in Theorem 4.4 that M° is a subtriple.

5. C^{*}-algebras and W^{*}-algebras

The results above are now able to throw some new light upon the theory of C^{*}-algebras and W^{*}-algebras for the properties of which the reader is referred to [38,39]. Recall that a normclosed subspace of a C^{*}-algebra A is an M -ideal if and only if it is an algebraic ideal, and a weak*-closed subspace of a W^{*}-algebra is an M -summand if and only if it is an algebraic ideal. Furthermore, with respect to the multiplication defined, for elements a, b, and c of A by

$$
\{a b c\}=\frac{1}{2}\left(a b^{*} c+c b^{*} a\right)
$$

the C^{*}-algebra A is a JB^{*}-triple. Similarly, a W^{*}-algebra is a JBW^{*}-triple [41].

Theorem 5.1. Let A be a C^{*}-algebra, let L be a norm-closed subspace of A, having norm central kernel $k_{n}(L)$, and let

$$
\begin{aligned}
& J_{L}=\left\{a \in A: b c^{*} a+a c^{*} b \in L, \forall b, c \in A\right\}, \\
& I_{L}=\left\{a \in A: b a^{*} c+c a^{*} b \in L, \forall b, c \in A\right\},
\end{aligned}
$$

and

$$
\tilde{I}_{L}=\left\{a \in A: b a^{*} c \in L, \forall b, c \in A\right\} .
$$

Then, J_{L} is a norm-closed inner ideal of A, such that

$$
J_{L}=\left\{a \in A: a a^{*} b+b a^{*} a \in L, \forall b \in A\right\},
$$

and

$$
I_{L}=\tilde{I}_{L}=k_{n}(L) \subseteq J_{L} \subseteq L
$$

Proof. Most of the proposition is immediate from Lemma 3.5 and Theorem 3.6. Observe that it is clear that \tilde{I}_{L} is contained in I_{L}. On the other hand, it can be seen that \tilde{I}_{L} is a norm-closed algebraic ideal in A. Suppose that J is any norm-closed algebraic ideal in A contained in L. Since norm-closed algebraic ideals are *-subalgebras, for elements b and c in A and a in J, the element $b a^{*} c$ lies in J and, hence, in L. It follows that the element a lies in \tilde{I}_{L}. Hence, J is contained in \tilde{I}_{L}, which is, therefore, the greatest norm-closed ideal in A contained in L. Since the sets of norm-closed ideals and M-ideals coincide, it follows that \tilde{I}_{L} is equal to the norm central kernel $k_{n}(L)$ of L as required.

Observe that Theorem 3.7 leads to the following result, which applies, for example, when L is a norm-closed ${ }^{*}$-subalgebra of the C^{*}-algebra A.

Theorem 5.2. Let A be a C^{*}-algebra, let L be a norm-closed subtriple of A, having norm central kernel $k_{n}(L)$, and let

$$
\begin{aligned}
& J_{L}=\left\{a \in A: b c^{*} a+a c^{*} b \in L, \forall b, c \in A\right\}, \\
& I_{L}=\left\{a \in A: b a^{*} c+c a^{*} b \in L, \forall b, c \in A\right\},
\end{aligned}
$$

and

$$
\tilde{I}_{L}=\left\{a \in A: b a^{*} c \in L, \forall b, c \in A\right\} .
$$

Then,

$$
I_{L}=\tilde{I}_{L}=k_{n}(L)=J_{L} \subseteq L
$$

Let A be a ${ }^{*}$-algebra with unit 1_{A}, and let $\mathcal{P}(A)$ be the complete orthomodular lattice of self-adjoint idempotents in A, the ordering being given by $e \leqslant f$ if and only if $e f$ is equal to e, and the orthocomplementation being given by

$$
e \mapsto e^{\prime}=1_{A}-e .
$$

Let $Z(A)$ be the commutative W^{*}-algebra that is the algebraic centre of A. Then $\mathcal{P}(Z(A))$ coincides with the complete Boolean lattice that is the orthomodular lattice centre $\mathcal{Z P}(A)$ of $\mathcal{P}(A)$. For each element e in $\mathcal{P}(A)$, the central support $c(e)$ of e is defined by

$$
c(e)=\bigwedge\{z \in \mathcal{Z P}(A): e \leqslant z\} .
$$

A pair (e, f) of elements of $\mathcal{P}(A)$ is said to be centrally equivalent if $c(e)$ and $c(f)$ coincide. The common central support is denoted by $c(e, f)$. When endowed with the product ordering, the set $\mathcal{C P}(A)$ of centrally equivalent pairs of elements of $\mathcal{P}(A)$ forms a complete lattice in which the lattice supremum coincides with the supremum in the product lattice, but, in general, the lattice infimum does not. The results of [18] show that the mapping $(e, f) \mapsto e A f$ is an order isomorphism from $\mathcal{C} \mathcal{P}(A)$ onto the complete lattice of weak*-closed inner ideals in A. The restriction of the mapping to the complete Boolean sublattice $\mathcal{Z C P}(A)$ of pairs (z, z), where z lies in $\mathcal{Z P}(A)$, is an order isomorphism onto the complete Boolean lattice of weak*-closed ideals in A.

Observe that an element u in the W^{*}-algebra A is a tripotent if and only if

$$
u u^{*} u=u \text {, }
$$

or, equivalently, if and only if u is a partial isometry with initial projection $h(u)$ equal to $u^{*} u$ and final projection $g(u)$ equal to $u u^{*}$. Observe that the Peirce spaces corresponding to u are given by

$$
\begin{aligned}
& A_{0}(u)=g(u)^{\prime} A h(u)^{\prime}, \\
& A_{1}(u)=g(u) A h(u)^{\prime}+g(u)^{\prime} A h(u), \\
& A_{2}(u)=g(u) A h(u) .
\end{aligned}
$$

For a subset M of A_{*}, the annihilator $s(M)^{\perp}$ of the support space $s(M)$ is a weak*-closed inner ideal in A, which, using [22, Lemma 2.4 and Corollary 2.5] is given by

$$
\begin{equation*}
s(M)^{\perp}=\bigcap_{x \in M} A_{0}(e(x))=\bigcap_{x \in M} g(e(x))^{\prime} A f(e(x))^{\prime}=g^{\prime} A h^{\prime}, \tag{5.1}
\end{equation*}
$$

where $e(x)$ is the support partial isometry of x and

$$
\begin{align*}
& g^{\prime}=\bigwedge_{x \in M} g(e(x))^{\prime}=\left(\bigvee_{x \in M} g(e(x))\right)^{\prime} \tag{5.2}\\
& h^{\prime}=\bigwedge_{x \in M} h(e(x))^{\prime}=\left(\bigvee_{x \in M} h(e(x))\right)^{\prime} \tag{5.3}
\end{align*}
$$

Observe that the central supports $c(g)$ and $c(h)$ are equal and are given by

$$
\begin{equation*}
c(g, h)=c\left(\left(\bigvee_{x \in M} g(e(x))\right)\right)=\bigvee_{x \in M} c\left(e(x) e(x)^{*}\right)=\bigvee_{x \in M} c\left(e(x)^{*} e(x)\right) \tag{5.4}
\end{equation*}
$$

It is now possible to apply the results of Section 4 to W^{*}-algebras.
Theorem 5.3. Let A be a W^{*}-algebra, with predual A_{*}, let M be a subset of A_{*}, having support space $s(M)$ and topological annihilator M°, let $k\left(s(M)^{\perp}\right), k(\operatorname{Ker}(s(M)))$, and $k\left(M^{\circ}\right)$ be the central kernels of the annihilator $s(M)^{\perp}$ of $s(M)$, the kernel $\operatorname{Ker}(s(M))$ of $s(M)$, and M°, respectively, let

$$
\begin{aligned}
& J_{M^{\circ}}=\left\{a \in A: b c^{*} a+a c^{*} b \in M^{\circ}, \forall b, c \in A\right\}, \\
& I_{M^{\circ}}=\left\{a \in A: b a^{*} c+c a^{*} b \in M^{\circ}, \forall b, c \in A\right\},
\end{aligned}
$$

and

$$
\tilde{I}_{M^{\circ}}=\left\{a \in A: b a^{*} c \in M^{\circ}, \forall b, c \in A\right\},
$$

and let g and h be the projections in A defined in (5.1)-(5.3), having common central support $c(g, h)$ given by (5.4). Then, the following results hold.
(i) $g^{\prime} A h^{\prime}=J_{M^{\circ}}=s(M)^{\perp} \subseteq \operatorname{Ker}(s(M)) \subseteq M^{\circ}$.
(ii) $c(g, h)^{\prime} A=I_{M^{\circ}}=\tilde{I}_{M^{\circ}}=k\left(s(M)^{\perp}\right)=k(\operatorname{Ker}(s(M)))=k\left(M^{\circ}\right)$.

Proof. Much of the proof follows immediately from Theorem 4.3. Observe that it is clear that $\tilde{I}_{M^{\circ}}$ is contained in $I_{M^{\circ}}$. On the other hand, it can be seen that $\tilde{I}_{M^{\circ}}$ is a weak*-closed ideal of A. Suppose that J is any weak*-closed ideal in A contained in M°. Since weak*-closed ideals of A are ${ }^{*}$-subalgebras of A, for elements b and c in A and a in J, the element $b a^{*} c$ lies in J and hence M°. It follows that the element a lies in $\tilde{I}_{M^{\circ}}$. Hence, J is contained in $\tilde{I}_{M^{\circ}}$, which is, therefore, the greatest weak ${ }^{*}$-closed ideal in A contained in M°. Since the sets of weak*-closed ideals and M-summands coincide, it follows that $\tilde{I}_{M \circ}$ is equal to the central kernel $k\left(M^{\circ}\right)$ of M° as required.

Observe that, from (5.2) and (5.3), it can be seen that the weak*-closed inner ideals $g^{\prime} A h^{\prime}$ and $s(M)^{\perp}$ coincide, thereby completing the proof of (i). However, it is not necessarily true that the projections g^{\prime} and h^{\prime} have a common central support. Therefore, the element of $\mathcal{C P}(A)$ corresponding to the weak*-closed inner ideal $s(M)^{\perp}$ is $\left(c\left(h^{\prime}\right) g^{\prime}, c\left(g^{\prime}\right) h^{\prime}\right)$. By [24, Theorem 4.1], it follows that the central kernel $k\left(s(M)^{\perp}\right)$ is given by

$$
\begin{aligned}
k\left(s(M)^{\perp}\right) & =c\left(\left(c\left(h^{\prime}\right) g^{\prime}\right)^{\prime}\right)^{\prime} c\left(\left(c\left(g^{\prime}\right) h^{\prime}\right)^{\prime}\right)^{\prime} A=c\left(\left(c\left(h^{\prime}\right)^{\prime} \vee g\right)\right)^{\prime} c\left(\left(c\left(g^{\prime}\right)^{\prime} \vee h\right)\right)^{\prime} A \\
& =\left(c\left(h^{\prime}\right)^{\prime} \vee c(g)\right)^{\prime}\left(c\left(g^{\prime}\right)^{\prime} \vee c(h)\right)^{\prime} A=\left(c\left(h^{\prime}\right) \wedge c(g, h)^{\prime}\right)\left(c\left(g^{\prime}\right) \wedge c(g, h)^{\prime}\right) A \\
& =c(g, h)^{\prime} A,
\end{aligned}
$$

since $c(g, h)^{\prime}$ is majorized by both $c\left(g^{\prime}\right)$ and $c\left(h^{\prime}\right)$. This completes the proof of (ii).
The restrictive situation in which the topological annihilator M° of the subset M of the predual A_{*} of the W^{*}-algebra A is a subtriple can be considered. This, of course, occurs if, for example, M° is a ${ }^{*}$-subalgebra of A.

Theorem 5.4. Let A be a W^{*}-algebra with predual A_{*}, let M be a subset of A_{*} having support space $s(M)$ and topological annihilator M°, let $k\left(s(M)^{\perp}\right), k(\operatorname{Ker}(s(M)))$, and $k\left(M^{\circ}\right)$ be the central kernels of the annihilator $s(M)^{\perp}$ of $s(M)$, the kernel $\operatorname{Ker}(s(M))$ of $s(M)$, and M°, respectively, let

$$
\begin{aligned}
& J_{M^{\circ}}=\left\{a \in A: b c^{*} a+a c^{*} b \in M^{\circ}, \forall b, c \in A\right\}, \\
& I_{M^{\circ}}=\left\{a \in A: b a^{*} c+c a^{*} b \in M^{\circ}, \forall b, c \in A\right\},
\end{aligned}
$$

and

$$
\tilde{I}_{M^{\circ}}=\left\{a \in A: b a^{*} c \in L, \forall b, c \in A\right\},
$$

and let g and h be the projections in A defined in (5.1)-(5.3). If M° is a subtriple of A then, the projections $c\left(h^{\prime}\right) g$ and $c\left(g^{\prime}\right) h$ are central and satisfy

$$
\begin{equation*}
c\left(h^{\prime}\right) g+c\left(h^{\prime}\right)^{\prime}=c\left(g^{\prime}\right) h+c\left(g^{\prime}\right)^{\prime}=c(g, h) \tag{5.5}
\end{equation*}
$$

and

$$
c(g, h)^{\prime} A=s(M)^{\perp}=J_{M^{\circ}}=I_{M^{\circ}}=\tilde{I}_{M^{\circ}}=k\left(s(M)^{\perp}\right)=k(\operatorname{Ker}(s(M)))=k\left(M^{\circ}\right) .
$$

Proof. Since, by Theorem 4.4, the weak*-closed inner ideal $g^{\prime} A h^{\prime}$ is an ideal in A, the elements $\left(c\left(h^{\prime}\right) g^{\prime}, c\left(g^{\prime}\right) h^{\prime}\right)$ and $\left(c(g, h)^{\prime}, c(g, h)^{\prime}\right)$ of $\mathcal{C} \mathcal{P}(A)$ coincide, and a calculation shows that (5.5) holds. The rest of the result follows from Theorem 5.3.

References

[1] E.M. Alfsen, E.G. Effros, Structure in real Banach spaces I, Ann. of Math. 96 (1972) 98-128.
[2] E.M. Alfsen, E.G. Effros, Structure in real Banach spaces II, Ann. of Math. 96 (1972) 129-174.
[3] T.J. Barton, Y. Friedman, Grothendieck's inequality for JB*-triples and applications, J. London Math. Soc. 36 (1987) 513-523.
[4] T.J. Barton, R.M. Timoney, Weak*-continuity of Jordan triple products and its applications, Math. Scand. 59 (1986) 177-191.
[5] T.J. Barton, T. Dang, G. Horn, Normal representations of Banach Jordan triple systems, Proc. Amer. Math. Soc. 102 (1987) 551-555.
[6] E. Behrends, M-structure and the Banach-Stone Theorem, Lecture Notes in Math., vol. 736, Springer, Berlin, 1979.
[7] F.F. Bonsall, J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Cambridge Univ. Press, Cambridge, 1971.
[8] L.J. Bunce, C.-H. Chu, Compact operations, multipliers and the Radon Nikodym property in JB*-triples, Pacific J. Math. 153 (1992) 249-265.
[9] F. Cunningham Jr., M-structure in Banach spaces, Math. Proc. Cambridge Philos. Soc. 63 (1967) 613-629.
[10] F. Cunningham Jr., E.G. Effros, N.M. Roy, M-structure in dual Banach spaces, Israel J. Math. 14 (1973) 304-309.
[11] S. Dineen, Complete holomorphic vector fields in the second dual of a Banach space, Math. Scand. 59 (1986) 131-142.
[12] S. Dineen, The second dual of a JB*-triple system, in: J. Mujica (Ed.), Complex Analysis, Functional Analysis and Approximation Theory, North-Holland, Amsterdam, 1986.
[13] S. Dineen, R.M. Timoney, The centroid of a JB*-triple system, Math. Scand. 62 (1988) 327-342.
[14] C.M. Edwards, C.S. Hoskin, The central kernel of the Peirce-one space, Arch. Math. 81 (2003) 416-421.
[15] C.M. Edwards, R.V. Hügli, Order structure of the set of GL-projections on a complex Banach space, Atti Sem. Mat. Fis. Univ. Modena, in press.
[16] C.M. Edwards, R.V. Hügli, G.T. Rüttimann, A geometric characterization of structural projections on a JBW*-triple, J. Funct. Anal. 202 (2003) 174-194.
[17] C.M. Edwards, K. McCrimmon, G.T. Rüttimann, The range of a structural projection, J. Funct. Anal. 139 (1996) 196-224.
[18] C.M. Edwards, G.T. Rüttimann, Inner ideals in W*-algebras, Michigan Math. J. 36 (1989) 147-159.
[19] C.M. Edwards, G.T. Rüttimann, A characterization of inner ideals in JB*-triples, Proc. Amer. Math. Soc. 116 (1992) 1049-1057.
[20] C.M. Edwards, G.T. Rüttimann, Structural projections on JBW*-triples, J. London Math. Soc. 53 (1996) 354-368.
[21] C.M. Edwards, G.T. Rüttimann, Peirce inner ideals in Jordan*-triples, J. Algebra 180 (1996) 41-66.
[22] C.M. Edwards, G.T. Rüttimann, The lattice of weak*-closed inner ideals in a W*-algebra, Comm. Math. Phys. 197 (1998) 131-166.
[23] C.M. Edwards, G.T. Rüttimann, The centroid of a weak*-closed inner ideal in a JBW*-triple, Arch. Math. 76 (2001) 299-307.
[24] C.M. Edwards, G.T. Rüttimann, The central hull and central kernel in JBW*-triples, J. Algebra 250 (2002) 90-114.
[25] C.M. Edwards, G.T. Rüttimann, Faithful inner ideals in JBW*-triples, Results Math. 43 (2003) 245-269.
[26] Y. Friedman, Bounded symmetric domains and the JB*-structure in physics in Jordan algebras, in: Oberwolfach, 1992, de Gruyter, Berlin, 1994.
[27] Y. Friedman, Physical Applications of Homogeneous Balls, Birkhäuser, Basel, 2005.
[28] Y. Friedman, Y. Gofman, Why does the geometric product simplify the equations of physics?, Internat. J. Theoret. Phys. 41 (2002) 1841-1855.
[29] Y. Friedman, Y. Gofman, Relativistic spacetime transformations based on symmetry, Found. Phys. 32 (2002) 17171736.
[30] Y. Friedman, B. Russo, Structure of the predual of a JBW*-triple, J. Reine Angew. Math. 356 (1985) 67-89.
[31] Y. Friedman, B. Russo, Conditional expectation and bicontractive projections on Jordan C*-algebras and their generalizations, Math. Z. 194 (1987) 227-236.
[32] G. Horn, Characterization of the predual and the ideal structure of a JBW*-triple, Math. Scand. 61 (1987) 117-133.
[33] W. Kaup, Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183 (1983) 503-529.
[34] W. Kaup, Contractive projections on Jordan C*-algebras and generalizations, Math. Scand. 54 (1984) 95-100.
[35] O. Loos, Jordan Pairs, Lecture Notes in Math., vol. 460, Springer, Berlin, 1975.
[36] O. Loos, On the socle of a Jordan pair, Collect. Math. 40 (1989) 109-125.
[37] K. McCrimmon, Compatible Peirce decompositions of Jordan triple systems, Pacific J. Math. 83 (1979) 415-439.
[38] G.K. Pedersen, C*-Algebras and Their Automorphism Groups, London Math. Soc. Monogr., vol. 14, Academic Press, London, 1979.
[39] S. Sakai, C*-algebras and W*-algebras, Springer, Berlin, 1971.
[40] L.L. Stachó, A projection principle concerning biholomorphic automorphisms, Acta Sci. Math. 44 (1982) 99-124.
[41] H. Upmeier, Symmetric Banach Manifolds and Jordan C*-algebras, North-Holland, Amsterdam, 1985.
[42] H. Upmeier, Jordan algebras in analysis, operator theory, and quantum mechanics, Reg. Conf. Ser. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1986.

[^0]: * Research supported in part by a grant from the United Kingdom Engineering and Physical Sciences Research Council.
 * Corresponding author.

 E-mail addresses: martin.edwards@queens.ox.ac.uk (C.M. Edwards), hoskin@maths.ox.ac.uk (C.S. Hoskin).

