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Abstract. Wronskian is one of the classical objects in the theory of ordinary differ-
ential equations. For delay differential equations this notion did not exist because of un-
natural traditional definition of homogeneous equations, leading to an infinite-dimensional
fundamental system. Azbelev’s definition of homogeneous equations allowed to obtain a
finite-dimensional space of solutions of delay equations and to construct on this base the
theory of these equations similar to the classical one for ordinary differential equations.
Properties of Wronskian lead to important conclusions on behavior of solutions of delay
equations. For instance, nonvanishing of Wronskian ensures Sturm’s separation theorem
(between two adjoint zeros of a solution there is a zero of each other nontrivial solution)
for delay equations. An important use of Wronskian is the asymptotic behavior of delay
equations. Thus a growth of Wronskian implies existence of unbounded solutions of delay
differential equations. One of the results based on estimates of Wronskian’s growth is the
following: all solutions of the equation

") +pt)z(t — () =0, te€[0,+00),

with positive nondecreasing and bounded on [0, +00) coefficient p(t) are bounded if and
only if f 7(t) dt < oo. If p and 7 are nonzero w—periodic functions the following assertion

based on Sturm’s separation theorem and estimates of Wronskian’s growth, is obtained:
if distance between each two zeros of nontrivial solutions is different from 2w, then all
solutions of this equation are unbounded.
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z(€)=0,2'(§) =0 for £<0,
where
g(t) = f(&)—q)yp(t—0()AC—-06(2) —
(110) = —p(t)p(t — () At = 7(t)).
1, t<0,
At) = {
0, 0Lt

is equivalent to equation (1.4), (1.5). It is clear.now that ”traditional” homo-
geneous equation (1.6), (1.5) is nonhomogeneous with a special right hand
side (see, (1.10) with f = 0) by Azbelev’s definition and properties of homo-
geneous equation (1.6), (1.8) allow to conclude about behavior of solutions

of delayed equation (1.6), (1’.5)'

2. Notes about Wronskian, Nonoscillation and Positivity of
Green Function. Various connections between nonoscillation properties of

- homogeneous equations and sign properties of Green functions for boundary

value problems (BVP) with ordinary differential equations (ODE) are well
known. Let us refer to A.Ju.Levin’s paper [39] which is the classical survey
in this topic. One of the main results was firstly obtained by E.S.Chichkin
[9] and later independently by A.Ju.Levin [39] and by E.F.Beckenbach and

~ R.Bellman [5] and can be formulated as follows.

THEOREM 2.1. [39] If the equation

(2)0) = 290 + 5 a0 =0, te o)

=0

is nonoscillatory on [0,b] (each nontrivial solution has at most n — 1 zeros

with zeros counted the number of times equal to their multiplicity on this
interval), then the Green functions of de La Vallee-Poussin problems

(M2)(®) = £(t), 29(t;) =0, te[0,8],

0=t1<t2<;..<tm=b, i=0,...,kj—1, j=1,..,m, ki + ...+ kp=n,

behave regulafly, i.e.

G(t,s)(t — t)**..(t —tm)*™ >0, t; <t < tju1, t,5€[0,0], j=1,...

,m— 1.
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The approach of the works [5,9,39] is based on a fact that for each fixed
s the function G(., s) is a solution of the homogeneous ODE Mz = 0. That
is not true for delayed equation. It is therefore not possible to develop this
approach and to transfer the results concerning regular behavior of Green
function for ODE, to more general classes of differential equations. An analog
of such the theorem for sufficiently wide class of n—th order FDE Lz = 0
was obtained in [3,4] on quite a different base. A mathematical formulation
of this result for FDE requires many special notations and definitions and
will not be done here. In this paper we focus our attention on properties

of Wronskian of the fundamental system and their influence on oscillation ‘

and asymptotic behavior of second order delay equations. Let us only note
that the main restrictions determining this wide class is nonvanishing of
Wronskian W (¢) of the fundamental system of FDE Lz = 0 on [0, 5]. In this
case there exists a corresponding ODE Mz = 0 with the same fundamental
system. It can be presupposed that nonvanishing of Wronskian is a natural
bound of a ”similar” oscillation behavior of corresponding functional and
ordinary differential equations.
Let us consider the following equation

e) €Dl =0+ a0t -n) = 10,
BO20, teo,+o0)
(2.2) . z(§) =0 for £ <0,

where p; and f are locally summable functions and 7; are nonnegative mea-
surable functions (i = 1, ...,n). The fundamental system of this equation is
shown to be two- dimensional and Wronskian W (t) of a certain fundamental
system can be considered

It is known [1] that a general solution of equation (2. 1), (2 2) has the
following representatlon

(2.3) | z(t) = / C(t,s)f(s)ds+ ;1 (t)z(0) + fIIzG).T’(O),

Here C(t, s) is the Cauchy function of equation (2.1),(2.2). Note that for
every fixed s € [0,400) the function C(-,s) is a solution of “s-truncated”
equation

24)  (Le2)(t) = 2"(2) + Z D; (t)x(t = 7i(t) =0,

=1

t € [s,+00),




v
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25) oz =0forE<s,

and C(s,s) = 0, Ci(s,s) = 1. Functions z; and z, are solutions of homo-
geneous equation Lz = 0 satisfying the conditions z;(0) = 1, zj(0) = 0,
z5(0) =0, z4,(0) = 1. If BVP

(2.6) (L2)(®) = f(2), te[0,8], 2(0) =0, z(b) = 0 |

has a unique solution for each summable f, then this solution has the follow-
ing representation

' b
(2.7) ozl = / G(t,3)f(s)ds,

where G(2, s) is called the Green function of problem (2.6). Let us introduce
the following compact operator K,,:Cy,, + Cpy,,) by the following equality

(2.8) | (; vu-’”) &)=~ / Guu(t, 5) Zpy (s — 74(s)) ds,
where z(§) = 0 for £ < v,

Guu(t,s) is the Green function of boundary value problem

(2.9) (&) = £(2), t€ ul, z(v)=0, z(s)=0.

Denote r,, the spectral radius of K,,.
DEFINITION 2.1. [1] We say that [v, y] is non-oscillation interval of
homogeneous equation o '

(2.10) (Lz)(t) =2"(t) + sz t)z(t — 7i(t)) =

=1

i) 20, t € [0,400), #(£) =0 for £ <0,

if each of its solutions has at most one zero on [v, ).

Denote by Dy the space of functions z : [0,b] — R, with absolutely
continuous derivative z’.

THEOREM 2.2. The following assertions are equivalent:

a) [0, ] is non-oscillation interval of equation (2.10).

b) C(t,s) >0 for0<s<t<hb,
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c) there exists the Green function of BVP (2.6) and G(t 8) < 0 for
t,s € (0,b), , |

d) the spectral radius 7, of the operator Ko, is less than one.

e) there ezists a posztwe function v € Dpy such that (£v)( ) £ 0 for
t €[0,b] and v(0) + v(b) — f2(Lv)(t)dt >0. '

The similar assertion for a first order FDE was obtained in [22], where
related stability properties were also studied.

If we set v(t) = t(b—t) in the assertlon e) the followmg is obtained.

COROLLARY 2.1. [1] If wvrai sup Z p,(t) <= for t € [0,3], then [0, 8]

s€[h(t)it] i=1
is non- oscillation interval of equatzon (2.10).
+ If we use the theorem on integral inequality [1,35] for the operator Ko

the followmg is obtained.

COROLLARY 2. 2. [1 ] If / sz(s) ds < % then [0,b] is non- oscillation
i=1

interval of equation (2. 1 0).

3. Sturm’s Separation Theorem. For ordinary homogeneous differ-
ential equation (1.3) the classical Sturm’s separation theorem is valid. It
can be formulated as follows: between two adjoint zeros of each nontriv-
ial solution there is one and only one zero of linearly independent solution.
Validity of the Sturm’s theorem follows from non-vanishing of Wronskian
W (t) of a fundamental system of ODE (1.3). Really, let us suppose exis-
tence of two zeros #; and ¢, of nontrivial solution z, between adjoint zeros
of z;,. Consider the following function y(t) = g—f—% From the form of y(t)

it follows that y(t;) = y(t2) = 0, but this contradicts to the fact that the.

derivative y/(t) = [—:ﬂ(tf)]% preserves sign for ¢ € [t1,1;]. Generally speaking,
Sturm’s separation theorem is not valid for delayed differential equations. It
is even possible that a second order delay equation has both oscillating and
nonoscillating solutions. Wronskian can vanish and its zeros do not depend
on the chosen fundamental system {1]. The first results about non-vanishing
of Wronskian were obtained by N.V.Azbelev in [1] due to the "smallness”
of delays. Let us denote h;(t) =t — 7;(t) and h(t) = miny<i<n hi(2).
DEFINITION 3.1. [1] We say that for equatzon (2.10) the h-condition is

fulfilled if

- (3.1) Thyt < 1 for almost all ¢ € (0, +00).
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THEOREM 3.1. [1] If for equation (2.10) the h-condition is fulfilled, then
W(t) # 0 and |W (t)| does not decrease for t € [0, +00).

In [1] is demonstrated that h-condition is essential for nonvanishing of
Wronskian in [1]. '

COROLLARY 3.1. [1] If at least one of the conditions
t

0) (¢ k() | S pi(s) ds < 4 for t € (0,+00),

ht) =1
or o
b) (t — h(t))?vraisup 3 pi(s) < 8 for t € (0,+00),
s€lh(t)t] i=1

for equation (2.10) is fulfilled, then W (t) # 0 and [W(t)| does not decrease
for t € [0,+00). . ‘

Note that each of the conditions a) and b) ensures that h-condition is
fulfilled for equation (2.10). S.M.Labovskii [36] proved the following analog
of Sturm’s theorem. '

THEOREM 3.2. [36] If in equation (2.10)n=1andhisa nondecreasing
function, then W (t) # 0 and |W ()| does not decrease fort € [0, +00).

In fact, the conditions of this theorem ensure that the h-condition for

| equation (2.10) is fulfilled. In the paper [15] of 1993 nonvanishing of Wron-

skian was obtained through several other conditions, basic of them being
the "smallness” of difference of delays 7; — 7;, where 4,7 = 1,...,n.
THEOREM 3.3. [15] Let | |
1) the functions h;(t) = t — 7i(t) be nondecreasing and the inequalities
Ti+1(t) < Ti(t) hold for almost all t € [0, +00),
2) the functions piy1 [ pi be nondecreasing fori=1,..,n—1,
8) at least one of the following inequalities a) or b) be fulfilled:
ha(t)
/ > pi(s)ds <1 for almost all t € (0,+00),
ha(t). =L

o) [11(t) — (D))

b) [ 71(t) = Tn(t)]? vraisup,epen g O pi(s) < 2 for almost allt € (0, +00).
i=1

Then W (t) # 0 for t € [0,+00).

Note that in this assertion h-condition is not generally speaking fulfilled
[15]. In the paper [15] it is demonstrated that each of the conditions 1), 2) and
3) is essential. An analog of Sturm’s separation theorem for neutral equation
was obtained in [12]. Note that another formulation of Sturm’s separation
theorem was proposed by Yu.I. Domshlak [17] in terms of big semi-cycles
introduced in the Myshkis’s monograph [41]. Analogs of Sturm’s theorem for
solutions of Dirichlet and Neumann problems for partial differential equations

f | S
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- 2
were obtained in [16].

4. Distance between Zeros of Solutions. For ordinary second or-
der differential equations distance between zeros is one of the classical top-
ics. This distance for solutions of delay equations was estimated in works
by N.V.Azbelev [1] and his group [12,15, 36 ], by-Yu.I. Domshlak [17],
S.V.Eliason [20], A.D.Myshkis [41] and S.B.Norkin [42]. -

A basic assertion estimating nonoscillation interval from below was pro-
posed by N.V.Azbelev in [1].

THEOREM 4.1. [1] Let h—condition be fulfilled for equation (2.10).

Ifr,, <1 then each nontrivial solution has at most one zero on [v, .

Other lower estimates of nonoscillation interval one can find in [15],
where instead of h—condition the smallness of the difference of delays 7; —7;
is required. - -

Remark 4.1. Now it is clear that h-condition means that each non-
trivial solution has at most one zero of nontrivial solution z of homogeneous

equation (2.10) on [h(t),] for every ¢ € (0,+00). Note that the condition

3) in Theorem 3.3 ensures that there is no zero of derivative ' of each non-
trivial solution having zero on [k (t), hn(t)]. Lower estimates of the distance
between adjoint zeros for neutral second order equations were obtained in
[12]. Conditions of Corollaries 2.1 and 2.2 ensure the inequality r,, < 1.

Let us denote v* = vraiinfiep,,) h(t) and formulate an assertion about

upper estimate of nonoscillation interval. e ‘
THEOREM 4.2. [16] Ifr,, > 1, then each solution of equation (2.1) has

~ zero on the interval [V*, p. :

~ The following assertion about differential inequality ensures a lower es-
timate of the spectral radius 7y,,. :
THEOREM 4.3. [1] If there egists a positive on (v,p) function v € Dy,
and such that v(v) = v(p) = 0 and v"(t) + Loy pi(t)v(t — 7:(t)) 2 0, where
v(s) =0 for s < v, thenr,, > 1. : '

Many questions of the qualitative theory of functional- differential equa-:

tions are reduced to estimates of nonoscillation intervals. Consider one of
the classical problems about existence of periodic solution of the equation

(0 + 3 pt)s(t () = £, ¢ € (~00,+00),

=1

(4.1)

where p;, 7; and f are w—periodic functions, such that '
pi 2 0,ess Supte[(’,w.] Z?:l p'l.(t) >0, 72 0fori=1,..,n.
It is known that there exists a unique w—periodic solution of equation
(4.1)-for each summable f if and only if the corresponding homogeneous '
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equation

)+ Yo (Bt~ () =0, L€ (oo, +oo),

=1

(4.2)

has only the trivial periodic solution (see, the paper by Yu.V.Komlenko [33]). -

Note the following result based on a lower estimate of nonoscillation interval.
THEOREM 4.4. [33] If :

w

/'ipe(S) ds < %}9,

0 =1
then equation (4.2) has only the trivial periodic solution. N .
Inequality (4.3) ensures that there are no 3 zeros of nont‘rmal‘solutlon.
of (4.2) on each interval of path w. Without loss of generahty we. assume
that ; > 1, fori=1,2,...,n—1. o
Let us introduce the following notations:

(4.3)

n
I igg;pi(t)a P = essinfpn(t), |
(4.4) T = ess st1>1£)(t — h(t)),7— =ess sttzlg Tn,(f), _
g = Oforr_=0andg=afor7_ >0,

where a satisfies the inequalities a,/p > l,a>7_. N » ;
The following assertion was obtained through combining of lower -an

upper estimates of nonoscillation interval. '
’ THEOREM 4.5. [13] Let h—condition be fulfilled for equation (2.10). If

for a natural k the following inequality is fulfilled:

T ' 2/2
and o
' T 82
(4.6) we (0, f}/_g] UR(J+7+20), =

LUk - 1)(% +7 +29), %/:Zk].

then equation (4.2) has only the trivial periodic solution.
Example 4.1 [13]. Consider the equation
4.7) 2" (t) + 100z(t) + z(t — 1(t)) = 0,

If 7, < 0.24 there are 2 intervals of type (4.6), if m < 0.1 then k =3, if
71 < 0.05, then k = 4, if 7 < 0.002 then k = 9.

5
~
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5. Growth of Wronskian and Existence of Unbounded Solu-
tions. For ordinary differential equation (1.3) relations between growth of
Wronskian and existence of unbounded solutions were obtained by P.Hartman
in the classical monograph [25] and in the paper by P.Hartman and A.Winter
[26]. In this part we consider this problem for delay equation (2.10). In the
paper [14] it was demonstrated that the existence of unbounded solutions of
delay equation (2.10) implies its Lyapunov’s instability. Consider the Wron-
skian of the fundamental system of equation (2.10)

z1(t) 22(?)
71(8) z3(t) |

For simplicity let us assume that W (0) > 0.

Wi(t) =

THEOREM 5.1. [14] If h-condition be fulfilled,

(5.1) tl}_r'_noo W(t) = +o0
and there ezists positive € so that 7;(t) > € fori=1,... ,n and almost all

t > v, then there exist unbounded solutions of equation (2.10).
Denote -

R{) = 3 mi(t).

7=1
THEOREM 5.2. [14] Let h-condition be fulfilled and

W) _

(5:2) Ol 00.

vrailim
t—-+oo

Then there ezists unbounded solution of equation (2.10).

COROLLARY 5.1. [14] If h-condition be fulfilled and

n

vraisu () < oo, lim W(t) = o0,
vraisup z;pz() , Jim W (#) = oo,

then there exist unbounded solutions. of equation (2.10).
A growth of Wronskian implies the following assertion.
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COROLLARY 5.2. If the delays 3,1 =1, ...,n) are bounded and

n
vrailim > _ p;(t) = 0,
=1 .

t—++00 =

then there exist unbounded solutions of equation (2.10).
For equation

(5.3) @) +p)zt— () =0, te[0,+00),

z(§) =0for £ <0,

~ the following assertion was obtained.

THEOREM 5.3. [43] Let the function t— 7(t) do not decrease and

59 st/ ([ W(e)ds)?] [ p(s)ds =0,

then there exists unbounded solutions of equation (5.3).

6. Estimates of Wronskian. In order to use the results of Part 5 we

have to obtain estimates of Wronskian. :
THEOREM 6.1. [14] Let h-condition be fulfilled for equation (2.10).
Then Wronskian W (t) of the fundamental system satisfies the following dif-

ferential inequality

W) > SO0 @)W (@), te0,+00),

i=1

(6.1)
where W(s) =0 for s <0, C(-,s) =0 fbré <0.

;From Theorem 6.1 the estimate of Wronskian

(62 W) 2 WO)(1+ [ 3 ()0 hls)) ds),

i=1

where C(t, h;(t)) = 0 if h;(t) < 0, follows.
THEOREM 6.2. [14] Let h-condition be fulfilled for equation (2.10). If
there exists function v(-, hi(-)): [¥, +00) = [0, +00) so that
1) v(-,8) for each fized s has an absolutely continuous derivative on
each segment [s,b]; ' '
2) v(-, hi(-)): [v + 00) = [0, +00) is measurable fori=1,...,n;

'
&

-
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3)

' >0 te(hi( ), 8],  hi(s) € [v,s),
v(t, hi(s)){ =0 t=hi(53: | | ( )G‘[ )
=0 t€[y,+o0), hi(s)¢ [V,s),

(COTIOES Bk oy

and

Jj=1 ~ :

W(t) = 0"(6 b)) + 3o ps (i (0), (s) <O

| fori=1,...,n and almost all t € [hi(s), s].
Then '

WO 2 WE)L+ [ Sn(s)ole, b)) ds), 1€ [y, hoo).

y =1 ‘

Choosing the function v we obtain in Part 7 assertions about unboundedness

of solutions (see, the recent paper [14] ).

7. Asymptotic Behavior of Delay Equations. Delay 'eqﬁation is
generally known to inherit oscillation properties of a corresponding ordinary
equation ‘ ' :

7y () + p()a(t) = 0.

For example, it was proved by J. J. A. M. Brands [7] that for each bounded
delay 7(¢) equation

) H+est-r@) =0,

1

%s osc?llatory if and only if corresponding ordinary differential equation (7.1)
is o.sc1llatory. The asymptotic behavior of ordinary equation (7.1) is not in-
herited by (7.2). Thus, A.D.Myshkis [41] proved that there exists unbounded
solution of equation

z"(t) +pz(t —€) =0, te€[0,+00),

for each couple of positive constants p and €. The problem of solutions
unboundedness in case of nonconstant coefficients was formulated in [41] as
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one to be solved. The first results in this subject were obtained in [13]:
if there exists a positive constant & such that 7;(f) > €, then there exist
unbounded solution to equation

(1.3) (La)(t) = 2" (¢) + Sopi(B)a(t — 7)) = O,

o=l

) >0, tef0,+o0), (€)=0for £ <0,

The approach of the work [13] was based on estimates of Wronskian.

" Then this approach was developed by D.V.Paatashvili [43] for one- term

equation (7.2). In the recent paper by Yu.Dolgii and S.G.Nikolaev [11] the
following system of delay equations on the whole axis t was considered:

y"(t) + P()y(t —w) = 0, t € (—o0, +00), wherey: R — R", w >0 and
P(t) is an w—periodic symmetric matrix function.Using the monodromy op-
erator (see monograph by J.Hale and S.Lunel [24] ), to be a fundamental
in the theory of periodic systems, the authors obtained instability of this

0
system in case: det P, # 0, where F, = 1 [ P(t)dt. In the monograph by

S.B.Norkin [42] the following boundary value problem on semiaxis is consid-
ered: =" (£)+Az(t)+p(t)z(t—7(t)) =0, t € [0, +00), £(0) cos a+z'(0) sina =
0, z(t—7(t) = z(0)p(t—7(t)) for t—7(t) <0,t € [0, +o0), sup |z(t)| < oo,
where (t) is continuous bounded function on the initial set (—o0,0) such
that ¢(0) =1, A and o are real numbers. If Ip(t)| is a summable function on
semiaxis, then every positive parameter A is eigenvalue of this problem [42].

* We can interpret this result as the one concerning solutions boundedness of
- delay equations. Results on boundedness of delay equations solution in which

' the "smallness” of coefficient p(t) is combined with the "smallness” of delay
7(t) were obtained by D.V. Izjumova [29]. The asymptotic formula of solu-
tions of second order equation with a summable delay 7(t) was obtained by
M.Pinto [44]. Note also that investigation of equation 2" () +p(t)z(t—T(t) =
0, with nonpositive coefficient p(t), was started by G.A.Kamenskii [30,31].
Assertions on existence of bounded solutions, their uniqueness and oscilla-
tion were obtained in the monograph by G.S.Ladde, V.Lakshmikantham and
B.Zhang [38, pp. 130-139]. Several possible types of solutions’ behavior of
this equation in case p(t) and 7(t) are bounded functions on semiaxis and

}Olp(t)ldt — 00, can be only as following : a) |z(t)| — oo for # — oo; b)
0 . ,

z(t) oscillates; c) z(t) =0, =’ (t) 3 0 for t — oo. Existence and uniqueness
of solutions of each of these types were obtained by R.G.Koplatadze [34],

—
-

-
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A L.Skubachevskii {50] and M.G.Shmul’yan [49] . S.M.Labovskii [37] proved
that nonvanishing of Wronskian W (t) on semiaxis was necessary and suf-
ficient for existence of positive decreasing solution to equation (7.3) with
nonpositive coefficients p; (i = 1, ..., m) and obtained several coefficient tests
of W(t) #£0 for t € [0,400). Solutions tending to zero were considered in
the paper by T.A.Burton and J.R.Haddock [8]. Note that an approach for
studying of asymptotic properties of equations with linear transformations of

l -
arguments ?Cn(t) = X . a;z(¢’t) + Az(t), t € (—o0,+00), where a;,q and

j==bj :
A are constants, was proposed by E.Yu.Romanenko and A.N.Sharkovskii [46]

and developed by G.A.Derfel and S.A.Molchanov [10]. In [10] equations with
combination of delayed and advanced arguments are considered. Systematic
study of advanced equations (7(t) < 0) can be found in the recent paper
by Z.Dosla and 1.Kiguradze [18] in which results on boundedness, stability
and asymptotic representations of solutions are obtained. The criteria of
boundedness of all solutions of the equation (7.2) were obtained in the recent
paper [14] on base of Wronskian’s estimates.

THEOREM 7.1. [14] All solutions of equation (7.2) with positive nonde-
creasing and bounded coefficient p(t) and nondecreasing h(t) =t — 7(t) are
bounded if and only if ‘

(7.4) | 7T(t) dt < co.

Note that sufficiency was proved by D.V.Izjumova [29]. The following
result shows that solutions of delay equation (7.2) only in case of summable
delay T are getting closer and closer to solutions of corresponding ordinary
equation (7.1). .

THEOREM 7.2. [14] Assume that p(t) = ¢® > 0 and h(t) =t —7(t) does
not decrease. Then any solution z(t) of equation(7.2) satisfies the formulas

z(t) = (e +o(1))sinct + (6 + o(1)) cosct,

' (t) = c(a+ o(1)) cosct — (B + o(1)) sin ct,

for t — oo, where o and B are constants, if and only if the condition (7.4)
is fulfilled.

Note .that sufficiency was proved by M.Pinto [44]. In the paper [14]
several criteria of existence of unbounded solutions to equation (7.3) are
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~ obtained. The following examples demonstrate some of them. If ¢ = 0, then

all solutions of the equations

(7.5) z"(t) + efz(t — ) =0,

(7.6) 2"(t) + 2x(t) + 3% ( - -j:;-) =0,
(7.7) () + %0 (—g)—m at2> 26
(78) () + () + %x ( - %) =0,

() = 0 for £ < 0,

are bounded on (1,+0c), and for equations (7.5)- (7.7) they even tend to

zero when ¢ — +o0 (See the monograph by V.N.Shevelo [48, p. 24] ). If

£ > 0, then there exist unbounded solutions to equations (7.5) and (7.7).

~ If in addition € is small enough, then there exist unbounded solution to

equations (7.6) and (7.8). Note that the delays in equations (7.6)-(7.8) tend
to zero when ¢ — +00, but even these ”very small” delays totally change the
asymptotic behavior of solutions.

Let us formulate results on unboundedness of solutions of equation (7.3).
All of them are based on estimates of Wronskian.

- THEOREM 7.3. [14] Let h-condition be fulfilled for equation (7.3),

M= vrazsupz pi(t)< +o0
te[ ,+00) J .

and there exist 1 € {1,...,n} so that

| fpz-(t)n-(t) (2v2/VM - 7i(1)) dt = +oo.

then there ezist unbounded solutions of equation (7.3).
For equation

2/(8) + ;B (E) + pa(E)a(t = alt)) =
z(§) =0for £ <0,

(7.9) t € [0,+00),

h
l
|
|
l
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the following result is obtained. : _
- THEOREM 7 4. [14] Let p, and py be bounded on [0, +00), Tz(t)t_.-)-zo 0
and :

(7.10) [ maleymalt)dt = +oo.

Then there exist unbounded solutions of equation (7.8).
Example 7.1. Equation

N2

(711 2"(8) +p(H)a(t) + tla (t - t—ﬂ-) =0, te1,+o0),

has unbounded solution if o + 8 < 1, a > 0, § > 0. Unboundedness of
solution of equation (7.8) follows from the above assertion in case a = 1,

B=3andp=1.

Denote

T(t) = min 'r,(t)

THEOREM 7.5. [14] Let h-condition be fulﬁlled for equatzon (7.8) and

there be indez i i so0 that
/ pi(O)r(t) dt =
0

Assume that at least one of the following two conditions a) or b) are fulfilled:
a) there evists € > 0 so that T(t) > ¢ fort >v>0;
b) wvrai sup Z p;i(t) < oo.
tefy,+o0) =1
Then there exist unbounded solutions of equation (7.3).
Existence of unbounded solutions of equation (7.5) results from Theorem -
7.5 (condition a).

(7.12)

THEOREM 7.6. [18] Let h-condition be fulfilled. If there ezists indez i
such that at least one of the following conditions

(7.13) Jim (%) / pi(t)7(t) dt = +oo.
(7.14) Jim f pi(s)7(s)ds)/ Zp](t +00,
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satisfies, then there ezist unbounded solutions of equation (7.3).

Existence of unbounded solutions of equation (7.7) follows from Theorem
7.6. The following assertion was proved in [43] on the base of estimate of
Wronskian (6.2) firstly obtained in [13] and Theorem 5.3.

THEOREM 7.7. [43] Let the function t— 7(t) do not decrease and at
least one of the following conditions be fulfilled _

@) (G- o) [ ple)ds =0,
or : ' " '
) Jm{ee/a+ [ e} =0,

then there ezist unbounded solutions of one-term equation (7.2).

8. Unboundedness of all the Solutions. Asymptotic properties of
solutions of the delay equation (7.3) can be very distinct. The problem
of similar asymptotic behavior of all solutions to the same equation has
not been solved yet even with ordinary second order equation For example,
H.Milloux [40] discovered that if p(t) — oo for ¢ = 00, then there exists
solution of ODE (7.1) tending to zero when t — co. There are also several
examples of other solutions without tending to zero. The problem to find
conditions under which all solutions tend to zero remains one of highlighted
in the qualitative theory of differential equations (see, the recent papers by
A.Elbert [19], L.Hatvani and L.Stacho [27,28] ). If coefficient p(t) — 0 for
¢+ — 400, then there exist unbounded solutions of ordinary equation (7.1)
(see monograph by I.T.Kiguradze and T.A.Chanturia [32] ). The equation
z"(t) + tTé":T)x(t) =0, t € [2,+00), is an example, when the second solution
z(t) = Hlis bounded. In almost all statements of Part 7 it is said about
existence of certain unbounded solution of equation

81 - 2" () + p(t)z(t — 7(t)) = 0,p(t) > 0, € [0,+00).

It is not true to conclude about unboundedness of all solutions according

-to the following example. ‘

Example 8.1. A function z =sin ¢ is one of solutions of the equation
2"(t) + 2(t — 7(8)) =0, t € [0,+00),
where
T
<t< —
0, 0<t< 1

()=

2t — m, 7—2r-<t<7r,

-
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T(t +m) = 7(t).

Other solutions are unbounded by Theorem 7.1. Note that in this example
the distance between adjoint zeros () is equal to the period of coefficients
(7). It has some logical ground. The idea to connect oscillation and asymp-
totic properties of solutions of a second order ODE (7.1) appeared in
Lyapunov’s investigation on stability. The classical Lyapunov’s results says
that all solutions of second order ordinary differential equation

z"(t) + p(t)m(t) =0, tejo,+o0),

p(t) =p(t+w) > ¢ >0,

W'ith w— periodic coefficient are bounded on semiaxis if - w is less than
distance between two adjoint zeros (see, the book by N.E.Zhukovskii [51] ).
The classical estimate of distance between two adjoint zeros

62  [ewa<?

implies that all the solutions are bounded. It will be obtained that in contrést
with the ordinary differential equation all the solutions of the delay equation
with w—periodic coefficients p(t) and 7(t) are unbounded if distance between
zeros of solutions is different from 2w. Consider the following equation with
periodic coefficients

i=1

(83) () + Enzpi(t)w(t —7(t)) =0, pi(t) 2 0,2 € [0, +<>'0)‘-

Where. pi(t) = pi(t+ w), =(t) = n(t +w), t —7(t) >0, i = 1,...,n. For this
equation there exist solutions satisfying the condition: :

z(t + w) = Az(2).

Using the Floquet theory [47] we can construct the following equation

(8.4) 2 — (z1(w) + Zh(w))A + W(w) =0,

where W(0) = 1, for this A.
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If ) is a real root of equation (8.4), then a correspondmg solution has
the following representation:

lnl/\1|

6 ) =gnen{= 1,

where g is a w—periodic function if A; > 0 and a 2w—periodic function if
A1 <0.

If equation (8.4) has two complex roots A; = |A1| exp(if) and )\2
|\1| exp(—38), then corresponding solutions are of the following form

lnl)\ll }

(3.6) n(®) = [0 cosf’-’f ~ gt sin P exp

IHIA]_‘ }

(8.7)  a(®) =[928 cos@+gl(t) sin —] exp{ LA

where ¢; and g, are w—periodic functions.
Remark 8.1. Theorems 3.1 and 3.2 imply that the Wronskian W ()

does not decrease if the h—condition is fulfilled. Moreover it can be proved
that W (w) > W(0) = 1 if there exists an index ¢ such that

88) / pi(t)m:(t)dt > 0.

Now it is clear that a bounded solution of equation (8.3) can exist only in

the following case: \; and ), are real and one of them is equal or less than

one. In Example 8.1 we have: )y = 1 and \; = W(w) > 1. Note that the
unbounded Floquet solution has representation (8.5). The conditions of the
following assertion exclude existence of real roots of equation (8. 4)

THEOREM 8.1. [18] Let h-condition be fulfilled for equation (8.3) and
Di and 7; satisfy condition (8.8) for at least one index i, then all solutions of
the delay equation (8.8) are unbounded if dzstance between zeros of solutions
1s different from 2w. :

Using the integral estimate of nonoscillation interval from below we ob-
tain the following assertion.

THEOREM 8.2. [13] Let h-condition be fulﬁlled for equation (8.3), pi
and 7; satisfy condition (8.8) for at least one indez i , and

n

7 S pi(t)dt <
0

J=1

Slv-*
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Then all solutions of delay equation (8.3) are unbounded.

On the base of the lower and upper estimates of distance between ze-
ros (see, Theorems 4.1 and 4.2) we obtain the following assertion in which
notations (4.4) are used.

THEOREM 8.3. [15] Let h— condition be fulfilled for equation (8.3), p;
and 7; satisfy condition (8.8) for at least one inder i, and for a natural k the
following inequalities be fulfilled

(8.9) (k—l)(\/_+r+2)<2\>/__
and '
V2. 1. 7 202,
(8.10) w € (0, .-\/—}_%] U [E(ﬁ + 7+ 2g), 7‘15] U...
U [13_27_1(1_\/}_3 + 74 2g), %k].

- Then all solutions of equation (8.8) are unbounded.

COROLLARY 8.1. Let h-condition be fulfilled for equation (8. 3) p1 =
p2 = 1,71 =0 and m, < 0.5. If a period w satisfies the condition w €
(0, 1JU[Z + 1,2, then all the solutions of equation (8.8) are unbounded.

Example 8.2. If a period w of the delay 7 in the following equation

2"(¢) +100z(t) + z(t—7(t)) = 0,7 < 1, 7 < 0.002, t—7(t) > 0, £ € [0, +00),

satisfies the condition 0.15808(i — 1) < w < 0.14064, where i = 1,2,...9, then
all its solutlons are unbounded.
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ON SOLVABILITY OF A MINIMIZATION PROBLEM FOR A
QUADRATIC FUNCTIONAL WITH LINEAR RESTRICTIONS
IN HILBERT SPACE *

S.A.GUSARENKO

Abstract. A method for investigation of solvability of a quadratic functional with
linear restrictions ‘ ‘
1
§ (UZ,Z) - (Z, f) — mina

lz=a,

is developed. The result is obtained with the help of an orthogonal projection on the
kernel of the vector functional £.
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Consider the problem of minimization of a quadratic functional with
linear restrictions in a real Hilbert space H

v 1 |
-z = q, :

where U : H — H is a linear bounded self-adjoint operator, f € H, £ :

H — RX is a linear bounded vector-functional with linearly independent

components, « € R,

* Supported by Grants 01-01-00511 of The Russia Foundation for Basic Research and
the Programm ”Russian Universities” (UR.04.01.001). '
t Perm State Technical University

377




