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M-ORTHOGONALITY AND HOLOMORPHIC RIGIDITY IN
COMPLEX BANACH SPACES

C. MARTIN EDWARDS AND REMO V. HUGLI

ABSTRACT. It is shown that the complex tangent space R, at a point a on the
surface of the unit ball Ay in a complex Banach space A coincides with the
complex linear span

ling({ia}" N {a} N A1),
of the set {ia}® N {a} N A1, where, for a subset L of 4,
LP ={a€ A:|la%b] =max{lla], 6]}, Vb € L}

is the M-orthogonal complement of L. It is also shown that if B is a holomor-
phically rigid closed subspace of A then BY is equal to {0}. In the special
case in which A is a JBW*-triple and B is a weak*-closed subtriple of A, it
is shown that the M-orthogonal complement B® of B coincides with the al-
gebraic annihilator B+ of B, that the complex tangent space Ry 5 (A) at the
set L of elements of B of unit norm is weak*-closed and also coincides with
BU | that a second tangent space TF, (A) at Lp is weak*-closed and coincides
with the algebraic kernel Ker(B) of B, and that B is holomorphically rigid in
A if and only if BT is equal to {0}.

1. INTRODUCTION

This paper is concerned with the geometric and holomorphic properties of a complex
Banach space A. The study of the M-structure of Banach spaces originated in the
late sixties and has proved fruitful in investigations into their structure, particularly
when A is a dual space [1], [2], [7], [11], [12]. Whilst M-ideals and M-summands
of Banach spaces have been studied in depth, little attention has been given to
M-complementation of subsets of a Banach space. It is to this subject that much
of this paper is devoted. For a subset L of the complex Banach space A, the
M-orthogonal complement L of L is defined by

I°={ac A:|la+b| = max{|al, 6]}, Vb € L}. (1.1)

The M-orthogonal complement is not, in general, a subspace of 4, but it does enjoy
somé homogeneity properties. In a recent paper [4], Arazy and Kaup studied the
properties of different “tangent spaces” to a subset L of the surface of the unit ball
A7 in the complex Banach space A and related them to the concept of holomorphic
rigidity of a subspace B in A. The first part of this paper is devoted to a study of the
connections between M-orthogonal complements, tangent spaces, and holomorphic
rigidity. In particular, it is shown that the linear span R, of the tangent disc S,
at a point a of norm one in A coincides with the complex linear span of the set
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{ia}" N{a}" N A; and that the M-orthogonal complement B" of a holomorphically
rigid subspace B is necessarily equal to {0}.

A class of dual complex Banach spaces, the algebraic, geometric and holomorphic
properties of which are delicately linked, is that consisting of spaces the open unit
balls of which form symmetric domains, the so-called JBW*-triples. A dual complex
Banach space A with symmetric open unit ball automatically possesses a triple
product {. . .} : Ax Ax A — A having various algebraic and topological properties.
For a subset B of A, the algebraic annihilator B+ of B is defined to be the set of
elements a in A for which {B a A} is equal to {0} and the kernel Ker(B) of B is
defined to be the larger set of elements a in A for which {B a B} is equal to {0}. It
follows that, for such a complex Banach space A, it is possible to ask questions about
the relationships between M-orthogonal complements, tangent spaces, algebraic
annihilators and algebraic kernels of subsets of A. As is often the case in this area,
it is the equivalence of purely algebraic properties on the one hand, with purely
geometric or holomorphic properties on the other, that provides the most intriguing
results. It is shown that, for any weak*-closed subtriple B of the JBW*-triple A,
the algebraic annihilator B+ of B coincides with one of the tangent spaces to the
unit ball A; of A at the set Lp of elements of norm one in B, and that the algebraic
kernel of B coincides with the other tangent space. A consequence of this is that B
is rigid in A if and only if its algebraic annihilator is zero. All of these results fall
into the category mentioned above of proving the equivalence of algebraic properties..

of the JBW*-triple A with its geometric or holomorphic properties. Examples:of i

JBW*-triples are JBW™*-algebras, and, in particular W*-algebras or von Neumann
algebras.

This paper owes much to the work of Arazy and Kaup [4], and, in particular, the
proof of the final result is a straightforward extension of their proof for the con-
siderably more restrictive situation in which B is a weak*-¢losed inner ideal in A.
However, in other cases, it is by giving proofs that are algebraic and geometric,
rather than holomorphic, that allows the extension from inner ideals to subtriples
to be made. The paper is organised as follows. In §2 the relationship between
M-orthogonal complementation, tangent spaces and holomorphic rigidity for an ar-
bitrary complex Banach space is considered, and §3 is concerned with the definition
and properties of a JBW*-triple A. In particular, the various tangent spaces to the
unit ball at elements on its surface are identified in terms of the algebraic structure
of A. In §4, the main results are proved, and, in the final section these are applied
to obtain some new information about W*-algebras.

2. M-ORTHOGONAL COMPLEMENTS AND TANGENT SPACES

In this section, the connections between tangent spaces and the concepts of holomor-
pic rigidity, introduced in [4], and M-orthogonal complementation are investigated.

Recall that a partially ordered set P is said to be a lattice if, for each pair (e, f) of
elements of P, the supremum eV f and the infimum e A f exist with respect to the
partial ordering of P. The partially ordered set P is said to be a complete lattice if,
for any subset M of P, the supremum VM and the infimum AM exist. A complete
lattice has a greatest element and a least element, denoted by 1 and 0 respectively.

Let E be a complex vector space and let C be a convex subset of E. A convex
subset F of C is said to be a face of C' provided that, if tz; + (1 —t)z» is an element
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of F, where z; and x5 liein C and 0 < ¢t < 1, then z; and z5 lie in F. A face F'
of C is said to be proper if it differs from C and from the the empty set. Since the
intersection of a family of faces of C' is also a face of C, for each subset L of C there
exists a smallest face face(L) of C' containing L. In this case face(L) is said to be
the face of C' generated by L. An element z in C for which {z} is a face is said to
be an eztreme point of C. Let 7 be a locally convex Hausdorff topology on E and
let C be T-closed. Let F,(C) denote the set of 7-closed faces of C. Both @ and
C are elements of F,(C) and the intersection of an arbitrary family of elements of
F+(C) again lies in F(C). Hence, with respect to ordering by set inclusion, F,(C)
forms a complete lattice. A subset F' of C is said to be a T-exposed face of C if
there exists a T-continuous linear functional a on E and a real number £ such that,
for all elements = in C'\ F,

Re(a(z)) < t

and, for all elements z in F,

Re(a(z)) =t.

Let £-(C) denote the set of T-exposed faces of C. Clearly £,(C) is contained in

F+(C) and the intersection of a finite number of elements of £,(C) again lies in

E7(C). The intersection of an arbitrary family of elements of &£.(C) is said to be a

T-semi-exposed face of C. Let S;(C) denote the set of T-semi-exposed faces of C.

Clearly £,(C) is contained in S;(C), and the intersection of an arbitrary family-of. . -

elements of S;(C) again lies in S-(C). Hence, with respect to the ordering by set

inclusion §;(C) forms a complete lattice, and the infimum of a famlly of elements

of S;(C) coincides with its infimum when taken in 7, (C). ﬁ\ N fyer ‘;_ ‘!’ é_u A1

When E is a complex Banach space with dual space E* the abbreviations n and w* — T e
will be used for the norm topology of F and the weak* topology of E*. For each Cb ( F) .

subset F' of the unit ball E; in E and G of the unit ball Ef of E*, let the subsets - )
F’ and G, be defined by 7 JF X

F'={a€ E}:a(z)=1Vz € F}, G ={z€F;:a(z)=1VaeG}. T
Notice that F lies in S,(E;) if and only if F‘\EC;;”!( ‘?\I\
(F'), = F, (v
G lies in Sy-(E}) if and only if AP " 3/}':5) - ‘,L(
(G)) =G, \ A 0
and the mappings F' — F’ and G — G, are anti-order isomorphisms between -

Sn(E1) and Sy-(E7T) and are inverses of each other. The reader is referred to [18]
for details. Observe that every proper face of F consists of elements of norm one.

Let A be a complex Banach space and let a and b be elements of A. Then, a and
b are said to be M-orthogonal if

lla+0] = fla - b]| = max{]|all, [[2]|}.

More generally, the M-orthogonal complement LP of a subset L of A is defined as
n (1.1). The proofs of the following results can be found in [21].
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Lemma 2.1. Let A be a compler Banach space, let a and b be M-orthogonal ele-
ments of A, and let s and t elements of R such that

llall < lI]], ls| < []. | (\/Q_‘V )
Then, the following results hold. /Qﬁ: 33
(i) The elements sa and tb are M-orthogonal. / A‘ CDK;‘, |
) F AR
(i) llsa+tb]] = ||sa — tb = [1&]| LE ¢

Lemma 2.2. Let A be a complez Banach space, with unit ball A1, and let a and b ‘4”,
be elements of A of norm one. Then, the following conditions are equivalent. : i
(i) The elements a and b are M-orthogonal. | { Yoo 4/‘% ~
N P [ RN "
(ii) The elements a+b and a—b are contained in the face face(a) of A; generated ‘ S
by a. ) oA
| Beactlils 1
§

(ili) The elements a +b and a — b are contained in a proper face G of A;.

lies in G.

These results have the following corollary. \\/

Corollary 2.3. Let A be a complex Banach space and let a and b be elements of - jjt /)
A. Then, the following conditions are equivalent. tQ»C\

. ) RN
(iv) There exist proper faces F and G of Ay such that a+ b lies in F and a — b \ J T¢c E '!’ by
N

(i) For all positive real numbers s, the elements sa and b are M-orthogonal. }T Q{ [’/
(it) For all real numbers s and t, the elements sa and tb are M-orthogonal.

(iii) The closed unit ball (Ra @ Rb)y in the subspace Ra @ Rb of A coincides with
(Ra); @ (Rb)1.

Proof. (i)=-(ii) This is immediate from Lemma 2.1.
(ii)=>(iil) Since, for real numbers s and t,
s+ tb]) = max{lsall, 28]},
the result is immediate.
(iii)=-(i) Let s be a real number such that
l[sall < [lo]],

and let C be the convex set ||b||(Ra & Rb);. Since b lies in ||bl|(Rb); and both sa
and —sa lie in ||b]|(Ra);, the elements b + sa and b — sa lie in C, and, since

= %(b-l—sa) + %(b—— sa),

it can be seen that b + sa and b — sa lie in the face face(b) of C' generated by b. It
follows from Lemma 2.2 that b and sa are M-orthogonal. A similar argument can
be used in the case in which

llsall > [lol],
thereby completing the proof. 0




The results above give some information about the M-orthogonal complement {a}"
of the set {a} in the complex Banach space A. In order to introduce tangent spaces
to the unit ball at an element a of norm one in A, the complex structure must be
considered.

Lemma 2.4. Let A be a complex Banach space, with closed unit ball A1, and let
a be an element of A1 of norm one. Then:

(i) {a}"NA;={be A:|la+tb|| =1,Vt € [-1,1]};
(i) {ia}°N{a}®NA; C23{be A:|a+tb]| =1Vt €C,[¢| < 1};
(111) {ia}n N4, = i{a}':' n Al,'

(iv) the real linear span ling({ia}" N {a}” N A1) of the set {ia}" N {a}" n A
coincides with its complex linear span ling({ia}” N {a}" N 4;).

Proof. (i) Let b be an element of {a}” N A;. Then, by M-orthogonality, both a +b ﬂ 6
and a — b liein A, and, since '
a=1a+b)+3(a—b) [/r:) U
it follows that a + b and a — b lie in face(a). However, for all elements ¢ of [—1, 1], e
a+tb=3(1+t)(a+b)+3(1-t)(a—b), (2.1)

and it follows that a 4 tb, and, similarly, a — ¢b lie in face(a). Since a is of norm:. . -
one, face(a) is a proper face of A;, from which it follows that a + b is of norm one. -
Consequently, B
g L/\‘r‘_k 9\ —e {"i.

CN.

{a}°NA; C{beA:|a+td|=1,Vte[-1,1]}

Now, let b be an element of A such that, for all elements ¢ in [-1,1], a +tb is of
norm one. Then, in particular,

la+0] = fla — bl =1, (2.2)

y by
¥

and it follows that
2[[5f = l(a + ) — (@ — B)|| < lla + bl + lla = bl| = 2,
and, hence that b is of norm not greater than one. It follows from (2.2) that
1= [la+b|l = lla— bl = max{|lal, o]}
Therefore, a and b are M-orthogonal, and b lies in {a}" N A;, as required.
(ii) Let b be an element of {ia}® N {a}" N A;. Then, by (i), for all ¢ in [-1,1],
Na +itd|| = lla + tb|| = 1,

and, using (2.1), the elements a + b and a4 1b lie in face(a). Observe that, for each
complex number s of modulus not greater than one, there exist real numbers s;,
59, 53 and 84 in [—1, 1] of sum one such that

sb =27 (s1b — s3b + is3h — isgb),
and, hence that
a+272sh=si(a+Db)+sz(a—b)+ s3(a+ib) + s4(a —ib) € face(a).

Arguing as in the proof of (i), it follows that a4 ~%sb is of norm one, as required.
5




(iif) Observe that, by (i), an element b in A lies in the set {ia}” N A; if and only if,
for all real numbers ¢ in [—1, 1],
1= llia + tb|| = ||a — itd||
which occurs if and only if —ib lies in {a}" N A;, as required.
(iv) Since, by (iii), the set {ia}" N {a}” N A; is invariant under multiplication by i,

this follows immediately.
O

For each element a of norm one in the complex Banach space A, the tangent disc
S, at a is defined by '

Se={beA:lla+sb|=1VseC,ls| <1},

and the complex linear span of S, is denoted by R,. In [4] the notation ©, is
used instead of R,. It is now possible to relate the M-orthogonal complements of
elements a of A of norm one to the tangent space R,.

Lemma 2.5. Let A be a complex Banach space, with unit ball A1, and let a be
an element of norm one in A;. Then, the subspace R, coincides with the complex
linear span ling({ia}” N {a}" N A4;) of the set {ia}7 N {a}® N 4;.

Proof. This follows immediately from Lemma 2.4. )

Let A be the dual space of a complex Banach space E. For any subset L of elements .

of norm one in A, the spaces Ry (4), R¥"(A4), T¥" (4), and TP(A) are defined by
Ri(A) = () RaRY (A)= (N Ra T (4) = [ {a})°, TE4) = [ ({a})e,

a€l a€L a€L a€Ll
respectively, where, for subsets V' of E and W of A*, V° and W, respectively denote
the topological annihilators of V' and W in A. These represent various different
tangent spaces to the unit ball A; at L. It is clear that Ry (A) is contained in
RY"(A), and that TP(A) is contained in 7" (A). .

For complex Banach spaces A and B, the set of holomorphic mappings from an open
subset U of B into A is denoted by Hol(U, A). When M and L are arbitrary subsets
of B and A, respectively, a mapping h from M to L is said to lie in Hol(M, L) if
there exists an open set U in B containing M and A is the restriction f|p; of an
element f of Hol(U, A) to M. For the definition and properties of holomorphic
mappings the reader is referred to (3], [14], [15], [23], [29], and [30]. Let A; and B;
be the closed unit balls in A and B, respectively. A bounded linear operator 7" from
B to A is said to be holomorphically rigid if it is the only element A in Hol(B;, A)
such that

where h’ denotes the Fréchet derivative of h. A closed subspace B of A is said to
be rigid in A if the natural embedding of B into A is holomorphically rigid. The
next result relates holomorphic rigidity to M-orthogonality.

Lemma 2.6. Let A be a complex Banach space and let B be a rigid subspace of A.
Then, the M-orthogonal complement B® of B in A is equal to {0}.
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Proof. Let a be an element of norm one in BY, and let 7 be an element in the unit
ball Bf of the dual space of B. Define the mapping h from B to A, for elements b
in B, by

h(b) = b+ y(b)%a.

Then, h is holomorphic and, by M-orthogonality, for each b in B,
IR = 116+ y(b)al| = max{]B]l, [y(b)*[lla} = [}l
It follows that h(B;) is a subset of A;. Moreover,
h(0) =0, R'(0) = idg.
But, since y and a are non-zero, h is not the identity on B, and, hence, B is not
rigid in A. It follows that B" is equal to {0}. O
3. JBW*-ALGEBRAS AND JBW*-TRIPLES

A Jordan *-algebra A which is also a complex Banach space such that, for all
elements a and b in A,

la*it =Tllell, llacbll < llafl fitl, [{a a a}] = lal?,

where
{fabcl=ao(b*oc)+ (aob*)oc—b*o(aoc)

is the Jordan triple product on A4, is said to be a Jordan C*-algebra [42] or JB*-+'

algebra [43]. A Jordan C*-algebra which is the dual of a Banach space is said to
be a Jordan W*-algebra {16] or a JBW™*-algebra [43]. Examples of JB*-algebras
are C*-algebras and examples of JBW*-algebras are W*-algebras, in both cases
equipped with the Jordan product

aob=1(ab+ ba).

The self-adjoint parts of JB*-algebras and JBW*-algebras are said to be JB-algebras
and JBW-algebras respectively. For the properties of C*-algebras and W*-algebras
the reader is referred to [36] and [38], and for the algebraic properties of Jordan
algebras to [25], [31], and [35]. The set P(A) of self-adjoint idempotents, the pro-
Jjections, in a JBW*-algebra A forms a complete orthomodular lattice with respect
to the partial ordering defined, for elements e and f in P(A), by e < f if

eof=e,
and the orthocomplementation e +— 1 — e, where 1 is the unit in A. The centre
Z(A) of A consists of elements ¢ of A such that, for all elements a and b in A,
co(aob)=ao(cob).
The centre Z(A) of A forms a commutative W*-algebra, the complete Boolean
lattice P(Z(A)) coinciding with the centre ZP(A) of the complete orthomodular

lattice P(A). Furthermore, there exists an ortho-order isomorphism z — zo A from
P(Z(A)) onto the complete Boolean lattice of weak*-closed ideals in A [16], [25].

Recall that a complex vector space A equipped with a triple product (a,b,c) —
{a b c} from A x A x A to A which is symmetric and linear in the first and third
variables, conjugate linear in the second variable and satisfies the identity
[D(a,b), D(c,d)] = D({a b c},d) — D(c,{d a b}), (3.1)
7
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where [ , ] denotes the commutator and D is the mapping from A x A to A
defined by
D(a,b)c={a bec},

is said to be a Jordan*-triple. The Jordan*-triple A is said to be anisotropic if an
element a is equal to zero if and only if {a a a} is equal to zero. A subspace B of
a Jordan*-triple A is said to be a subtriple if {B B B} is contained in B, is said
to be an inner ideal if {B A B} is contained in B, and is said to be and ideal if
both {B A A} and {A B A} are contained in B. When A is also a Banach space
such that D is continuous from A x A to the Banach space B(A) of bounded linear
operators on A, and, for each element a in A, D(a,a) is hermitian in the sense of
[8], Definition 5.1, with non-negative spectrum and satisfies

ID(a, a)ll = llall?, (3-2)

then A is said to be a JB*-triple. Observe that a JB*-triple is anisotropic. A JB*-
triple which is the dual of a Banach space is said to be a JBW™*-triple. In this case
A has a unique predual denoted by A.. Examples of JB*-triples are JB*-algebras
and examples of JBW*-triples are JBW*-algebras. The second dual A** of a JB*-
triple A is a JBW*-triple. For details of these results the reader is referred to {5],
(6], (13], (28], [32], [33], [39], [40], and [41].

A pair a and b of elements in a JBW*-triple A is said to be orthogonal when D(a, b)
is equal to zero. For a subset B of A, denote by B+ the subset of A which consists
of all elements in A which are orthogonal to all elements in B. The subset. B+
is said to be the annihilator of B. Then, B+ is a weak*-closed inner ideal in A.
Moreover, for subsets B and C of A,

B+nB #’ {0},
and if B is contained in C' then C is contained in BL. For each non-empty subset
B of the JBW*-triple A, the kernel Ker(B) of B is the weak*-closed subspace of
elements a in A for which {B a B} is equal to {0}. It follows that the annihilator
B* of B is contained in Ker(B) and that B N Ker(B) is contained in {0}.

An element v in a JBW*-triple A is said to be a tripotent if {u v u} is equal to u.
The set of tripotents in A is denoted by /(A). For each tripotent u in the JBW*-
triple A, the weak*-continuous conjugate linear operator @(u) and, for j equal to
0, 1 or 2, the weak*-continuous linear operators P;(u), are defined by

Q(u)(a) = {uv a u}, Py(u)(a) = Q(u)*(a),
Py(u) = 2(D(u,u) — Q(u)?), Polu) =ida — 2D(u,u) + Q(u)?.
The linear operators P;(u) are weak*-continuous projections onto the eigenspaces

Aj(u) of D(u,u) corresponding to eigenvalues j/2. The corresponding decomposi-
tion

B g B_l._]_’ B_L — B_LL_L

H

A= Ao(’d) b Ay (u) (S5} Az('u.)

is said to be the Peirce decomposition of A relative to u. For j, &, and [ equal to
0, 1, or 2, A;(u) is a sub-JBW*-triple such that {A4;(u) Ax(u) A;(w)} is contained
in Aj_g+i(u) when j —k +1is equal to 0, 1, or 2, and is equal to {0} otherwise.
Moreover,

{A2(u) Ao(u) A} = {Ao(u) Aa(u) A} = {0},
8
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and Ag(u) and Ap(u) are inner ideals in A. Observe that,
fu}* = Aa(w)* = Ao(u) (3.4)
and
Ker(Ag(u)) = Ao(u) ® A1(u), Ker(Ap(u)) = Az(u) ® Ay (w). (3.5)

For more details the reader is referred to [17] and [19]. With respect to the product
(a,b) — aob and involution a — af defined by

aob={aubd}, al={uau}

Ag(u) is a JBW*-algebra with unit u. For two elements v and v of U(A), writev < u
if {v u v} is equal to v. The set of tripotents v in U(A) such that v < u coincides
with the set P(Az(w)) of projections in the JBW*-algebra As(u). It follows from
the spectral theorem that the linear span of U(A) is weak*-dense in A. Let U (AY
be the union of the set L{(A) and a point set {w} and, for all elements u in U(A)
write u < w. It is clear that this defines a partial ordering on U(A). Observe that,
when A is a W*-algebra, U(A) is the set of partial isometries in A.

Recall that, for each element u in U{/(A), the set {u}, is a norm-exposed face of A1
Define {w}, to be the set A, ;. The following result was proved in (18].

Lemma 3.1. Let A be a JBW*-triple with predual A.. Then, the following results.-.

hold.

(1) The mapping u — {u}, is an order isomorphism from the partially ordered set
U(AY of tripotents in A, with a largest element adjoined, onto the complete
lattice Fr(Ax1) of all norm-closed faces of the closed unit ball A1 in A,
and, hence, U(A) is a complete lattice.

(i) The mapping u — {u}/ is an anti-order-isomorphism from U(AY onto the
complete lattice Foyx (A1) of weak™-closed faces of the closed unit ball Ay in A
and

{u} = u + Ao(u)1.

Let a be an arbitrary element of the JBW*-triple A and define the sequence (a?+1)
inductively by

a! = q, a?*! = {a a¥! a}
Then, for positive integers j, k and [,
{a¥~1 261 g2-1) = q20+k+)—3 (3.6)

The reader is referred to [34] for details. A proof of the next result can be found
in [20].

Lemma 3.2. Let a be an element of norm one in the JBW*-triple A. Then, the
following results hold.

(i) The sequence (a®~1) converges in the weak™ topology to an element u(a) in
U(A) such that

{u(a) a u(a)} = u(a)
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and the norm-ezposed faces {u(a)}, and {a}, of A.1 coincide. Further-
more, u(a) is contained in the set W* and the weak*-closed face u(a) +
Ao(u(a))y coincides with face(mt),
(ii) There exists a smallest element r(a) in U(A) such that a is positive in the
JBW*-algebra As(r(a)) and, in Az(r(a)),
0 <ufa) a¥l<a< r(a).
Furthermore, the smallest weak*-closed subtriple W(a) of A containing a is

an associative JBW*-subalgebra of Aa(r(a)), with unit r(a), and coincides
with the weak*-closed linear span of the sequence (a?~1).

The tripotent r{a) described in Lemma 3.2 is said to be the support of a. The proof
of the following result may be found in [21]

Lemma 3.3. Let a and b be elements of norm one in the JBW™*-triple A. Then,
a and b are orthogonal if and only if their support tripotents r(a) and r(b) are
orthogonal, in which case the element a + b is of norm one and

r(a+b) =r(a) + r(b).

The next two results produce a list of properties of the annihilators of single ele-
ments of the JBW™*-triple A.

Lemma 3.4. Let a be an element of a JBW™*-triple A. Then, for j equal to
1,2,..., the annihilator {a}* of {a} is contained in the annihilator {a?=1}L of
{a®1}.
Proof. The result is clear when j js equal to 1. Suppose that the result holds for j
equal to k, and let b be an element of {a}*. Then,
D(b,a) = D(b,a®*"1) =0,
and, applying (3.1),
D(b,a**Y) = D(b{aad®*})
= D({a a**71! b},a) + D(b,a)D(a,a**1) — D(a,a* 1) D(b,a)
D(D(b,a%*1)a,a) = 0.
The result follows by induction. O

The corollary below summarises the properties of annihilators of elements of norm
one.

Corollary 3.5. Let A be a JBW*-triple, with predual A,, let Ay and A, be the
unit balls in A and A, respectively, let a be an element of norm one in A;, and let
u(a) and r(a) be the tripotents in A associated with a. Then, the following results
hold.

(i) The annihilator W(a)t of the smallest weak*-closed subtriple W (a) of A con-
taining a coincides with the annihilator {a}* of {a}. _

(ii) The annihilator {a}t of {a} is contained in the annihilator {u(a)}* of {u(a)},
which coincides with the weak™*-closed inner ideal Ag(u(a)).
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(iii) The annihilator {a}t of {a} coincides with the annihilator {r(a)}* of {r(a)},
which also coincides with the weak™-closed inner ideal Ag(r(a)).

(iv) The weak*-closed subspace ({a},)° of A coincides with the kernel Ao(u(a)) ®
Az (u(a)) of the weak*-closed inner ideal As(u(a)).

(v) The norm-ezposed face {a}, of As1 is contained in the topological annihilator
({u(a)}*)o of the weak*-closed inner ideal {u(a)}t, which is itself contained
in the topological annihilator ({a}*)s of {a}*.

(vi) The annihilator {a}* of {a} is contained in the weak*-closed subspace ({a},)°

of A.

Proof. Since a is contained in W(a), it follows that W(a)* is contained in {a}*.
The reverse inclusion follows from Lemma 3.2(ii), Lemma 3.4, and the weak*-
continuity of the triple product, thereby completing the proof of (i). It follows
from Lemma 3.2(i) that u(a) lies in W(a), and (ii) then follows from (i). Since,
by Lemma 3.2(ii), r(a) is also contained in W(a), (i) again shows that {a}' is
contained in {r(a)}*. Since, by (3.4), {r(a)}* coincides with Ap(r(a)), and, by
Lemma 3.2(ii), a lies in A3(r(a)), it follows that {r(a)}* is contained in {a}*, and
(iii) holds. The norm-exposed face {a},, which, by Lemma 3.2(i), coincides with
{u(a)},, is the normal state space of the JBW*-algebra A;(u(a)), and, therefore,
its linear span coincides with the predual As(u(a))« of Ax(u(a)). Hence,

({a},)® = (ling({a},))* = (A2(u(a))+)® = Ao(u(a)) ® A1(u(a)),

thereby completing the proof of (iv). It is clear that {a}, is contained in ({u(a)}*)o,
which coincides with Az(u(a)). ® Ai(u{a)).. The last inclusion of (v) follows by
applying the topological annihilator to (ii). Since {a}' is a weak*-closed subspace,
(vi) .follows by applying the topological annihilator to (v). ' a

4, MAIN RESULTS

Let A be a JBW*-triple and let B be a subset of A. The first part of this section
is concerned with the connections between the M-orthogonal complement B® of B
and the algebraic annihilator B of B. The first result along these lines, the proof
of which relies upon that of [24], Lemma 1.3, follows.

Lemma 4.1. Let A be a JBW*-triple and let a be an element in A. Then, the
annihilator {a}* of {a} is contained in the M-orthogonal complement {a}® of {a}.

Proof. Let b be a non-zero element of {a}*. It follows from Corollary 2.3 that, in
order to show that b is M-orthogonal to a, it is sufficient to prove it for the case
in which a is of norm one and b is of norm less than one. In this case, using (3.3),
(3.6) and the fact that D(a,b) is equal to zero, for j equal to 1,2,...,

la bl = [l(a £ )7 *7 = [l £6¥ |27 < (2)°7".
Allowing 7 to increase indefinitely, it can be seen that
llab] <1.
On the other hand,

2=2a] =l(a+b) +(a=d) <lla+bl +la—b] <2
11




and it follows that
la 0]l =1 =max{[al, [5]},

as required. (]
The next step on the way to the proof of the first main theorem follows.

Lemma 4.2. Let A be o JBW™*-triple, with closed unit ball A1, and let a be an
element in A of norm one. Then, the set {a}® N A; is contained in the annihilator

{u(a)}* of {u(a)}-
Proof. For each element b of {a}" N 4,
lla & b)) = max{|lafl, o]} = 1.
Since
a=3(a+b)+3(a-b),
it follows that the elements a + b and a — b lie in the face face(a) of A; generated
by a. By Lemma 3.2(i),
a € face(a) C u(a) + Ap(u(a))1.
Therefore,
a+b e u(a)+ Ao(u(a))1 € a+ Ao(u(a)),

and it can be seen that b lies in Ag(u(a)), as required. O
The next result is immediate from Lemma 4.1 and Lemma 4.2.

Corollary 4.3. Let A be a JBW™*-triple and let V be a non-empty subset of the set
U(A) of tripotents in A. Then, the set VI N A; coincides with the set VX N A;.

It is now possible to prove the first main result.

Theorem 4.4. Let A be a JBW*-triple, and let B be a weak*-closed subtriple of
A. Then, the annihilator BL of B coincides with the M-orthogonal complement B®
of B.

Proof. That B+ is contained in B® is immediate from Lemma 4.1. Let a be an
element of BP. Then, for each tripotent u in B and each positive real number s,
the element a is M-orthogonal to su. It follows from Corollary 4.3 that, for all real
numbers s, the element a/||a|| is M-orthogonal to su, and, hence that the elements
u+(a/||al]) and u — (a/||a||} are of norm one. An argument similar to that used in
the proof of Lemma 4.2 shows that the elements u + (a/||a||) are contained in the
face face(u) of the unit ball A; in A generated by u, which itself is contained in the
weak*-semi-exposed face u + Ag(u); of A;. Hence, a lies in Ag(u). It follows that,
for all elements v in U(B),

D(u,a)=0.
Since the linear span of U(B) is weak*-dense in B, the weak*-continuity of the
triple product implies that, for all elements b in B,
D(b,a) =0,
and a lies in BL, as required. O
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Before proving the second main result the following lemma is needed.

Lemma 4.5. Let A be a JBW*-triple, let a be an element of norm one in A having
support T(a), and let R, be the linear span of the tangent disc S, at a. Then, the
annihilator {a}* of {a}, which coincides with the Peirce-zero space Ao(r(a)), is
contained in R,.

Proof. By Lemma 4.1,
{a}* € {a}",  {a}* = {ia}* C {ia}".
Therefore, by Lemma 2.5,
{a}* = {ia}* = linc({ia}* N {a}* N A4;)
ling({ia}® N {a}” N 4;)
R,,

as required. O

N

The main result given below identifies the various tangenf spaces to the unit ball A;
in the JBW*-triple A at the set of elements of norm one in a weak*-closed subtriple
B of A.

Theorem 4.6. Let A be a JBW*-triple, with closed unit ball A1, let B be a weak*-
closed subtriple of A, and let Lg be the set of elements of B of norm one. Then,
the following results hold.
(i) The subspace Rp,(A) and the weak*-closed subspace RY_(A) both coincide
with the M-orthogonal complement BY and annihilator B+ of B.

(ii) The weak*-closed subspace T, (A) and the norm-closed subspace Tf, (A) both
coincide with the kernel Ker(B) of B.

Proof. (i) Observe that the equality of B® and Bt follows from Theorem 4.4. For
each element a of norm one in A, since the inner ideal {u(a)}* is weak*-closed it
can be seen from Lemma 2.4(iii) and Lemma 4.2 that

Raw = linc({ia}® N {a}‘:’ N Al)w C {u(a)}*.

Since B is a weak™*-closed subtriple, for each element a¢ in B of norm one, the
smallest weak*-closed subtriple W (a) of A containing a is contained in B, and, in
particular, by Lemma 3.2(i), the tripotent u(a) is contained in B. Since the linear
span of U(B) is weak*-dense in B, it follows that '

va)= R Ny = ) @=8~ @1

a€lp a€lp u€U(B)

By Lemma 4.5, it can be seen that

= m {a}J‘ c m RazRLB(A)' (42)

a€lp a€lp
It follows from (4.1) and (4.2) that

v’ (A) = Rp,(4) = B = BY,

as required.
13




(ii) Observe that, by Corollary 3.5(iv) and Lemma 3.2,
po(A)= () ({a})° = [ Ker(4a(u(@)) = (7] Ker(Ao(w).  (43)

a€lLp a€lp uwe€U(B)
Let b be an element of T%, (4). Then, by (4.3), for all elements u in 2/(B),
{A2(u) b Aa(u)} = {0}, (4.4)

and, in particular,
{ubu}=0 (4.5)

For non-zero elements u and v of U(B), the element (v + v)/||u+ v|| lies in B, and
it follows from Lemma 3.2(ii) that r((u +v)/||v + v||) lies in U(B) and that v + v
is contained in As(r((u 4+ v)/||lu + v||)). Therefore, by (4.4),

{(u+v) b (u+v)} =0, (4.6)
and., combining (4.5) and (4.6), ‘

{ubv}=0.
Since the linear span of U/(B) is weak*-dense in B, it can be seen that
{B b B} = {0},

and b lies in Ker(B). It follows from (4.3) that T},"; (4) is contained in Ker(B). On
the other hand, for every element b in Ker(B) and v in ¢{(B),

{ubu} =0,

and, therefore, b lies in Ker(Az(u)). It follows from (4.3) that b lies in T}, (A), and
the reverse inclusion is proved.

It remains to prove that the subspaces Ty, (A) and TF,(A) coincide. It is clear
that T7_ (A) is contained in T}f’; (A). Let b be an element of Tz"; (A), which, from
above, coincides with Ker(B). Then,

{BbB}=0,

and, using the results of [13] and identifying A with its canonical image in A**,
(B b B }=0.

It follows that b lies in the kernel Ker(?wt) of the weak*-closed subtriple B of

A**, which, from above, coincides with TE’: . (A**). By definition, it follows that,
B'(U

for all elements a in LEW , :

b({a}) = 0}

In particular, this holds for all elements a in L B; and, therefore, making the canon-
ical identification,

b({a}") = {0}. |
It follows that, for all elements a in Lpg, b lies in the subspace ({a}’), and, hence,
in TT_(A), as required. ]
14




Observe that it is a consequence of this result that the subspaces Ry,(A) and
T7,(A) are automatically weak*-closed. The proof of the last main result follows
quite closely the proof of the less general result in [4]. The proof of the following
* two lemmas may also be found in [4].

Lemma 4.7. Let A be a JBW*-triple, with closed unit ball Ay, let B be a weak™-
closed subtriple of A, let L be the set of elements in B of norm one, and let g
be a holomorphic mapping from B to A such that, for each element a in Lp, the
element g(a) lies in the subspace R,. Then g maps B into the subspace Ry z(A).

Proof. Since Ry, (A) is weak*-closed, it is also norm-closed. The result then follows
from [4], Corollary 7.3. O

A subset V of A is said to be a set of determinancy in A if, for every open connected
set U containing V, the restriction mapping h — h|y from Hol(U,C) to Hol(V,C)
is injective. .

Lemma 4.8. Let A and B be complez Banach spaces, let U be an open subset of
A, let the subset V of U be a set of determinancy in A, and let h be a holomorphic
mapping from U to B mapping V into a closed subspace L of B. Then, h maps U
into L.

The next lemma, a consequence of the maximum principle for holomorphic map-
pings, is related to Lemma II1.1.2 in [23].

Lemma 4.9. Let A be a complez Banach space, with unit ball Ay, and let h be a
holomorphic function from an open subset of C containing the closed unit disc C;
in C into A1 such that

[R(O)]| =1,
and for each element s of C of modulus one,
[R(s)Il < 1.

Then, the set h{(C1) is contained in the smallest norm-semi-exposed face {h(O)}' /
of Ay containing h(0).

Proof. For each element « of {A(0)},
(z 0 h)(0) = 2(h(0)) = 1,
and for each element s of C of modulus one,
|(z o R)(s)] < 1.

The maximum principle shows that the holomorphic function (z o A) is identically
equal to one on Ci, and, therefore, h(C;) is contained in {h(0)}’;, as required. [I

It is now possible to prove the final result.

Theorem 4.10. Let A be a JBW*-triple and and let B be a weak™-closed subtriple
of A. Then B is rigid in A if and only if the annihilator BY of B is equal to {0}.
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Proof. If B is rigid in A then it follows from Theorem 4.4 and Lemma. 2.6 that B+
“is equal to {0}. Conversely, suppose that this is the case and let & be a holomorphic
mapping from B to A such that :
h(B1) C A1, h(0)=0, A(0)=idp. (4.7)
In order to complete the proof it is necessary to show that h is equal to idg. By
Theorem 4.8, it is sufficient to show that the holomorphic mapping
| g=h—idg

maps B into Rr,. By Lemma 4.7, it is therefore only required to show that, for
each element a in Lp, g(a) lies in R,. From (4.7) it can be seen that the Taylor
series of g and h at 0 are given by

9=> 95, h=idg+) g; (4.8)
j=2 =2

where g; is a homogeneous polynomial of degree j. For each element a of Lg, and
for each non-zero element s of C;. let
74(s) = s~ 1h(sa) — a.

If the modulus |s| of s is sufficiently small then, using (4.8),

o

re(s) = Z s 1g;(a).

j=2
By defining 7,(0) to be equal to 0, 7, can be regarded as a holomorphic function
on C;. By (4.7), for each element a in Lp and each element s of Cy,
12 ||h(sa)ll = lls(a +ra(s))ll = Isllla+ra(s)ll = lla + ra(s) .

Therefore, the holomorphic function s — a + 7,(s) defined on some open set con-
taining C; sends the set of complex numbers of unit modulus intc the unit ball 4,
of A. When ¢ is a tripotent w in B, by Lemma 4.9 and Lemma 3.1(ii),

w+ 7y (1) = h(u) = u+ g(u) € u+ Ap(u);. (4.9)

It follows that, for every tripotent u in B, g(u) lies in Ao(u). For a general element
a in Lp, having support r(a) in A, which, by Lemma 3.2, lies in B, the weak*-closed
subspace

By(r(a)) = Az(r(a)) N B,

is a JBW*-algebra, the self-adjoint part Ba(r(a))ss of which consists of elements b
in B for which

{r(a) br(a)} =b.
As in the proof of [4], Proposition 7.11, the set exp(ids(r(a))sa) is a set of deter-
minancy in As(r(a)) and, hence, exp(ids(r(a))sa) N B is a set of determinancy in
Bs(r(a)). The set exp(ida(r{a))sa) N B consists of elements of U/(B) all having the
same Peirce spaces as r(a). From (4.9) it follows that g maps every element of
exp(ida(r(a))sa) N B into Ao(r{a)). Therefore, by Lemma 4.8, Corollary 3.5, and
Lemma 4.5, : . '

g(a) € g(B2(r(a)) € Ao(r(a)) = {r(a)}* = {a}* C R,

and the proof is complete. O
16
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The above proof provides information about a holomorphic function of the type
described in 4.7. The following corollary is now immediate from Theorem 4.4 and
the proof of Theorem 4.10.

Corollary 4.11. Under the conditions described in Theorem 4.10, let h be a holo-
morphic function from B to A, such that

h(B1) C A1, h(0)=0, H(0)=idp.
Then, h is equal to idg + g, where g is a holomorphic function mapping B to its
M-complement BP.
5. APPLICATIONS TO W*-ALGEBRAS

Let A be a W*-algebra with unit 1. Recall that, with respect to the triple product
defined, for elements a, b, and c of A, by

{a bc} = (ab*c+ cb*a),
A is a JBW*-triple. Let a be a *-antiautomorphism of A of order two, and let
H(A,e)={a€ A:a(a)=a}, S(4,a)={acA:ala)=—a}.
Then H(A, a) and S(A4, o) are weak*-closed subtriples of A, such that
A=H(A o)® S(4,a), (6.1)
and H(A,a) is, in fact, a JBW*-subalgebra of A with unit 1. Furthermore,

{H(A,@) S(A,) H(A, @)} C S(4a),
{S(A,a) H(A,a) §(4,0)} C H(4,0),

(5.2)

{H(A,a) HA,a) S(4,0)} C S(4,a), (5.3)

{S(A,e) S(A,a) H(A,a)} C H(4, o). -
It is possible to identify the “tangent spaces” to the closed unit ball A; in A at the
intersection of H(A, a) and S(A, ) with elements of A; of norm one, and, hence,

to determine whether H(A, a) and S(A4, @) are holomorphically rigid in A. Recall
that, by Theorem 4.6,

‘RL.H(A,a) (A) = H(A, a)'L = H(A, a)u) | (5.4)

TBH(A,Q) (A) = Ker(H(4,0a)), (5.5)
the same equalities holding when H(A, &) is replaced by S(4, a).

Theorem 5.1. Let A be a W*-algebra, let o be a *-antiautomorphism of A of
order two, and let H(A,a) be the weak*-closed subtriple and JBW*-subalgebra
of A consisting of elements of A invariant under «. Then, the tangent spaces
Riyae(A) andTD (A) are both equal to {0}, and H(A, ) is holomorphically
rigid in A.

Proof. From (5.4) and (5.5), it is clearly sufficient to show that Ker(H (4, «)) is
equal to {0}. Let a be an element of Ker(H (A, ). Then, for all elements b and ¢
in H(A, o), S

{bac}=0,

and, choosing b and ¢ equal to 1, it follows that a is equal to 0. O
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The situation regarding H(A, «) is therefore very straightforward. However, since
S(A, a) is not a JBW*-subalgebra of A, in this case the situation is more compli-
cated.

Theorem 5.2. Let A be a W*-algebra, let o be a *-antiautomorphism of A of order
two, let H(A, &) be the weak*-closed subtriple and JBW™*-subalgebra of A consisting
of elements of A invariant under o, and let S(A, @) be the weak*-closed subtriple
of A consisting of elements a of A for which a(a) is equal to —a. Then, the tangent
space Rpg 4 o (A) to Ay at Lg(a,q) coincides with the largest weak™-closed ideal of
A contained in H(A, a) and is a commutative subalgebra of A.

Proof. By (5.4), Rrg(sq(A) coincides with S(A4,a)t. Let a be an element of
S(A,a)t, and, using (5.1), let a; and a; be the unique elements of H(A,«) and
S(A, &), respectively, such that
. a=ap+ a;.
Then, ’
0={as a a;} = {as ap as} + {a;s as as},
and, using (5.1), (5.2), and the anisotropy of A, as is equal to zero, a is equal to
ap, and S(A4, &)t is contained in H(A,a). Now, suppose that a lies in A, by in
H(A,q), cs in S(4,a), and dy, and e, in S(4, @)*. Then, using (3.1), and the fact
that D(cs, dp) is equal to zero,
{cs {bn en dn} a} = D(cs,{dn en bn})a
= D({Eh bp, Cs}, dh)a + [D(Cs,dh), D(eh, bh)]a
D({eh bh Cs}, dh)a = 0,
since, by (5.3), {en bx cs} lies in $(4, a). It fdllows that
{H(A, ) S(A,a)* S(4,a)t} C S(4,a)t. (5.6)
Therefore, using (5.6),
{AS(4,0)" S(A4,0)"} = {H(A @)@ S(A0) S(4,a)*" S(4,0)*}
= {H(A’ Ci) S(A, a)J_ S(A4, a)J-}
c 5S4t

It follows from [9], Proposition 1.3, that the weak*-closed inner ideal S(A4, @)t is
an ideal in A that is also contained in H(4, o).

Suppose that I is a further weak*-closed ideal in A that is contained in H(A4, &),
and let @ lie in its annihilator I1. Then,

ofala) I A} = {a a(I) A} = {a T A} =0,

and it can be seen that a(a) lies in I*+. Since « is of order two, it follows that
a(I*) and It coincide. From [28],

A=TIeI*+ (5.7)

and, for each element as in S(A, ), there exist unique elements b in I and ¢ in I+
such that

as=b+ec.
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Therefore,
b+c=a, =—afas) = —a(b) — a(c),

and, using (5.7), both b and ¢ lie in S(A4, o). However, b also lies in H(A4, ), and
is, therefore, equal to zero. It follows that S(A4, @) is contained in I, and, taking
annihilators, that I is contained in S(4, @)*. Hence S(4, @)t is the largest weak*-
closed ideal in A that is contained in H(A, ). Therefore, there exists a unique
central projection z in A such that S(4, )l coincides with zA. Observe that,
since zA is contained in H (A4, ¢), for each element a in A4,

za = a(za) = a(a)a(z),

and, choosing a equal to 1, it follows that z lies in the intersection of P(Z(A)) and
H(A, o), which, from [22], Lemma 3.2, coincides with P(Z(H (A, c))), the complete
Boolean lattice of central projections in the JBW*-algebra H(A, ). Observe that,
for elements ¢ and b in zA,

ab = (2a)(2b) = z(ab) = a(zab) = za(b)a(a) = zba = ba,

and S(4, @)t is commutative, as required. O
The theorem has the following immediate corollary.

Corollary 5.3. Under the conditions of Theorem 5.2, the weak*-closed subtriple
S(A, @) is holomorphically rigid in the W*-algebra A if and only if the only central
projection z in A for which the ideal zA is contained in H(A, a) is equal to zero.

Theorem 5.4. Let A be a W*-algebra, let  be a *-antiautomorphism of A of order
two, let H(A, a) be the weak™-closed subtriple and JBW™*-subalgebra of A consisting
of elements of A invariant under c, and let S(A, ) be the weak*-closed subtriple
of A consisting of elements a of A for which a(a) is equal to —a. Then, there exists
a central projection w in H(A, ) such that the tangent space TP (4) to Ay at

Ls(a,e)

Ls(a,a) coincides with the weak*-closed ideal wH (A, @) in H(A, ).

Proof. Using (5.5), from [25], Proposition 4.3.6, it must be shown that the weak*-
closed subspace Ker(S(A, a)) of A is a weak*-closed ideal in H(A, a). Precisely the
same argument as that used in the proof of Theorem 5.2, shows that Ker(S(A4, «))
is contained in H(A, ). Let ap and by lie in Ker(S(4, a)), let ¢, lie in H(A4, o)
and let d; lie in S(A4, a). Then, using (3.1), (5.3), and the fact that
{{bn cn ds} an ds} € {S(4, a)Ker(S(4,a)) S(4,a)} = {0},
{ds an {bn cn ds}} € {S(4, ) Kgr(S(A, a)) S(A,a)} = {0},
{ds ands} € {S(4, ) Ker(5(4,0)) §(4,a)} = {0},

it can be seen that

{ds {an br e} ds} = D(ds,{an bn ca})ds

D({bn cn ds}, an)ds + [D(ds, an) D(bn, cn)]ds

0. , | |

By polarization, it follows that {an by cp} lies in Ker(S(A, «)) and, hence, that
{Ker(S(4, @) Ker(S(4, @) H(A, @)} C Ker(S(4, @)).
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Again using [9], Proposition 1.6, it follows that Ker(S(4,)) is an ideal in the
JBW*-algebra H(A, o), as required. O

A simple example of the kind described above is that in which A is the W*-algebra
M, (C) of nxn complex matrices, and « is the mapping sending an element a to its
transpose. In this case H(A4, a) is the JBW*-algebra of n X n symmetric complex
matrices and S(A4, @) is the JBW*-triple of anti-symmetric complex matrices. In
this case, both A and H(A, a) have trivial centres. In particular, it follows that
both H(A,a) and S(A, &) are holomorphically rigid in A.
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