
Abstract. An e�cient steepest descent algorithm for the
integration of minimum energy paths, based on local
quadratic approximations of the potential energy sur-
face, is presented. The algorithm incorporates a selection
procedure for the points at which the second derivatives
of the energy are calculated fully or partially, thus
minimizing the computational e�ort while maintaining
high accuracy. This makes the method especially well
suited for application in variational transition state
theory calculations with tunnelling corrections, which
have very high accuracy requirements. The performance
of the algorithm is illustrated by ab initio calculations
for four chemical reactions of di�ering complexity. The
overall computational cost is less than for, or compara-
ble to that of, ®rst- or second-order algorithms pub-
lished previously.
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1 Introduction

The pathway of a chemical reaction can be described
theoretically by tracing the hypothetical trajectory
initiated at the saddle point on the potential energy
surface (PES) with all inertia e�ects removed (i.e. the
kinetic energy is neglected throughout). The ®rst de®ni-
tion of such a path was the intrinsic reaction coordinate
(IRC) of Fukui [1] in the frame of mass-weighted
Cartesian coordinates. However this de®nition is not
unique [2±5], and it is possible to de®ne the reaction path
in slightly more general terms as the minimum energy
path (MEP) pointing downwards from the saddle point
in the direction of steepest descent towards the product

and reactant minima of the PES, respectively [2]. A
reaction path de®ned as a MEP on the PES of a
polyatomic chemical system is perhaps the most useful
and physically meaningful source of information when
systems with N � 4 atoms are studied, since it o�ers a
possibility to overcome the ``dimensionality dilemma'' of
PES with many degrees of freedom [3±8]. The availabil-
ity of analytic energy gradients and higher derivatives of
ab initio PES [9] has made the development of e�cient
reaction path following methods possible (for reviews,
see Refs. [10±16].

The basic problem of reaction path following is the
solution of the system of di�erential equations, Eq. (1),
characterized by the coordinate and gradient vectors x
and g of the PES

dx�s�
ds
� ÿ g�s�
jg�s�j : �1�

The quantity s is the arc length of the reaction path. The
simplest solution to Eq. (1) derives from initiating the
integration by making one step along the imaginary-
frequency normal mode of the Hessian matrix at the
transition state geometry of the reaction. Then succes-
sive steps along the negative gradients using a small
®nite step size h are to be taken

x�s� h� � x�s� ÿ h � g�s�jg�s�j : �2�

This ®rst-order integration scheme complies with a
linear piecewise approximation of the path of steepest
descent and is known as the Euler method for the
integration of ®rst-order di�erential equations [17].
However, due to the fact that the system of di�erential
equations de®ning a MEP is often ``sti�'' [14±16] (for the
de®nition of sti�ness, see Ref. [17], the Euler steps tend
to oscillate around the true MEP. Thus, very small step
sizes will be needed to yield a proper MEP. In practice
far too many steps ± each one requiring an energy and
gradient calculation ± are needed to achieve acceptable
accuracy, making the Euler integration inapplicable for
ab initio quantum chemical calculations [14±16], since at
this level of theory the number of gradient or higher
derivative calculations is the limiting factor regarding
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the overall computational cost of MEP integration. This
implies the need for the development of special integra-
tion schemes adapted to the requirements of ab initio or
semiempirical quantum chemical calculations. As shown
by Truhlar et al. [14±16], the standard integration
algorithms of numerical mathematics, such as Runge-
Kutta or predictor-corrector schemes (see Ref. [17]), are
usually not applicable to the reaction path problem,
since these methods, just like the Euler method, tend to
oscillate around the true MEP unless a very small step
size is used in the integration.

The integration algorithm should be selected ac-
cording to the intended use of the computed MEP. One
can consider two basic motivations for the calculation of
a reaction path. First, the MEP can be used to verify
reaction mechanisms and transition states on the PES of
chemical reactions. In such applications, the quality
of the MEP can usually be low and only a small number
of points is necessary to represent the MEP. For the
sake of computational e�ciency, the number of MEP
points to be computed should be as small as possible.
This can conveniently be achieved using the ``path re-
laxation'' technique introduced by Elber and Karplus
[18]. A modi®ed version of this method allows the
simultaneous optimization of reaction paths and tran-
sition states [19]. Path relaxation methods minimize the
integral over the energy along the reaction path via an
N -point discretization and are very e�cient if only a few
points (typically ®ve to seven) are used to represent the
complete path. An alternative approach is supplied by
implicit reaction path integration schemes, which try to
correct a simple linear Euler step along the gradient
by some a posteriori corrector step(s), using the gra-
dient information at some additional geometries. This
``stabilized'' or ``optimized'' Euler scheme was intro-
duced in 1977 by Ishida et al. [20] and modi®ed and
improved by several groups in the following years [21±
27]. In particular, the optimized Euler method intro-
duced by Gonzalez and Schlegel (GS) [23, 24] allows
large step sizes even for highly curved reaction paths
while needing only a few additional gradient calculations
per integration step and has found widespread use
among computational chemists. Basically, the GS algo-
rithm tries to correct the Euler step by constrained op-
timization of the N ÿ 1 dimensional hypersphere
perpendicular to the path, which is centred at a pivot
point x� de®ned by an Euler step of halved step size.
Apart from the initiating step, the GS algorithm uses
only energies and gradients of the PES, although it is
also possible to include higher derivative information
[25, 28].

The second major purpose of reaction path compu-
tations is the computation of dynamical properties of
chemical reactions (reaction rates, kinetic isotope e�ects,
scattering cross-sections, etc.) via statistical theories, i.e.
variational transition state theory (VTST) [4, 6, 7, 29±31]
or reaction path Hamiltonian methods [8, 32, 33]. Es-
pecially the development of ``direct'' techniques in VTST
theory [15, 34] made such computations e�cient and
easy to handle. Direct VTST methods allow immediate
processing of the data conceived pointwise from ab initio
calculations, saving the substantial e�ort of ®tting the

MEP data to an analytical representation. VTST cal-
culations using semiclassical correction terms for quan-
tum-tunnelling e�ects typically need 30 or more points
along the reaction path [34±36]. In addition to geome-
tries and energies, VTST methods also require the pro-
jected vibrational frequencies at the points calculated
along the path. This means that the Hessian matrix and
the tangent vector of the path (i.e. the gradient) have to
be computed at these geometries. VTST calculations
demand a tightly converged transition state geometry
and a reaction path of high quality, since the accuracy of
the projected frequencies depends critically on the
quality of the tangent vector and thus on the geometry
and gradient of the MEP [14, 16, 28]. As has been
pointed out by Baboul and Schlegel [28] an error in the
reaction path geometry of 4� 10ÿ4 a0 or rad might lead
to deviations of over 100 cmÿ1 in the corresponding
projected frequencies, becoming even worse if the ge-
ometry of the transition state is not optimized punctili-
ously. In order to reduce the errors in the projected
frequencies to 1 cmÿ1 or less, it will be necessary to
calculate the geometries of the MEP to an accuracy
of 10ÿ5 a0 or rad.

In principle, all of the algorithms mentioned above
are suitable for MEP computations in VTST methods if
the strict accuracy requirements are met, i.e. if the step
size chosen is su�ciently small and if the constrained
optimization is converged very tightly [16, 28]. However,
Garrett et al. [16] reported that the GS algorithm failed
to compute the reaction path with the necessary accu-
racy if only energies and gradients are used in the con-
strained optimization. If the Hessian matrix computed
along the path is considered in the hypersphere optimi-
zation, the accuracy is improved considerably [28].
However, in this case the e�ciency of the GS method
will be quite low, since apart from the gradient calcu-
lation for the Euler step and the Hessian calculation, the
constrained hypersphere optimization will require sev-
eral additional gradient calculations per integration step.
Thus, second-order integration schemes [32, 37±41] that
use the Hessian matrix explicitly in the integration step
and not just in the stabilization step, o�er a favourable
combination of reaction path integration and calculation
of projected frequencies. In the case of VTST calcula-
tions optimum computational e�ciency in computation
of the MEP is reached if the second-order integration
algorithm requires only the gradients and Hessian ma-
trices that are also needed in the VTST calculation (i.e.
no additional gradient steps), while achieving the re-
quired accuracy with a reasonably large step size. Similar
implementations of such second-order algorithms based
on local quadratic approximations (LQA) to the PES
have been developed by several groups [32, 37, 38, 42].
Although these LQA methods have been applied suc-
cessfully to a number of chemical reactions [38, 43±48],
the fact that the step size has to be quite small (around
0.1 a0 or rad) to achieve the accuracy required in VTST
calculations [16, 39] remains unsatisfying. The somewhat
more sophisticated algorithm of Sun and Ruedenberg
[39±41] was claimed to allow larger step sizes, but so far
it has not been tested on ab initio PES of real molecular
systems. The proposed second-order quadratic steepest
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descent (QSD) algorithm which is introduced in Sect. 2
is based on the algorithm of Sun and Ruedenberg [39±
41]. It will be shown that the method is able to meet
e�ciently both of the demands of MEP computations
mentioned above. It is especially well suited for the
prospect of VTST calculations.

An important point, relevant to all algorithms that
attempt to integrate Eq. (1), is the lack of a local crite-
rion to determine whether a particular point is actually
on the ``true'' MEP. This holds even if the algorithm
uses some kind of constrained optimization to converge
back to the path [10]. Thus, it is necessary to carefully
check the convergence of any new algorithm on di�erent
types of PES. In this work, four di�erent chemical re-
action systems of varying complexity with 3 to 21 ef-
fective degrees of freedom are used to test the proposed
algorithm at the ab initio level of theory.

2 Method

The basic formulation of the algorithm has been given in detail by
Sun and Ruedenberg [39, 40], and we therefore give only a short
summary of the working equations. The potential energy around a
given geometry x�k� is approximated locally by a quadratic Taylor
expansion

E�2��x� � E�x�k�� � �xÿ x�k��yg� 1
2�xÿ x�k��yH�xÿ x�k�� ; �3�

where g and H are the gradient and Hessian, respectively, at the
expansion point x�k�. A MEP as de®ned by Eq. (1) can be expressed
in a computationally convenient manner in terms of a parameter
u�s�, mapping the arc length of the reaction path between the
boundaries 0 � u � 1 [39]

u�s� � exp a
Z s

jg x�r�� �jÿ1dr

� �
; �4�

where a is an arbitrary constant of dimension �H=a2
0� which is set

equal to unity. Using Eqs. (3) and (4), Eq. (1) becomes

dx�u�
du
� uÿ1

�
g�H � �xÿ x�k��� : �5�

Numerical integration of Eq. (5) leads to a piecewise quadratic
approximation of the MEP ± the local QSD lines x�u�
x�u� � x�k� ÿHÿ1�Iÿ uH�g ; �6�
where I is the unit matrix and uH is de®ned as

uH
� �

ij�
X

m

Uimukm Ujm : �7�

The orthogonal matrix U and the eigenvalues km are obtained from
the diagonalization of the Hessian UyHU

� �
mn� dmnkm.

2.1 The integration step

The energy along the quadratic approximation E�2��x�u�� of the
MEP decreases with decreasing u [39]. Thus, following the MEP
from the transition state towards a minimum is equivalent to
stepping along the QSD line x�u� in the direction of decreasing u
with a step size � h. Accordingly, the actual integration step con-
sists of ®nding a value umin that ful®lls

jx�umin� ÿ x�k�j � h : �8�
If all eigenvalues of the Hessian matrix are positive, umin can be
chosen to be zero, i.e. Eq. (6) becomes equivalent to a Newton step
restricted to step size h. If the Hessian matrix has negative or zero
eigenvalues, x�u� would lead to in®nity if a zero value were used for
umin. In this case umin is found from [39]

ey x�umin� ÿ x�k�
h i

� h ; �9�
where e denotes the eigenvector corresponding to the lowest neg-
ative eigenvalue k of the Hessian matrix. Inserting Eq. (9) into
Eq. (6) leads to the condition

�uk
min ÿ 1�eyHÿ1g � h �10�

from which umin and subsequently, by virtue of Eq. (6),
x�k�1� � x�umin� can be determined.

Sun and Ruedenberg have shown that the straightforward im-
plementation of such an LQA step (i.e. at a given geometry x�k�,
compute the energy, gradient and Hessian matrix, build the QSD
line and step to the new geometry x�k�1�, where the next energy,
gradient and Hessian matrix are computed, and so on [32, 37, 38])
has problems in describing strongly curved reaction paths, causing
oscillative behaviour and quite large deviations from the exact
MEP [39]. In order to achieve a better description of such reaction
paths, Sun and Ruedenberg modi®ed this simple scheme and dis-
tinguished three species of points: the x�k� points, where energy,
gradient and Hessian matrix are calculated, the p�k� points, where
the quadratic approximations to the MEP are pieced together and
®nally the r�k� points, which represent the actual ``points on the
MEP''. Obviously, the most reasonable choice is to place the p�k�
points right between the x�k� points, since in this case the quadratic
Taylor expansion will be about the centre of the QSD line rather
than the beginning of the step. Starting from an old connection
point p�kÿ1� and an expansion centre x�k�, the actual QSD
step consists of computing the gradient and the Hessian matrix
at x�k� and constructing the QSD line around this point, starting
from the old p�kÿ1� point, then stepping h along this line to obtain
the next connection point p�k�. The new expansion centre x�k�1� is
then found by stepping another h=2 along this line. The corre-
sponding r�k� point is found by stepping back from p�k� with a step
size of h=2 on the actual steepest descent line. The r�k� point will be
near the x�k� point, but generally much closer to the exact path than
x�k� is. It can be argued that such a QSD step of step size h will
achieve the accuracy of a simple step of halved step size h=2 [39].
Thus, it should allow much larger step sizes than a simple LQA
step. The QSD scheme described above was proposed by Sun and
Ruedenberg for use with an exact Hessian matrix in each integra-
tion step [39]. They suggested a slightly modi®ed scheme if poorer
approximations of Hessian matrix were used [40], However, we
found that the scheme described above always achieved the best
accuracy in the practical MEP computations, independent of the
approximation of the Hessian matrix. Accordingly, this scheme will
be used throughout the current work.

2.2 Step adaption

The curvature of the reaction path can be utilised to adjust the step
size of the QSD method to yield an optimum description of the
actual features of the reaction path. If a strong curvature is present,
the step size should be reduced to improve the stability and accu-
racy of the numerical integration. The curvature vector k is de®ned
generally as

k � dt
ds
� d2x�k�

ds2
; where t � g=jgj : �11�

The curvature vector of the reaction path [49] is in the frame of the
LQA Eq. (3):

k � �Iÿ tty�Ht=jgj : �12�
The step size can be expressed as a function of the scalar curvature
k de®ned as the norm of Eq. (12). Following Sun and Ruedenberg
[39, 49], the step size is expressed as the monotonous function
Eq. (13):

h�k� � hmax � f �k=~k� where f �k=~k� � a� 1ÿ a

1� �k=~k�m : �13�

The adjustable parameters were chosen to be a � 1=4, m � 5=6 and
~k � 2:0 aÿ10 or radÿ1. Using these values, the scaling factors f �k=~k�
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observed in the strongly curved regions of the MEP of the test
systems were between 0:4 to 0:6 for maximum step sizes of
hmax � 0:3, 0:5 and 0:7 a0 or rad. Smaller values of ~k, as used in
Refs. [39, 40] tend to dampen the step too much, even in regions of
moderate to small curvature.

The accuracy of the step adjustment procedure is improved if the
tangent vector t used in Eq. (12) is de®ned at the p�k� points instead
of at the x�k� points. In this case, the gradient vector used to com-
pute t should be adjusted to the p�k� point geometries by g�p�k�� �
g�x�k�� �H � �p�k� ÿ x�k��.

2.3 Initiation

The integration of a MEP is normally started at the transition state
geometry of the reactive system. Since the gradient is zero at
transition state geometries, the ®rst step cannot be determined from
Eq. (6). Instead, the ®rst step is taken along the eigenvector of the
Hessian matrix that is associated with its negative eigenvalue, i.e. in
the direction of the ``transition vector''. In practice it was conve-
nient to step along the transition vector with the step size h that is
also used in the successive QSD steps. In the ®rst QSD step the
transition state geometry was used as the ®rst p point and the point
reached along the transition vector was taken as the ®rst expansion
centre. Similarly, the curvature vector at the transition state cannot
be determined from Eq. (12). The correct calculation of the cur-
vature would involve third derivatives of the energy [10, 32]. Thus,
for e�ciency considerations no step adaption was accomplished in
the initiation step.

If the integration is initiated at a non-stationary point, a simple
LQA step of step size h=2 is used to obtain the starting geometries
for the ®rst QSD step. The geometry predicted by the LQA step will
then be chosen as the ®rst x point, while the starting geometry will be
the ®rst p point. Using these points, it is possible to continue with a
regular QSD step as described in the previous sections. Since the
accuracy of the simple LQA step of halved step size is approximately
that of the QSD step of step size h [39], the overall accuracy of the
path will not be impaired by the initiating step. We found that the
complicated initiation procedure proposed in Ref. [39] that includes
two additional steps with low step sizes, was not e�cient in practice
since it did not lead to higher accuracy. The simple initiation scheme
used here always yielded su�cient accuracy.

2.4 The Hessian matrix

The approximation of the Hessian matrix is crucial to the accuracy
of the QSD method. However, its calculation is also the compu-
tationally most demanding part of the reaction path integration. If
no analytical second derivatives of the energy are available for a
given ab initio wavefunction they have to be approximated by
numerical di�erentiation of gradients calculated at additional
points. The Hessian matrix can be obtained either from a least-
squares ®t procedure, as used in Ref. [40], or from a ®nite di�erence
scheme [50]. As noted by Pulay [51], for a given number of distorted
gradient points, the latter will generally yield better results. Thus,
®nite di�erences were used in all test calculations. Our actual
implementation of the QSD method allows the use of forward
di�erences or of the more accurate central di�erences [50], using n
or 2n additional gradient calculations to recalculate the complete
Hessian, where n is the number of degrees of freedom.

Due to high computational cost, the exact analytical or nu-
merical calculation of the Hessian matrix in each optimization step
is only feasible for very small systems if ab initio wavefunctions are
used. Alternatively, the Hessian can be adjusted along the reaction
path by some update procedure that uses the geometries and gra-
dients of previous x�k� points. If the Hessian possesses only positive
eigenvalues, the BFGS algorithm [52] is used. Near the transition
state Powell's algorithm [53] or the combined Murtagh-Sargent-
Powell (MSP) update of Bo®ll [54] can be employed. Since in many
tests the MSP update showed superior performance, it was used for
all calculations in Sect. 3. Depending on the eigenvalue structure of

the Hessian and on the norm of the gradient, the QSD algorithm
switches between the BFGS and MSP schemes.

Due to the well-known de®ciencies of the updating schemes [55±
57] it seems reasonable to include some regeneration steps, where
the Hessian is recalculated either partly or completely. In the
simplest case the complete Hessian is recomputed after each ireg
integration step. This strategy is especially well-suited for ``inter-
polated VTST'' methods [58] that use a reduced number of Hessian
calculations along the MEP (e.g. an exact Hessian on each second
or third point on the MEP) and interpolate the projected fre-
quencies at the intermediate points. However, this ``static'' regen-
eration scheme does not take into account that the Hessian changes
much more rapidly in some regions of the MEP than in other parts.
The e�ciency and accuracy of the QSD step can be increased sig-
ni®cantly if the frequency of the regeneration is adjusted to the
actual changes of the Hessian matrix along the reaction path. Such
``dynamic'' regeneration can be achieved by checking the root mean
square (RMS) of the changes imposed by the update procedures on
all matrix elements of the exact Hessian. Another criterion for
dynamic regeneration is the overall relative change of the Hessian
elements. In practice the two regeneration criteria behaved very
similarly. The main problem of a criterion based upon the di�er-
ence of an updated Hessian element and an exact one is the quality
of the update procedure. If the modi®cation of the Hessian ele-
ments imposed by the update is too weak, the dynamic regeneration
will be triggered too late or never. This would lead to errors in the
QSD step. However, a careful check of all the systems tested in this
work showed that the change of the Hessian elements imposed by
the update procedures was always too large in comparison to the
exactly recalculated values. This was especially true for the Powell
update, which often greatly overshoots the exact change. The cri-
teria for the dynamic regeneration remain valid in this case, since
the procedure can easily be prevented from regenerating the Hes-
sian too often by adjusting the corresponding threshold value for
the RMS or percental change.

If the Hessian is calculated numerically, it is reasonable to re-
generate only the elements of the Hessian matrix that actually
change signi®cantly along the MEP. The criterion for this ``partial''
regeneration scheme can be chosen analogously to the dynamic
criteria. Regarding e�ciency and accuracy, the best performance
was achieved by checking the relative change of each individual
Hessian element after the update. A combination of the dynamic
and the partial criteria (i.e. recalculate only selected elements at
dynamically chosen intervals) did not lead to an improvement in
the overall e�ciency since it was necessary to choose a very tight
criterion either for the partial or for the dynamic regeneration to
achieve the necessary accuracy. A di�erent partial regeneration
scheme was proposed in Ref. [40]: in each integration step one
coordinate is distorted by a small amount. The gradient of the
resulting geometry is then used in Powell's update formula to
correct the Hessian matrix. If all coordinates are distorted succes-
sively during the course of the integration, the Hessian will be re-
generated gradually. In practice, we found that this regeneration
scheme was very ine�cient. In comparison with the update using
previous MEP geometries only, the additional gradient calculations
did not improve the overall accuracy of the QSD step. We believe
that this is mainly due to the fact that systematic distortion of all
coordinates does not take into account the situation on the reaction
path. Accuracy and e�ciency will be much higher if only those
parts of the Hessian matrix which actually undergo strong changes
during integration are regenerated. This presumption was con-
®rmed by the test calculations presented below.

3 Results and discussion

The algorithm outlined in Sect.2 has been implemented
in the MOLPRO program package [59]. To illustrate the
performance of the method, the reaction paths of four
di�erent chemical reactions were calculated at the HF/3-
21G level of theory. This method and basis set, which
has also been used in previous studies, will clearly not
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lead to quantitatively correct results, but is su�cient for
the present testing purpose. All pathways were comput-
ed in nonredundant internal coordinates, taken from
Ref. [60]. The accuracy of the reaction path was
regarded as su�cient if deviations from the exact path
were below 10ÿ5 a0 or rad for all internal coordinates.
The path integrations were initiated at the transition
states of the reactions, which were optimized tightly,
using a threshold of 10ÿ6 a.u. for the RMS of the
gradient components. The integration was terminated at
the product and reactant minima structures if the
standard thresholds of the geometry optimization pro-
gram of MOLPRO [61] were met. All test calculations were
performed with maximum step sizes of 0:15, 0:3, 0:5 and
0:7 a0 or rad. The Hessian matrices at the transition state
and the regeneration points were calculated numerically,
using forward di�erences of analytical gradients. The
dynamic regeneration was performed if the RMS
deviation of the Hessian elements before and after
update was larger than 0:5 a.u. In numerous test
calculations this value was found to be the best
compromise between accuracy and e�ciency. Partial
regeneration was performed if the relative deviation of
an individual element of the Hessian matrix before and
after update j�Hupdated

ij ÿ Hij�=Hijj was larger than 0.1.
This threshold has been chosen to be somewhat stricter
than the dynamic one since increasing this value leads to
rapidly decreasing accuracy of the QSD step. However,
when the threshold was even stricter (i.e. 0.05 or below)
the accuracy did not increase substantially. This implies
the existence of some ``critical'' threshold for the partial
update. To ensure that all important elements of the
Hessian are recalculated it is necessary to stay below this
threshold.

The ``exact'' reaction pathways were computed using
the QSD method with a step size of h � 0:05 a0 or rad
using a completely regenerated Hessian matrix in each
integration step. To verify these paths, the GS algorithm
[23, 24] as implemented in Gaussian94 [62] was used
with the same step size and a convergence threshold of
10ÿ6 a.u. for the RMS gradient. The RMS deviations
between the exact paths of the two methods were below

10ÿ6 a0. Thus, the QSD path can be regarded as exact in
the limit of small step sizes. Note that the following re-
sults show the deviations of the x�k� points from the the
exact path. The somewhat less accurate x�k� points were
used in order to achieve an unbiased comparison with
other integration algorithms used for VTST computa-
tions, since the x�k� points are also the geometries where
the projected frequencies are calculated. When the r�k�
points were used, the deviations from the exact path
were typically 1±2 orders of magnitude lower than the
values obtained using the x�k� points.

3.1 HCN ! HNC isomerization

Due to its well-known features [63, 64], the isomerization
of hydrogen cyanide has frequently been used to test
MEP integration algorithms [14, 20, 21, 23, 27]. The
results of the QSD reaction path algorithm in terms of
the number of points on the MEP, the number of
necessary gradient calculations (including numerical
Hessian computations) and the resulting accuracies for
a variety of step sizes are presented in Table 1. The
results of the QSD method for step sizes of
hmax � 0:3�4�, 0:5�5� and 0:7��� a0 or rad for the case
of a partially regenerated Hessian matrix are depicted in
Fig. 1.

As can be expected, using a small step size of 0:15 a0

and/or frequent regeneration of the Hessian matrix the
QSD method yields excellent accuracy. For more typical
step sizes of 0:3 a0 or larger, the errors increase rapidly
when increasing ireg in the static regeneration scheme
(see Table 1). The largest error always occurs at a H-C
distance of around 1:2 AÊ (cf. Fig. 1), a region where the
Hessian changes rapidly along the MEP. Obviously, the
MSP update cannot modify the Hessian properly in that
region. If the Hessian is regenerated exactly in this re-
gion, as is achieved by the dynamic procedure, the error
is much lower. This explains why dynamic regeneration,
while needing exactly the same number of gradient cal-
culations (for example four Hessian regenerations in the
case of hmax � 0:3 a0 and ireg=7), yields higher accuracy

Table 1. Integration steps, gradient calculations and largest errors of quadratic steepest descent (QSD) reaction path calculations for the
HCN $ HNC isomerizationa

Hessian regeneration hmax = 0.15 hmax = 0.3 hmax = 0.5 hmax = 0.7

ns ng D ns ng D ns ng D ns ng D

Static: ireg = 1b 56 218 0.1 34 130 0.7 24 90 2.9 18 66 59.0
Static: ireg = 3b 56 110 0.1 34 64 1.4 24 45 11.7 18 33 189.0
Static: ireg = 7b 56 77 0.1 34 46 51.1 24 33 280.6 18 24 312.4
Static: ireg = 1b 56 56 0.5 34 34 654.6 24 24 690.1 18 18 715.3
Dynamicc 56 71 0.1 34 46 2.5 24 39 76.9 18 33 336.5
Partiald 56 97 0.1 32 68 1.5 24 61 7.5 18 53 526.3

a Coordinate de®nitions were taken from Ref. [60]. hmax: maximum step size in a0 or rad. ns: number of integration steps. ng: number
of gradient calculations. D: largest deviation of the QSD points from the exact path, in 10)6 a0 or rad
b Static regeneration of the complete Hessian matrix after ireg integration steps
cDynamic regeneration of the complete Hessian matrix if the RMS deviation of the updated Hessian matrix from the original one was larger
than 0.5 a.u.
dRegeneration of selected Hessian matrix elements if the relative deviation of the updated Hessian matrix elements from the original ones
was larger than 0.1
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than the static procedure (cf. Table 1). The partial re-
generation scheme yields even better accuracy, in par-
ticular for larger step sizes; however, the total number of
gradient calculations is larger in this case. It should be
noted that for the smallest step size the accuracy is
maintained even without any Hessian regeneration. In
any case the minima were always reached safely with all
the step sizes tested.

3.2 CH3O! CH2OH rearrangement

The rearrangement of the methoxy radical to hydroxy-
methylene provides a test case of higher complexity,
since the curvature of the MEP changes strongly from
the transition state to the CH2OH minimum, eventually
going through zero at an intermediate bifurcation point
of the PES [65, 66]. Moreover, it is di�cult to represent
the geometry of the system in nonredundant internal
coordinates without imposing strong couplings [19].
Using the Z-matrix coordinates from Ref. [60], the
system of di�erential equations de®ning the MEP
becomes very sti� in the direction of the CH2OH
minimum. This is mainly due to couplings in the
coordinates. Nevertheless, this Z-matrix was used in
order to obtain a test case with a very sti� MEP.

The performance of the QSD algorithm is presented
in Table 2, and the MEP is depicted in Fig. 2 for the
partial Hessian regeneration scheme. As can be seen
from Table 2, the static regeneration scheme leads to
substantial deviations from the exact path if the regen-
eration frequency is low. The errors are a consequence of
strong couplings in the coordinates. It is also clear that
the QSD algorithm can deal with the sti�ness caused by
these couplings if the quality of the Hessian matrix is
high, as is the case for frequent regeneration. As in the
case of HCN, the problems are caused mainly by the
updating procedure. The quality of the Hessian updated
by the MSP or Powell scheme is very poor in the di-
rection of the CH2OH minimum. Moreover, these up-
dating schemes retain the negative eigenvalue of the
Hessian matrix far too long. One way to overcome this
problem is to modify the threshold for switching be-
tween updates in order to obtain an ``earlier'' BFGS
update. However, this seems quite arbitrary and pre-
sumes some prior knowledge about the MEP and the
projected frequencies. The dynamic regeneration proce-
dure achieves this automatically, since the Hessian is
recalculated just at the critical geometries, which leads to
much better results with fewer gradient computations.
The same is also true for the partial regeneration
scheme. At the self-consistent ®eld level, the changes in

Fig. 1. Quadratic steepest descent (QSD) reaction path of the
HCN$HNC isomerization for step sizes of hmax � 0:3�4�, 0:5�5�
and 0.7(+) a0 or rad. Selected Hessian elements were recalculated
during the integration

Table 2. Integration steps, gradient calculations and largest errors of QSD reaction path calculations for the CH3O ! CH2OH
rearrangementa

Hessian regeneration hmax = 0.15 hmax = 0.3 hmax = 0.5 hmax = 0.7

ns ng D ns ng D ns ng D ns ng D

Static: ireg = 1 38 254 0.1 23 149 3.6 15 93 7.5 14 86 256.3
Static: ireg = 3 38 110 0.3 23 65 63.1 15 39 308.4 16 40 743.6
Static: ireg = 7 38 68 2.4 23 41 81.1 15 27 861.2 19 37 1792.5
Static: ireg = 1 38 38 2.4 23 23 135.5 15 15 1574.8 19 19 3699.2
Dynamic 38 50 2.4 23 35 8.7 15 33 481.0 16 34 784.8
Partial 38 141 0.3 23 90 4.5 15 56 18.0 16 60 379.8

aNotation and parameters as in Table 1

Fig. 2. QSD reaction path of the CH3O! CH2OH rearrange-
ment for step sizes of hmax � 0:3�4�, 0:5�5� and 0.7(+) a0 or
rad. Selected Hessian elements were recalculated during the
integration
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the Hessian along the MEP are dominated by three co-
ordinates [65]. This is re¯ected in the partial regeneration
of the Hessian, showing an average of about three ad-
ditional gradient calculations (cf. Table 2). Under simi-
lar conditions (i.e. integration in nonredundant internal
coordinates using a step size of 0:3 a0) the GS algorithm
provided 15 points on the reaction path, while needing
57 gradient calculations [19], while the present calcula-
tion neeeded 35 gradient calculations with the dynamic
update and provided 23 points.

3.3 CH3CH2F! CH2CH2 �HF reaction

The elimination of hydrogen ¯uoride from ethyl ¯uoride
is a bimolecular reaction with a four-centred ring
transition structure. The PES of this reaction has been
studied by Kato and Morokuma [67] at the SCF/4-31G
level of theory. The reaction path was found to be
dominated by the change of ®ve internal coordinates
(the intermolecular distance, the angle describing the
relative orientation of the H-F fragment, the H-F
distance, the C-C distance and the C-C-H angles; see
Fig. 3). In the region around the MEP has a large
curvature the transition state which decreases rapidly as
the reaction proceeds towards the reactant or the

product minima of the PES. In addition, the crucial ®ve
coordinates are strongly coupled in the Z-matrix used to
represent the geometry of the system, which was taken
from Ref. [60]. These factors make this reaction a tough
test case. If a coordinate set with lower couplings were
used, the performance of the algorithm could be
improved substantially.

As can be seen from Table 3, the static regeneration
scheme shows quite substantial errors even for small step
sizes. If the regeneration interval for the Hessian is larger
than two, the QSD path shows oscillations near the
transition state in the direction of the fragmentation.
The relatively small step the QSD method takes in this
region (see Fig. 3) is due to the strong curvature. Since
the Hessian still has one negative eigenvalue near the
transition state, the BFGS update cannot be used in the
critical region of the MEP. The MSP update obviously
introduces large errors into the Hessian. This clearly
con®rms the need for a better ``transition state update''
procedure, allowing a free development of the Hessian
eigenvalue structure, as has been pointed out recently by
Bo®ll et al. [54, 56, 57]. However, the dynamic and
partial regeneration schemes are able to cope with those
problems. Especially, the dynamic procedure was very
e�cient in this reaction (cf. Table 3). On average, the
partial regeneration recomputed around ®ve gradients in
each integration step, corresponding to the ®ve leading
coordinates reported in Ref. [67].

3.4 Diels-Alder reaction

The parent Diels-Alder reaction of butadiene with
ethylene has been the subject of many theoretical studies
[68]. The curvature of its MEP is very strong in the
product region and around the transition state. This is
visible from the reduced e�ective step size of the QSD
method in those regions of the MEP (cf. Fig. 4). Having
21 e�ective degrees of freedom it is also the largest test
system considered here. Regarding the size and com-
plexity of this system it seems slightly surprising that the
QSD method achieved the best performance in terms of
accuracy and e�ciency of all four reactions (see Table 4).
For a step size of 0:3 a0 all regeneration schemes yielded
accuracies of the MEP better than 10ÿ5 a0. This was
true even if the Hessian was not recalculated at all
(i.e. ireg � 1), which indicates that the update of
the Hessian matrix works quite well for this system.

Fig. 3. QSD reaction path of the four-centred elimination reaction
CH3CH2F ! CH2CH2 � HF for step sizes of hmax � 0:3�4�, 0:5�5�
and 0:7��� a0 or rad. Selected Hessian elements were recalculated
during the integration

Table 3. Integration steps, gradient calculations and largest errors of QSD reaction path calculations for the four-centred elimination
reaction CH3CH2F ! CH2CH2 + HF

Hessian regeneration hmax = 0.15 hmax = 0.3 hmax = 0.5 hmax = 0.7

ns ng D ns ng D ns ng D ns ng D

Static: ireg = 1 67 782 0.1 43 494 2.5 28 314 35.9 25 278 85.7
Static: ireg = 3 67 309 0.5 43 197 19.8 28 127 305.5 25 113 869.2
Static: ireg = 7 67 166 10.6 45 111 83.8 31 75 305.5 27 60 869.2
Static: ireg = 1 67 67 43.8 45 45 136.9 35 35 1245.0 27 27 1466.7
Dynamic 67 111 0.5 43 87 8.1 28 72 520.8 25 69 688.9
Partial 67 212 0.3 43 138 5.5 28 128 185.2 25 124 296.2

aNotation and parameters as in Table 1
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When the Hessian was recalculated in each optimization
step, the step size could be increased to 1:2 a0 without
losing the required accuracy, yielding 14 points on the
MEP. The partial Hessian regeneration took around
three additional gradient calculations per integration
step. We found no evidence that the number of relevant
Hessian elements increases with the number of degrees
of freedom. Using a step size of 0:3 a0 and comparable
conditions, the GS algorithm provided 22 points on
the reaction path, while needing 122 gradient calcula-
tions [19] compared with 51 gradient calculations for
30 points in the present calculation using dynamic
regeneration.

4 Conclusions

We have demonstrated that the QSD algorithm of Sun
and Ruedenberg [39] combined with a dynamic or
partial Hessian regeneration scheme provides an e�cient
and reliable way of integrating MEPs on PES of
chemical reactions. If molecular dynamics or VTST
calculations require second derivatives along the MEP,
the QSD algorithm will be more economical than
intrinsic ``stabilized" or ``optimized" Euler schemes,
since it does not require any additional gradient
calculations at displaced geometries o� the MEP for

corrective relaxation steps; yet it provides the resulting
points on the MEP with high accuracy. The introduction
of a dynamic or partial regeneration scheme for the
Hessian matrix has been shown to increase the accuracy
of the resulting MEP, while simultaneously minimizing
the number of necessary Hessian and/or gradient
calculations. Moreover, a reasonable selection of points
on the MEP is provided, on which the second derivative
matrix is computed exactly. For a step size of 0:3 a0, the
dynamic regeneration yielded deviations from the exact
path lower than 10ÿ5 a0 or rad in all test reactions. To
achieve this accuracy, which meets the requirements of
VTST methods, only 1±4 additional Hessian computa-
tions along the whole MEP were necessary. In the test
systems studied, the partial regeneration scheme com-
puted 2±5 gradients per step to accommodate the
Hessian to the actual geometry on the MEP, while the
remaining elements were modi®ed using an update
procedure. For the test suite of reactions considered,
the dynamic regeneration was more e�cient than the
partial scheme. However, if the number of degrees of
freedom of the reaction becomes larger, this ratio is
likely to be reversed. We do not expect the e�ort of the
partial regeneration scheme to increase substantially for
larger molecular systems, since the number of force
constants that change strongly along the path will be
low, while changes in most of the remaining Hessian
elements are negligible or small. This makes the
e�ciency of the QSD method comparable to that of
the GS method, which typically needs 3±5 additional
gradient calculations per integration step for similar
accuracy [23, 38]. In addition, the QSD method yields
more points on the MEP for a given step size while also
providing the projected frequencies at some points of the
MEP, which is not the case for the GS method. Due to
the possibility of using large step sizes of up to 0:7 a0 or
rad while retaining reasonable accuracy, the QSD
algorithm with partial Hessian regeneration is also
applicable for verifying transition states and reaction
mechanisms. If accuracy requirements are low, it is also
possible to use the QSD method without Hessian
regeneration. The reactant and product minima of the
tested PES were always reached safely. In this case
the number of gradient calculations will be exactly the
number of points calculated on the MEP.

Acknowledgements. The authors thank the Fonds der Chemischen
Chemie for generous support.

Fig. 4. QSD reaction path of the Diels-Alder reaction of C4H6 and
C2H4 for step sizes of hmax � 0:3�4�, 0:5�5� and 0:7��� a0 or rad.
Selected Hessian elements were recalculated during the integration

Table 4. Integration steps, gradient calculations and largest errors of QSD reaction path calculations for the Diels-Alder reaction of
butadiene and ethenea

Hessian regeneration hmax = 0.15 hmax = 0.3 hmax = 0.5 hmax = 0.7

ns ng D ns ng D ns ng D ns ng D

Static: ireg = 1 55 1168 0.1 30 618 1.5 22 442 3.0 18 354 4.5
Static: ireg = 3 55 433 0.1 30 219 1.5 22 169 18.2 18 123 42.5
Static: ireg = 7 55 202 0.1 30 114 4.4 22 85 86.4 18 60 154.9
Static: ireg = 1 55 55 0.3 30 30 4.4 22 22 86.4 18 18 154.9
Dynamic 55 55 0.3 30 51 4.4 22 43 27.4 18 39 56.4
Partial 55 210 0.1 30 132 1.5 22 99 3.5 18 92 8.0

aNotation and parameters as in Table 1
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