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The definition and location of an intrinsic reaction coordinate path is of crucial importance in many
areas of theoretical chemistry. Differential equations used to define the path hitherto are
complemented in this study with a variational principle of Fermat type, as FukuifInt. J. Quantum
Chem., Quantum Chem. Symp.15, 633 s1981dg reported in a more general form some time ago.
This definition is more suitable for problems where initial and final points are given. The variational
definition can naturally be recast into a Hamilton–Jacobi equation. The character of the variational
solution is studied via the Weierstrass necessary and sufficient conditions. The characterization of
the local minima character of the intrinsic reaction coordinate is proved. Such result leads to a
numerical algorithm to find intrinsic reaction coordinate paths based on the successive
minimizations of the WeierstrassE-function evaluated on a guess curve connecting the initial and
final points of the desired path. ©2005 American Institute of Physics. fDOI: 10.1063/1.1927521g

I. INTRODUCTION

An interesting problem in theoretical chemistry is to find
the lowest energy path of an adiabatic potential energy sur-
face sPESd associated to a molecular rearrangement from a
stable configuration state to another, normally associated to
reactants and products. This lowest energy path or minimum
energy pathsMEPd is often referred as reaction pathsRPd.
From a mathematical point of view, the RP is defined as a
curved line in the coordinate space, connecting two minima
through a first-order saddle pointsFOSPd, also known as the
transition state of a PES. The RPs are the grounds of many
dynamical theories. The saddle point gives us the energy
barrier, which is the most important quantity to evaluate the
transition rates of the rearrangements within the harmonic
transition state theory.1 The reformulation of the famous re-
action path HamiltoniansRPHd shows the importance to
evaluate first a RP and second to run molecular dynamics
constrained to this path. In this way, the RPH methodology
and in turn the RP offers the possibility to study dynamics.
Using this type of restricted nuclear movement one recovers
many important molecular dynamic effects.2

Different definitions of RP produce different curve lines
in the PES and the parametrization of these lines,s, is called
the reaction coordinate. The reaction coordinate is in fact an
arc-length of the RP. In theoretical chemistry, one of the most
used RP is the corresponding steepest descentsSDd curve
from the FOSP to reactant or product. This SD reaction path
in mass weighted coordinates is normally called intrinsic re-

action coordinatesIRCd.3 However, in some cases the IRC is
not the most appropriated MEP.1 The tangent vector of the
SD lines and specifically the IRC curve line is characterized
by an autonomous system of first-order differential equa-
tions. The tangent vector at each point of the line,tfqssdg, is
equated to the normalized gradient vector,gsqd==qVsqd, of
this point of the PES,Vsqd,

tfqssdg =Udqss8d
ds8

U
s8=s

=
gfqssdg
ugfqssdgu

, s1d

whereqssd represents a point of the curve andugfqssdgu the
norm of the vectorgsqd evaluated at the pointqssd of the
curve. The dimension ofqssd position vector and the gradi-
ent vectorgsqd is N, N being the number of independent
variables. There are a variety of numerical methods to solve
the differential equations1d. We propose an analysis of the
SD curves and specifically of IRC curve through the calculus
of variations and Hamilton–Jacobi theory.4,5 The Hamilton–
Jacobi theory has been used in other fields to deal with the
integration of ordinary differential equations. This theory
formulates the calculus of variations through a nonlinear
first-order partial differential equation, called Hamilton–
Jacobi equation.6

The integration of the partial differential equations is in
general much more difficult than the integration of the ordi-
nary differential equations. The Hamilton–Jacobi theory
achieves, in a beautiful manner, to reverse this relationship in
some situations. Very often, many applied mathematical
problems lead to a system of ordinary differential equations
as in the calculus of variations. These equations may be dif-
ficult to integrate by elementary methods, but the corre-
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sponding partial differential equation can be transformed
easily into a complete integral by the separation of variables.
If the complete integral is obtained, then one solves the cor-
responding system of characteristic differential equations by
a process based on differentiation and elimination.6 Because
the proposed IRC reaction path is described mathematically
by the total differential equations1d, it should be interesting
to investigate the possibility to derive the corresponding
Hamilton–Jacobi equation for this type of RP. In addition the
resulting Hamilton–Jacobi equation may open other ways to
evaluate the IRC curve line. Tachibana and Fukui were the
first authors to investigate the IRC path nature from the cal-
culus of variations.7–11These authors obtained the variational
results by using different ways, namely, the Synge’s geodesic
principle, the Hamilton principle through an extended La-
grangian, and finally geodesic lines in a Riemannian space.11

The results obtained by these authors have been developed to
propose new methods to evaluate the IRC path. The first
attempt to find an IRC based on variational methods, as far
as we know, is due to Stachó and Bán.12 In fact the algorithm
proposed by these authors consists in the variation of a guess
curve and the successive correction of this curve based on
Mezey’s theory of catchment regions of the gradient field of
the PES.13 Other methods to obtain the IRC path based on
variations or shifts of an initial guess curve have been pro-
posed and are now widely used.14–24

The IRC path defined by Eq.s1d is in fact an orthogonal
trajectory to the contour surface,Vsqd=const. In the deter-
mination of this type of paths the relation between the gra-
dient fields and the associated maps of these orthogonal tra-
jectories is relevant.25 Due to this relation, there exists thus
both theoretical and practical reasons for expecting to gain
insight into the structural characteristics of the gradient fields
of potential energy surfaces and the IRC paths. On the other
hand, the basic and complete picture of the problems in the
calculus of variations from the Hamilton–Jacobi theory con-
sists in a relation between contours of a surface and curves.
These curves are never tangent to these contour surfaces. In
addition the difference between two contour lines of these
surfaces is related to a functional depending on some argu-
ments that characterize these curves.26 The parallelism be-
tween the IRC curve model and the Hamilton–Jacobi theory
of the calculus of variations opens the question in both the
reformulation of the IRC path from this point of view and
new possibilities for determining this type of paths. These
two points are the aim of this paper.

The SD curves emerging from a stationary point charac-
ter minimum in the PES can be seen as traveling in an or-
thogonal manner through the contour lines of this PES. In
addition, it should be noted that the construction of contour
potential energy surfaces,Vsqd=const, such that all points
satisfying this equation possess the same equipotential differ-
ence with respect to another contour line and specifically
with the value of the PES in the minimum, is similar to the
construction of the Fermat–Huyghens of propagation of the
cone rays. This similarity gives the possibility to study the
SD curves from Hamilton–Jacobi theory and the calculus of
variations point of view. It is important to remember that the
Hamilton–Jacobi theory was formulated for the first time to

describe, from a rigorous mathematical point of view, the
Fermat–Huyghens construction of propagation of light.27 As
pointed out before, Tachibana and Fukui studied and ana-
lyzed the IRC curve using the calculus of variations and
Synge’s principle,10,11 however, we revisit this study starting
from a functional like the one that appears in the description
of Fermat-type variational principles.

We emphasize that the main aim of this work is to for-
mulate, in a consistent and mathematically precise way, the
variational character of the IRC curves in terms of the
Hamilton–Jacobi theory. Thus we give a sound basis to many
of the ideas proposed and used in previous works,24 as well
as suggest a new algorithm, which we will describe later.

The present work is organized as follows: first, in Sec. II
we present a derivation of the SD curves based on the Fermat
variational principle. The goal of this section is also to pro-
vide the necessary background on the Hamilton–Jacobi
theory for a sufficient understanding of this paper. The for-
mulation is written using the symbolism normally employed
in the Hamilton–Jacobi theory. We derive the corresponding
Hamilton–Jacobi equation, the characteristic equations for
the SD curve lines. The concept of the field of extremals
applied to SD curves is introduced, too. Two different deri-
vations of Hamilton–Jacobi equation are reported. The
second-order necessary and sufficient variational conditions
are also studied to analyze the character of the extremal
curves, the SD curves. This result is done through the so-
called Weierstrass necessary and sufficient conditions and the
Jacobi equation.26 In particular, the solution of the Jacobi
equation for the SD curve situated in a region sufficiently
close to a first-order saddle point is reported and analyzed. In
Sec. III a new method to evaluate the IRC path is formulated.
In order to obtain a variational method, which actually speci-
fies how to correct the set of parameters that characterize a
trial curve, one must expand the corresponding functional
beyond first order in the set of variational parameters. How-
ever, to obtain sufficient conditions one must allow each pa-
rameter to vary in the correct direction. As a consequence,
the proposed method is based on the nature of the second-
order necessary and sufficient variational conditions associ-
ated with the IRC curve line. Finally an example is given and
some conclusions are drawn.

II. THE FERMAT VARIATIONAL PRINCIPLE AS A
THEORETICAL BASIS OF IRC MODEL

A. The first-order necessary condition

We consider the SD as a path that propagates in a media,
the PES, employing the minimum travel potential energy.
The travel potential energy of this steepest descent is from a
fixed pointqR to a variable end pointq in the PES. For future
purpose, the fixed pointqR is taken as a stationary point
character minimum of the PES. Using the calculus of varia-
tions, the above problem with these conditions can be formu-
lated as follows: we are choosing the curve from the set of all
smooth curvesqssd all starting from the pointqR=qs0d and
passing through the pointq=qssd, with tangentdq /ds that
minimizes the integral,
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DVR→q =E
0

s ds8

vss8d
, s2d

wheres is the arc-length of the path joining the pointsqR and
q, and vss8d is a “velocity” or the continuous slowness
model. The magnitudevss8d is taken non-negative,vss8d
ù0. In order to connect this variational principle with the SD
curve lines and specifically with the IRC, we take using Eq.
s1d, vss8d= ugfqss8dgu−1, the inverse of the gradient norm. On
the other hand, we consider the arc-lengths8 to be a function
of a new parametert8 defined as

ds8 =ÎS dq

dt8
DTS dq

dt8
Ddt8, s3d

where the superscriptT means transposed. With these two
definitions, the above variational problem given in Eq.s2d
can be reformulated in the form

DVR→qsqd =E
0

t
ÎfgsqdgTfgsqdgÎsdq/dt8dTsdq/dt8ddt8

=E
0

t

Fsq,dq/dt8ddt8. s4d

This integral functionals4d is positive homogeneous of de-
gree one with respect to the tangent vectordq /dt8 and does
not depend explicitly on the choice of the parametert8 that
characterizes the curve.6,26 This type of functional was also
proposed some time ago by Fukuiet al.10,11and Elberet al.16

In this formulation of the variational problem, the solution
consists in finding the curveqst8d connecting both points of
the PES,qR=qs0d andq=qstd, which minimize the integral
functionals4d. The integral functionalDVR→qsqd given either
in Eq. s2d or Eq. s4d is of the same type as that appearing in
Fermat variational principles.6 From the calculus of varia-
tions, we apply the basic formula for the general variation of
the functional to the problems4d, DVR→qsqd, regarding the
point qR as a fixed point and the pointq as a variable. In the
region of the PES,DVR→qsqd is a single-valued function of
the coordinates of the pointq. The basic formula which gives
the first-order variation of the functionalDVR→qsqd with re-
spect toq and t is

dDVR→q =E
0

t F=qF −
d

dt8
s=dq/dt8FdGT

zst8ddt8

+ hs=dq/dt8FdTDq + fF − s=dq/dt8FdTdq/dt8gDtjt,

s5d

where=x
T=s] /]x1,… ,] /]xNd ,zst8d=q*st8d−qst8d ,q*st8d and

qst8d being two neighboring curves in this region of the PES,
both starting at the pointqR. The curveq*st8d connects the
pointsqR,t8=0 andq+Dq ,t8= t+Dt and the curveqst8d con-
nects the pointsqR,t8=0 andq ,t8= t. The tangentdq /dt8 is
evaluated at the pointqstd. Then, the conditiondDVR→qsqd
=0 implies that the curveqst8d must be an extremal, i.e., a
solution of Euler–Lagrange equationsalso known as Euler
equation or Lagrange equationd,

=qF −
d

dt8
s=dq/dt8Fd = 0. s6d

If the curveqst8d is an extremal, the integral in Eq.s5d van-
ishes, then the conditiondDVR→qsqd=0 takes the form

uhs=dq/dt8FdTDq + fF − s=dq/dt8FdTdq/dt8gDtjut = 0. s7d

Applying these general results to the present problem, the
Euler–Lagrange equations6d takes the form

1I −
S dq

dt8
DS dq

dt8
DT

S dq

dt8
DTS dq

dt8
D2

31 Hg
ÎgTg

−

d2q

dt82

ÎS dq

dt8
DTS dq

dt8
D

ÎgTg

ÎS dq

dt8
DTS dq

dt8
D2 = 0,

s8d

whereH is the Hessian matrix,H ==qgT, andI is the identity
matrix. Thedq /dt8 vector is the tangent vector of theqst8d
curve. The solution of Eq.s8d is the autonomous differential
equation

dq

dt8
= gfqst8dg, s9d

wheregfqst8dg is the gradient vector evaluated at the point
qst8d of the curve. The normalization of Eq.s9d leads to Eq.
s1d. We conclude that expressions1d is the normalized tan-
gent vector of the path that extremalizes the functional
DVR→qsqd defined in Eq.s4d. In other words, the SD curve
connecting the pointsqR and q is an extremal curve of the
variational problem defined in expressions4d, DVR→qsqd.
This point may be envisaged in the following way: a pathP,
starting at the pointqR=qs0d, propagates through the PES
according to the speed law or continuous slowness model,
vssd= ugfqssdgu−1, arrives at the pointq=qssd, traveling with
the least potential energy variationDVR→qsqd, as defined in
Eq. s4d, then this path is characterized by the normalized
tangent given in Eq.s1d. We note that the condition of least
potential energy variation,DVR→qsqd, as defined in Eq.s4d,
will be proved below.

B. Derivation of the Hamilton–Jacobi equation and
the corresponding characteristic system of
equations

The functionalFsq ,dq /dt8d, given in Eq.s4d, is defined
on the curves lying in some region of the PES. We take the
unique extremal curve that goes through the pointqR to the
arbitrary pointq. The integrals4d evaluated along this ex-
tremal curve, namely, the SD curve, joining these two points
takes the valueJsqd=DVR→qsqd. Using the language of
Hamilton–Jacobi theory, this functionJsqd is called the geo-
detic distance between the pointsqR andq. As explained in
the Introduction, to see the IRC method through the
Hamilton–Jacobi theory, we use the symbols and the defini-
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tions normally employed in this mathematical theory. Apply-
ing Eq. s5d to the extremal curve, SD, at the pointqstd, and
taking the first-order variation in bothDq and Dt, i.e., Dq
→dq ,Dt→dt, and the value of the tangent vector of the
extremal curve at this point,dq /dt8ut8=t=dq /dt, dDVR→qsqd
is transformed into a total differential equation,dDVR→qsqd
=dJsqd, namely,

dDVR→qsqd = dJsqd = s=dq/dtFdTdq

+ fF − s=dq/dtFdTdq/dtgdt s10d

evaluated at the pointq ,t. From this total differential equa-
tion, we introduce the definition of thep vector, namely,

=dq/dtF =
dq

dt

ÎgTg

ÎSdq

dt
DTSdq

dt
D = =qJ = p s11d

and

F − s=dq/dtFdTdq/dt =
]J

]t
= 0. s12d

In the evaluation of both Eqs.s11d and s12d, the functional
form of F given in the expressions4d has been used. The
result of Eq.s12d is the reason why the geodetic distance
function J and its total differential form, given in Eq.s10d,
depend only onq. Proceeding as in the normal calculus of
variations, from the expressions10d and using the Legendre
transformation, one derives the Hamilton–Jacobi
equation.6,26 However in this case the Legendre transforma-
tion cannot be applied since the functionF is homogeneous
of degree one with respect todq /dt argument. This is the
reason why both Eq.s12d and the determinant of the matrix

=dq/dt=dq/dt
T F =

ÎgTg

ÎSdq

dt
DTSdq

dt
D1I −

Sdq

dt
DSdq

dt
DT

Sdq

dt
DTSdq

dt
D2

s13d

vanish. In the present case we proceed in the following way,
from Eq. s11d we obtain thedq /dt argument

dq

dt
= =qJ

ÎSdq

dt
DTSdq

dt
D

ÎgTg
. s14d

From the homogeneity relation ofF, we have

F = Sdq

dt
DT

=dq/dtF = Sdq

dt
DT

=qJ = ÎgTgÎSdq

dt
DTSdq

dt
D .

s15d

Multiplying Eq. s14d from the left bys=qJdT and using Eq.
s15d we obtain

s=qJdTs=qJd
gTg

= 1. s16d

Equation s16d is a partial differential equation in the=qJ
taking the place of the Hamilton–Jacobi equation or eiconal

equation in the present variational problem. The connection
between expressions16d and the Hamilton–Jacobi equation
is explained in detail in Appendix A, where another deriva-
tion of Eq. s16d is also given. As far as we know, this is the
first time the Hamilton–Jacobi equation is formulated for the
SD path, however, as indicated in the Introduction close re-
sults were obtained by Tachibana and Fukui.7–11

Equations16d tells us that as the parametert evolves, the
coordinatesqstd evolve and the contour line with constant
potential energyJ changes, through the coordinatesq, and a
point of this contour line is linked to a point of the neighbor-
hood contour line. This set of points defines a curve which
extremalizes the functionals4d. This curve is in the present
case the SD line that goes from theqR point to theq point in
the PES. Now we can establish some analogies between the
propagation of light through a medium having a variable
index of refraction and the present problem. The light rays
are given as extremal paths of least time, now the SD curves
are extremal paths of the PES. The construction of solutions
of the eiconal equations16d as a contour line with constant
potential energy is similar to the Fermat–Huyghens principle
for the construction of wave fronts.

For future purposes, at this point, we deal briefly with
the concept of field of extremal curves which satisfy the
trivial Hamilton–Jacobi equations16d. The geodetic distance
introduced above is defined from a fixed pointqR of the
extremal curve to a point of a fixed surfacePsq ,td=const.
This concept of geodetic distance arises by considering the
initial point qR of an extremal curve as fixed and seeking a
final point q on the given surfacePsq ,td=const in such a
way that the geodetic distanceJ remains stationary under
variations of the pointq. Thus in formulas10d we have in-
troduced the value zero for the variation ofdq anddt of the
end pointq sincedJsqd=0 and the initial pointqR is fixed.
This condition is always satisfied if the pointq is varied on
the surfacePsq ,td=const, which means that the vanishing of
Eq. s10d is a consequence of the fact that the differentiated
form of the surface,Psq ,td=const, vanishes,

dP = s=qPdTdq +
]P

]t
dt = 0. s17d

Comparing both Eqs.s10d and s17d and using Eqs.s11d and
s12d we see thatp==qJ==qP==dq/dtF, and ]J/]t=]P /]t
=F−s=dq/dtFdTdq /dt=0. Notice that in the present case the
surface depends only on the coordinatesq ,Psqd=const, and
from this we infer thatPsqd corresponds toJsqd. The last
result is the so-called transversality condition6,26 which in the
present problem is a relation between the coordinatesq of a
point of the surfacePsqd=const, thep vector, and the tan-
gent dq /dt of the extremal curve, a SD line. Finally in the
present problem, the field of extremal curves is centered in
the point qR, where all the extremal curves, the SD lines,
emerge.

Expressions10d gives us the derivatives ofJ, and its
total differential form enables the evaluation of the geodetic
distance of an extremal curve as a line integral of this total
differential form and also the computation of this geodetic
distance independent of the curve used. Let us assume an
arbitrary piecewise smooth curveC defined in the region of
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the PES connecting the fixed pointqR and the variable end
point q. This arbitrary curve, not necessarily an extremal
curve sSD curved, is defined at each point of this region by
the functionqCstd and its tangent bydqC /dt. According to the
previous discussion, in the present field of extremals, the
characterization of the extremal curves at each point of the
considered region,qstd, embedded in this field, is given by
the corresponding tangent vectordq /dt and thep vector de-
fined in Eq.s11d. The functionJsqd, as the line integral of the
total differential form defined in Eq.s10d is

Jsqd =E
qR,0

q,t Fs=qJdTdqC +
]J

]t8
dt8G

=E
0

t Fs=qJdTdqC
dt8

+
]J

]t8
Gdt8. s18d

Equation s18d is the Hilbert’s invariant integral.6,26 Using
Eqs.s9d, s11d, ands12d, Eq. s18d takes the simple form

Jsqd =E
0

t SpTdqC
dt8

Ddt8

=E
0

t SgC
TdqC

dt8
Ddt8

=E
0

t F gC
TsdqC/dt8d

ÎgC
TgCÎsdqC/dt8dTsdqC/dt8d

FsqC,dqC/dt8dGdt8

s19d

with p being the vector field at the pointqCst8d and gC
=gfqCst8dg. According to the definition of geodetic distance
Jsqd given at the beginning of this section and the expression
s19d, we have the next equality

Jsqd =E
0

t
ÎgTgÎS dq

dt8
DTS dq

dt8
DT

dt8

=E
0

t SgC
TdqC

dt8
Ddt8 =E

0

t

Fsq,dq/dt8ddt8

=E
0

t F gC
TsdqC/dt8d

ÎgC
TgCÎsdqC/dt8dTsdqC/dt8d

FsqC,dqC/dt8dGdt8,

s20d

whereg is evaluated at the pointqst8d of the extremal curve.
We emphsize thatdq /dt8 is the tangent vector of the ex-
tremal curve, namely, the SD curve joining the pointsqR and
q, and the vectordqC /dt8 is the tangent vector of an arbitrary
curve joining the same points. Both curves are embedded in
the field of the vectorsp. In the present variational problem,
this field of p vectors are the gradient vectors,p=gsqd. The
two field vectors, namely, the tangent vector of the extremal
curvesdq /dt8 and thep vector, are regarded as a given func-
tion of the coordinatesq. Equations20d will be used in the
following section.

Now, the two vectors,dq /dt8 andp, evolve in the field
of extremal curves throughqst8d according to the following
equations. From Eqs.s3d, s11d, ands16d we have

1

ÎS dq

dt8
DTS dq

dt8
D

dq

dt8
=

dq

ds
=

p
ÎpTp

. s21d

Equations21d gives us the evolution of the tangent vector of
the extremal curve. The equation for the evolution of thep
vector is derived from the set of Eqs.s3d, s4d, s6d, ands11d,

1

ÎS dq

dt8
DTS dq

dt8
D

dp

dt8
=

dp

ds
=

Hg
ÎgTg

. s22d

Equationss21d and s22d are the canonical system of differ-
ential equations coming from the Euler–Lagrange differential
equations6d or, what is identical, the system of differential
equations that characterizes the extremal curves of the
Hamilton–Jacobi partial differential equations16d.6 The
proof of this assertion is given in Appendix B. Finally we
accept that the above results are quite trivial since one rec-
ognizes that Eq.s21d is the tangent of the SD curve. How-
ever, we rewrite these equations in this manner to emphasize
that the theory of Hamilton–Jacobi can not only be used to
describe and analyze any SD curve and its field but also
because it gives us the basis of the proposed algorithm to
locate IRC paths explained below.

C. The second-order variational conditions

So far, we have only been studying the necessary first-
order variational conditions of a curve to be extremal of the
functional integral proposed in Eq.s4d. It is interesting to
analyze the necessary and sufficient second-order variational
conditions to ensure that the extremal curves characterized
by Eq. s9d minimize the functionals4d. The second-order
variational conditions are related to the weak Legendre
condition,6,26 and merely consist in analyzing the value and
the corresponding sign of the determinant of the matrix,
=dq/dt=dq/dt

T F=Fdq/dt,dq/dt along each point of the extremal
curve, wheredq /dt is the tangent of the extremal curve. If
this determinant is non-negative, detuFdq/dt,dq/dtuù0, for all
points of the curve, then this curve is an extremal satisfying
the second-order necessary weak Legendre condition and
possesses a minimum character in a neighborhood. On the
other hand, ifFdq/dt,dq/dt is strictly positive, detuFdq/dt,dq/dtu
.0, then we say that the extremal curve satisfies the second-
order necessary weak strengthened Legendre condition with
minimum character in a neighborhood. For the present case,
the value of this determinant at each point of the extremal
curve, the SD line, is obtained by substituting in Eq.s13d the
value of the tangent vector given in Eq.s9d,

u=dq/dt=dq/dt
T Fudq

dt
=g = SI −

ggT

gTg
D = Fg,g. s23d

From Eq.s23d we see that detFg,g=0. This result means that
the SD curve satisfies the necessary weak nonstrengthened
Legendre condition and makes the integral functionals4d a
minimum with respect to continuous comparison functions,
q*st ,td, with its continuous first derivatives in a neighbor-
hood, i.e., as the parametert→0 the curveq*st ,td→qstd
and the tangentdq*st ,td /dt→dq /dt, the SD curve and its
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tangent, respectively. A variation,zst ,td=q*st ,td−qstd,
which satisfies the previous two conditions ast→0, is called
weak variation, and it means that the extremal curveqstd is
compared with curves that approximateqstd in both slope as
well as position. In the present problem, an extremal curve
qstd which minimizes the integral given in Eq.s4d with re-
spect to all weak variations is called a weak minimum and as
shown above satisfies the necessary weak Legendre condi-
tion.

The Legendre condition is still not sufficient to guaran-
tee a minimum. To do so, we need to compare the extremal
curve with all possible curves. These types of comparisons
between an extremal curve with any other type of curves is
the basis of the second-order variation strong condition of an
extremal also known as the Weierstrass necessary
condition.26 The Weierstrass sufficient condition in the
present problem is obtained if one ensures that the region of
the PES containing the extremal curve under consideration
sSD lined is covered by the type of field of extremal curves

defined in Sec. II B. In other words, the extremal curve, SD
line, can be embedded in the field of extremals, see below.
With this consideration, the Weierstrass sufficient condition
is formulated as follows:26 we compare the values of the
integral s4d evaluated on both the extremal curve, a SD line
joining the pointsqR andqstd, and an arbitrary curveC join-
ing the same points in its neighborhood. The value of the
integral s4d evaluated on this extremal curve isJsqd accord-
ing to the discussion of the preceding section. We denote by
DVR→q

C sqd the value of the integrals4d evaluated over the
curveC. By evaluatingJsqd as an integral along the pathC,
as formulated in Eq.s20d, the comparison of these values is
now reduced to a comparison of the integrands alone. Ac-
cording to Sec. II B, the extremal curve, the SD line, is em-
bedded in the field of extremals where the tangent of the
extremals at each point of the region of the PES containing
this extremal curve,qst8d, and covered by this field is de-
noted by dq /dt8=gfqst8dg. With these considerations, the
difference between these values is

DfDVR→qgC = DVR→q
C sqd − Jsqd =E

0

t

fÎgC
TgCÎsdqC/dt8dTsdqC/dt8d − gC

TsdqC/dt8dgdt8

=E
0

t HF1 −
gC

TsdqC/dt8d
ÎgC

TgCÎsdqC/dt8dTsdqC/dt8d
GÎgC

TgCÎsdqC/dt8dTsdqC/dt8dJdt8

=E
0

t HF1 −
gC

TsdqC/dt8d
ÎgC

TgCÎsdqC/dt8dTsdqC/dt8d
GFsqC,dqC/dt8dJdt8 =E

0

s

fÎgC
TgC − gC

TsdqC/ds8dgds8, s24d

where the integration is taken along the curveC, the gradient
vectorgC=gsqCd and the vectordqC /dt8 are the tangent vec-
tor of the field and the tangent vector of the curveC embed-
ded in this field, respectively, and both tangents are evaluated
at the pointqC, a point of the region of the PES covered by
this field. To derive Eq.s24d, Eqs. s4d, s20d, and s3d have
been used. Equations24d was first derived by Tachibana and
Fukui.9 The integrand of expressions24d,

EsqC,gC,dqC/dt8d

= ÎgC
TgCÎsdqC/dt8dTsdqC/dt8d − gC

TsdqC/dt8d

= F1 −
gC

TsdqC/dt8d
ÎgC

TgCÎsdqC/dt8dTsdqC/dt8d
GFsqC,dqC/dt8d,

s25d

which in this case is a function of the argumentsqC ,gC and
dqC /dt8, is known as WeierstrassE-function. Since for each
point qC of the region of the PES covered by the field of
extremals with tangentgC and for all possible values of the
tangent vectordqC /dt8, the WeierstrassE-function is non-
negative,EsqC ,gC ,dqC /dt8dù0, then from the expression
s24d we getDfDVR→pgCù0 for all admissible curvesC de-
fined in the region of the PES covered by this field. This

result means thatDVR→q
C sqdùJsqd, and consequently the ex-

tremal curve, the SD line, connecting the pointsqR andqstd,
is actually a strong minimum. In particular, if we take all
admissible curvesC different from the SD curve, which
means thatdqC /dt8ÞgC, then we have a proper strong mini-
mum since in this caseDVR→q

C sqd.Jsqd.
The Legendre conditions are related with the Weierstrass

E-function through the expression

EsqC,gC,dqC/dt8d

= 1
2sdqC/dt8 − gCdTf=dq/dt =dq/dt

T Fgdq/dt=g*CsdqC/dt8 − gCd,

s26d

where the matrix=dq/dt=dq/dt
T F is that given in Eq.s13d and

gC
* =gC+usdqC /dt8−gCd, with 0,u,1. The proof of Eq.s26d

is given in Appendix C. Since the matrix
f=dq/dt=dq/dt

T Fgdq/dt=g*C is a projector with respect to the vec-
tor gC

* , from Eq. s13d and s26d we see that,
EsqC ,gC ,dqC /dt8d.0, if the vectorsdqC /dt8−gCd is orthogo-
nal to the vectorgC

* , otherwiseEsqC ,gC ,dqC /dt8d=0. Finally,
using Eq.s24d–s26d, we obtain
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DfDVR→qgC = DVR→q
C sqd − Jsqd

=E
0

t

EsqC,gC,dqC/dt8ddt8

=
1

2
E

0

t

hsdqC/dt8 − gCdTf=dq/dt=dq/dt
T Fgdq/dt=gC

*

3sdqC/dt8 − gCdjdt8. s27d

Then the Weierstrass sufficient condition for an extremal
curve to be minimal can be formulated, as Eq.s27d, to be
positive with the possibility to embed the extremal curve
joining the two points,qs0d andqstd, in the field of extrem-
als. Equations27d will be used in the following section.

The basic point in the theory of sufficient conditions just
exposed and used above is the possibility of embedding the
extremal curve under consideration in a field. If the end-
points of the extremal curve are not too far, i.e., smallt
parameter, then it can always be embedded in a field. We
remember that a field is defined by the set of extremal curves
cutting the surfaceP transversally.6 The set of extremal
curves emerging from a central point will constitute a field
up to its envelope or conjugate points to the central point.
The first point at which neighboring extremal curves all start-
ing at the same central point intersect is called conjugate
point with respect to the central point. In the envelope or
conjugate points the set of extremals does not cutP trans-
versally. In the present problem, the SD curves, emerging
from the pointqR, which is a stationary point character mini-
mum, intersect for the first time at the stationary points of the
PES character saddle points and maxima. These types of
stationary point are the conjugate pointsqCP with respect to
central pointqR. The above discussion about second-order
sufficient conditions is now reduced to the consideration that
in the region of the PES containing the SD curve, the ex-
tremal curveqst8d, emerging from the pointqR, is a mini-

mum if in the region 0, t8, t, whereqR=qs0d andqstd=q,
a conjugate point ofqR does not exist, and Eq.s27d is posi-
tive definite in this interval of integration. If the interval of
integration 0, t8, t contains tCP,0, tCP, t, where qstCPd
=qCP is a conjugate point with respect to the central pointqR,
then the extremal curveqst8d is not a minimum provided that
the WeierstrassE-function defined in Eq.s26d is positive
definite, EsqC ,gC ,dqC /dt8dù0, along the extremal curve.26

The conjugate pointqCP can be a stationary point character
saddle point or maximum in the PES. However, for saddle
points with one negative eigenvalue, known as first-order
saddle pointssFOSPsd, only one SD curve emerging form the
central pointqR arrives at this type of stationary points. As a
consequence, the first-order saddle points are not conjugate
points with respect to the central pointqR, a stationary point
with character minimum in the PES. This result is proved
from a rigorous mathematical point of view in Appendix D
using the Jacobi equation associated to the variational prob-
lem under consideration.26

Finally in Fig. 1 we show the basic scheme of all the
concepts just exposed for the present variational problem.
The explanation of this figure is the following. A SD curve
starting at the pointq0 of the PES transverses the contour
lines Vsqd−Vsq0d=const=con1 and Vsq+dqd−Vsq0d=const
=con2 at the pointsq and q+dq, respectively. The normal
vector of the transversal line,P, at the point q is p1

==qJsqd==qVsqd=g1, whereas the normal vector of the
transversal line,P, at the pointq+dq is p2==qJsq+dqd
==qVsq+dqd=g2, J being the solution of the eiconal equa-
tion s16d. These transversal lines are tangent to the contour
lines. The difference between the contour lines con1 and con2
is denoted bydJ, which is the infinitesimal geodetic distance
evaluated on the SD curve using Eq.s10d, between the points
q andq+dq. The tangent vector of the SD curve at the point
q is dq /dt, anddqC /dt denotes the tangent vector at the point
q of another arbitrary curveC passing through this point.

FIG. 1. The main scheme of the varia-
tional problem given in Eq.s4d. See
text for a detailed discussion.
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The geodetic distancedJ is taken as a radius of a circle
centered at pointq, this circle is known as the geodetic
circle. In this circle the equality, dJ=Fsq ,dq /dtddt
=fp1

Tp1g1/2fsdq /dtdTsdq /dtdg1/2dt=Fsq ,dqC /dtddt=fp1
Tp1g1/2

3fsdqC /dtdTsdqC /dtdg1/2dt, is satisfied. The SD path connect-
ing the pointsq andq+dq is one of the radial curves of this
circle. Notice thatdJ.0, becausedt.0 and Fsq ,dq /dtd
defined in expressions4d is positive definite and due to Eq.
s21d, the value of the geodetic distance isdJ=p1

Tp1dt. Fur-
thermore, comparing the normal vector of theP line at the
point q+dq, we see that it coincides with the radius vector of
the geodetic circle atq+dq, consequently both the contour
line con2 and the geodetic circle are tangential to each other
at that point. The above construction can be extended to all
geodetic circles of radiusdJ with centers on the contour line
con1. As a consequence of these results we say that the con-
tour line con2=Jsq+dqd=con1+dJ with dJ.0,Jsq+dqd be-
ing a solution of the Hamilton–Jacobi equations16d, is an
envelope line of the all possible geodetic circles of radiusdJ
centered on the contour line con1.

In fact the above results only show that the geodetic
circles are tangential to the contour line con2. Now we need
to prove that the line con2 is an envelope line of these circles,
in others words, the geodetic circles lie entirely on one side
of the contour line con2 apart from the points of tangential
contact with it. We will show that this construction gives us
a geometrical meaning to both the WeierstrassE-function,
Eq. s25d, and the Weierstrass necessary condition, Eq.s24d.

To prove the above question, we consider an arbitrary
curve C connecting the pointsq and q+dqC such that
Fsq ,dqC /dtddt=dJ. As a consequence the pointq+dqC lies
on the geodetic circle of radiusdJ, as shown in Fig. 1, and
now we need to prove that this point lies on the same side of
the contour line con2 as does the pointq. We apply the dif-
ferential form of the Hilbert’s invariant integral, given in Eq.
s19d, to the arbitrary curveC joining the pointsq and q
+dqC, resulting in dJC=p1

TdqC=p1
TsdqC /dtddt=p1

TsdqC /dtd
3hfp1

Tp1g1/2fsdqC /dtdTsdqC /dtdg1/2j−1Fsq ,dqC /dtddt
=rCFsq ,dqC /dtddt=rCdJ. Clearly the values ofrC are in the
domain −1ørCø1. Taking into account the values ofrC and
that con2−con1=dJ.0, the pointq+dqC lies on the contour
line con1+dJC=con1+rCdJ, not shown in the figure, such
that con2ùcon1+rCdJ. Consequently the pointq+dqC lies
on the same side of the contour line con2 as does the pointq.

Finally, from Eq. s25d we see that the WeierstrassE-
function takes the form dJ−dJC=Fsq ,dqC /dtddt

−rCFsq ,dqC /dtddt=s1−rCddJ=Esq ,p1,dqC /dtddt, which is
non-negative everywhere as proved in Sec. II C, specifically
after Eq. s24d. These results show that for the variational
problem under consideration, defined in Eq.s4d, where the
functionalFsq ,dq /dtd is non-negative, the contour line con2

is an envelope line of the geodetic circles centered on the
contour line con1.

26 The above construction of solutions as
envelopes of the present variational problem is exactly the
same as that used in the Fermat–Huyghens principle for the
construction of wave fronts in the propagation of light,26 as
is already explained in the Sec. II B.

III. THE WEIERSTRASS SUFFICIENT CONDITION AS
A TOOL TO LOCATE THE IRC CURVE

A. Background of the algorithm

The above results about the variational nature of the SD
curve open the possibility to use a variety of algorithms to
integrate this type of curves and specifically the IRC curve
line. We present in this section a way to deal with the calcu-
lation of the IRC line. The IRC curve is a SD curve line in
mass weighted coordinates connecting two minima in the
PES, namely,qR and qP, through a first-order saddle point
qFOSP.

11 Taking into account both the definition of IRC and
the concept of centered field discussed in Sec. II, the IRC
path can be seen as a SD curve composed by two SD lines,
each one being an extremal curve of one of the fields of
extremals centered or emerging from the minimaqR andqP,
and both ending in a common pointqFOSP. TheqFOSPpoint is
not a conjugate point either for the SD line emerging from
the qR point or for the SD line emerging from theqP point.
These two centered fields are identical, because for each field
the correspondingp vector of this field is a function of the
corresponding geodetic distanceJ,p==qJ, as explained in
the preceding section, and this functionJ should satisfy the
same Hamilton–Jacobi equations16d. As a consequence for
both the centered fields the vector of these fields isp=gsqd.
The geodetic distance from the central pointqR sqPd to the
variable end pointqFOSPis denoted byJRsqFOSPd fJPsqFOSPdg.

We propose to use the Weierstrass sufficient condition,
discussed in the preceding section, as a way to obtain the
IRC curve. Since the IRC curve is composed by two ex-
tremal curves, SD curves, each one being an extremal be-
longing to one of the centered fields and for both fields the
field vector isp=gsqd, then the Weierstrass sufficient condi-
tion for the IRC curve given in Eq.s27d becomes

DfDVR→PgC = DfDVR→qFOSP
gC − DfDVP→qFOSP

gC

= fDVR→qFOSP

C − JRsqFOSPdg − fDVP→qFOSP

C − JPsqFOSPdg =E
0

t

EsqC,gC,dqC/dt8ddt8 −E
tf

t

EsqC,gC,dqC/dt8ddt8

=E
0

tf

EsqC,gC,dqC/dt8ddt8 =E
0

tf

fÎgC
TgCÎsdqC/dt8dTsdqC/dt8d − gC

TsdqC/dt8dgdt8, s28d
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where tf is the value of the independent variablet8 in the
origin of the field centered inqP, in other words,qP=qstfd.
From Eq.s28d it is clear thatDfDVR→PgCù0. According to
the discussion of preceding section, the sufficiency condition
for the IRC path is achieved since it is a SD curve,qst8d,
connecting the pointsqR=qs0d andqP=qstfd of the PES if in
the interval 0, t8, tf, a conjugate point with respect to both
pointsqR andqP does not exist. This shows clearly that the
IRC is an extremal curve of the functional given in Eq.s4d
with character strong minimum in a neighborhood.

Minimizing the DfDVR→PgC function given in Eq.s28d
with respect to the parameters that characterize a given arbi-
trary C curve connecting the fixed end pointsqR and qP of
the PES, iteratively, we will find the near SD curve to thisC
curve. The curveC is assumed to satisfy the differential
equationdqCst8d /dt8ut8=t= ffqCstdg, where 0ø tø tf and f is a
vector of a field vector. This curveC is represented as a
polygonal line or a chain line defined in the region of the
PES under consideration and connecting the pointsqR and
qP and the vectorf =DqC ,DqC being the difference vector
between two consecutive vertex points of the chain. The
minimization of theDfDVR→PgC function has the effect of
transforming the curveC into another curve such that the
field vector f at each point of this new curve coincides as
much as possible with the field vectorg, which is the field
vector of the field of extremals of the functional given in Eq.
s4d. This is the basis of the proposed algorithm to find the SD
curve connecting the stationary points character minimum of
the PES,qR andqP. The resulting SD curve is the IRC path
if conjugate points do not exist in this curve, in others words,
if the SD curve does not contain stationary points character
saddle point with more that one negative eigenvalue, as
shown in Appendix D.

The basis of the algebraic process of the proposed algo-
rithm is the following: first we approximate the integrals28d
by using a set ofn+1 points of an arbitrary curveC,

DfDVR→PgC =E
0

tf

EsqC,gC,dqC/dt8ddt8

=E
0

tf

fÎgC
TgCÎsdqC/dt8dTsdqC/dt8d

− gC
TsdqC/dt8dgdt8

< o
i=1

n−1

sÎgCi
T gCi

ÎDqCi
T DqCi − gCi

T DqCid

= o
i=1

n−1

EapproxsqCi,gCi,DqCid

= hDfDVR→PgCjapprox, s29d

where hqCiji=0
n denotes a set ofn+1 position vectors of the

arbitraryC curve,DqCi =qCi+1−qCi, andgCi =gsqCid is the gra-
dient vector evaluated a the pointqCi. Notice that this set of
selected position vectors is the point vertices of the chain
that represents the curveC. The point vectorsqC0=qR and
qCn=qP do not appear in the evaluation ofhDfDVR→PgCjapprox

function, because they are the fixed initial and final points of

this curve, respectively, and their gradient vectors are zero,
gR=gsqC0d=gP=gsqCnd=0. Now, we expand the function
hDfDVR→PgCjapprox up to first order in a Taylor series with
respect to the parameters that characterize the arbitrary curve
C,

hDfDVR→PgC8japprox

= hDfDVR→PgCjapprox

+ o
i=1

n−1

sqC8i − qCidTfu=qCi
EapproxsqCi,gCi,DqCiduCg , s30d

where C8 is other arbitrary curve and
=qCi

EapproxsqCi ,gCi ,DqCid is the WeierstrassE-gradient vector
evaluated in the position vectors that characterize the curve
C. The explicit form of the WeierstrassE-gradient vector is

=qCi
EapproxsqCi,gCi,DqCid

= ÎDqCi
T DqCiHCiS gCi

ÎgCi
T gCi

−
DqCi

ÎDqCi
T DqCi

D
− FÎgCi−1

T gCi−1S gCi−1

ÎgCi−1
T gCi−1

−
DqCi−1

ÎDqCi−1
T DqCi−1

D
− ÎgCi

T gCiS gCi

ÎgCi
T gCi

−
DqCi

ÎDqCi
T DqCi

DG , s31d

where the matrixHCi =HsqCid is the Hessian matrix at the
point qCi. The first term of the right-hand side of Eq.s31d
involves a Hessian matrix, however, this term can be simpli-
fied because the curveC is embedded in a gradient vector
field, the field of extremal curves corresponding to the varia-
tional problem given in the expressions4d. Taking into ac-
count this consideration, the termHCiDqCi is transformed
into HCiDqCi =HCisqCi+1−qCid<DgCi =gCi+1−gCi, where the
equality is achieved when the pointqCi+1 of the curveC is
within the quadratic expansion of the PES centered inqCi.
The other term,HCigCi, is the gradient variation vector along
the SD curve running through the pointqCi, see Eq.s22d. As
a consequence,HCigCi <sgi

* −gCid /ti, gi
* being the gradient

vector of a point close to the pointqCi and situated on the SD
curve that links this point and theqCi point andti the dis-
tance between these two points. With these two approxima-
tions Eq.s31d is transformed into the expression

=qCi
EapproxsqCi,gCi,DqCid

<
ÎDqCi

T DqCi

ÎgCi
T gCi

sgi
* − gCid

ti
− DgCi

− FÎgCi−1
T gCi−1S gCi−1

ÎgCi−1
T gCi−1

−
DqCi−1

ÎDqCi−1
T DqCi−1

D
− ÎgCi

T gCiS gCi

ÎgCi
T gCi

−
DqCi

ÎDqCi
T DqCi

DG . s32d

Notice that in Eq.s32d only gradient and position vectors are
involved. Either Eq.s31d or Eq.s32d is the basic expressions
for the proposed algorithm. Equations32d should be used for
large molecular systems.
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Finally we have to impose the sufficiency conditions on
the algorithm. These sufficiency conditions consist in avoid-
ing the existence of higher order saddle points and maxima
in the region of the PES where the search to locate the IRC
path is focused. Since these types of stationary points pos-
sess higher potential energy with respect to first-order saddle
points, during the location process the condition of lower
energy at each step is imposed. This restriction is imposed by
assuring that at each point vertex of the newC8 curve the
corresponding value of the potential energy is lower than or
equal to the corresponding point vertex of the previousC
curve.

B. Algorithm description

The minimization scheme of the function
hDfDVR→PgCjapproxis carried out by using a Newton–Raphson
method solved in a Krylov subspace and its complementary
subspace. This method has been employed by Brookset
al.28,29for both finding minima and locating the IRC curve in
the PES. However, there is an important difference with re-
spect to the algorithm proposed by these authors, namely,
their objective function is different from that used in the
present algorithm which ishDfDVR→PgCjapprox defined in Eq.
s29d. We recall that this function is related through the cal-
culus of variations with the exact definition of the SD path
given in Eq.s1d. This function and its derivatives with re-
spect to the position coordinates, given in the expressions
either s31d or s32d, are well defined. In addition, using this
function and the corresponding derivatives we avoid compli-
cated iterative numerical procedures as those that appear in
the algorithm described by the above authors.29 The grounds
and basic equations of the present method are explained in
Appendix E. Now we outline the algorithm.

At the initial iteration,m=1, a guess curveC0 is defined
by a set ofn+1 point vectors. Normally, thisC0 curve is a
straight line. The vectorsq0 andqn correspond to the station-
ary points character minima in the PES related with the ge-
ometry structure associated with the reactants and products,
respectively. These two vectors are fixed during all the opti-
mization processes. The rest ofn−1 points,hqC0iji=1

n−1, corre-
spond to the vertices of the chain representation of the curve
C0 and are selected in such a way that they are equidistant.
The Weierstrass E-gradient vector,
=qCi

EapproxsqCi ,gCi ,DqCiduC=C0
, for each point vertex, i

=1,… ,n−1, is computed by using either Eq.s31d or Eq.
s32d. Taking these gradient vectors as direction vectors, a
new set ofn−1 point vertex is computed through the equa-
tion

qC1i = qC0i + hif=qCi
EapproxsqCi,gCi,DqCiduC=C0g

∀ i,i = 1,…,n − 1, s33d

where the vectorqC1i corresponds to the new position vector
of the vertexi of the new curveC1, and the scale factorhi is
selected in such a way thatVsqC1id,VsqC0id. After the evalu-
ation of all new vertex points a reparametrization of the new
curveC1 may be necessary to ensure that the vertex points do
not cluster. A very simple scheme has been adopted here:
when the length of two consecutive segments of this new

curve, DqC1i and DqC1i+1, have a ratio larger than a given
threshold, say 0.7, the central pointqC1i+1 is moved along its
tangent to center it. Finally, the WeierstrassE-gradient vector
=qCi

EapproxsqCi ,gCi ,DqCiduC=C1
for each vertex point, i

=1,… ,n−1, of the new curveC1 is computed. If the conver-
gence criteria is not satisfied for each vertex point, then the
rectangular matrices,Ri

s1d and Gi
s1d for i =1,… ,n−1, are

built and stored according to the expressionssE2d and sE7d,
respectively, and iteration2 begins, otherwise the converged
curveC1 is the chain representation of the IRC path between
the pointsqR andqP.

At the mth iteration, for m.1, the Newton–
Raphson method described in Appendix E is applied. In
this case and for each vertex pointi, we have, the posi-
tion vector qCm−1i, the WeierstrassE-gradient vector
=qCi

EapproxsqCi ,gCi ,DqCiduC=Cm−1
, and the rectangular matrices

Ri
sm−1d and Gi

sm−1d. The set of equationssE11d, sE5d, and
sE12d is solved and the new position vectorqCmi of the new
curve Cm is then computed by a slight modification of Eq.
sE13d,

qCmi = qCm−1i + hifA i
sm−1dsqCmi − qCm−1id

+ Bi
sm−1dsqCmi − qCm−1idg , s34d

where the factorhi plays the same role as explained in the
iterationm=1. After the evaluation of all new vertex points,
a reparametrization of the new curveCm may be necessary to
ensure that vertex points do not cluster and this is done by
using the same procedure as reported in the iterationm=1.
The set of Weierstrass E-gradient vectors,
=qCi

EapproxsqCi ,gCi ,DqCiduC=Cm
, for i =1,… ,n−1, of the new

curveCm is computed. If the convergence criteria is not sat-
isfied for each vertex point then we update and store the new
rectangular matrices,Ri

smd andGi
smd for i =1,… ,n−1, and the

new iterationsm+1dth begins, otherwise the converged curve
Cm is the chain representation of the IRC path between the
pointsqR andqP.

To introduce stability in this minimization algorithm just
described, in the evaluation of the WeierstrassE-gradient
vector,=qCi

EapproxsqCi ,gCi ,DqCiduC=Cm
, using either Eq.s31d or

Eq. s32d, the current gradient vectorgCmi of the point vortex
qCmi is replaced by the vectorsgCmi+1+gCmid /2, which is the
average gradient vector of the segment vectorDqCmi =qCmi+1

−qCmi. In addition, if the angle between the resulting aver-
aged gradient vectorgCmi and the vectorDqCmi is outside the
rangefp /2 ,−p /2g, then the sign ofDqCmi vector has to be
changed accordingly.

In the present implementation of the algorithm, the
Weierstrass E-Hessian matrix,
=qCi

=qCi

T EapproxsqCi ,gCi ,DqCiduC=Cm
, is taken as the unit matrix.

C. Locating the IRC curve on a symmetric potential
energy surface

The above proposed integration technique has been ap-
plied to find the IRC curve of the surface equation,Vsx,yd
=2sx2−2d2+fsx−yd2−1g2+4s1−x2−y2d2+fsx+yd2−1g2,
which is shown in Fig. 2. The gray arrows are the gradient
vectors of the field. As explained in the previous sections,
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these gradient vectors are the tangent vectors of the SD
curves and these curves define the field of extremals. Due to
the symmetry of the surface, only two SD paths are the IRC
curves. These two paths follow the sequence of stationary
pointsR→FOSP→P, and correspond to the SD paths con-
nectingR andP, such that the integral given in Eq.s4d evalu-
ated on this curve has the lowest value. This surface is chal-
lenging because it presents a maximum, which is an attractor
of the SD lines. The algorithm has to make sure that it con-
verges to the SD line that passes through FOSP. For the sake
of simplicity, in this section we have dropped the subscriptC
in the qi ,gi, andDqi vectors.

The set of open dots defines a broken line, which is the
initial guess curve,CsR→Pd. This initial curve is character-
ized by n=21 points, where the pointsq1=qR and q21=qP

are fixed and the rest of the points are allowed to move. The
bold faced arrows correspond to the set of19 vectors,
=qiEapproxsqi ,gi ,DqiduCsR→Pd

for i =2,…, 20, of the initial

curve CsR→Pd. The direction of these vectors is different
depending on the point, and for points9 and13 a decrease of
the WeierstrassE-function would imply an increase of poten-
tial energy. Therefore thehi factors applied to the points
wheregi

Tf=qiEapproxsqi ,gi ,DqiduCsR→Pd
g,0 for i =2,…, 20 are

chosen positive and vice versa. In this manner the new set of
generated points will possess lower potential energy. Finally,
the algorithm converges in the way that all21 points are
located in the IRC curve. This final position is represented by
a set of dark dots in Fig. 3.

As is conventional in many minimization procedures, we
take some steps as steepest descent, until we get close to the
quadratic region, by using Eq.s33d. In this example,10 steps

were taken this way. This procedure also allows to generate a
set of matrices,Ri

smd and Gi
smd, as defined in Eqs.sE2d and

sE7d, respectively, for i =2,…, 20. At every Newton–
Raphson step and for eachqi point, we first evaluate the new
position due to the space spanned by the set of difference
positions using Eqs.sE11d andsE5d. If the new point implies
a descentVsx,yd, then it is accepted, otherwise the Newton–
Raphson step is rejected and a steepest descent step is taken.
Finally the variation due to the complementary subspace is
computed through Eq.sE12d and properly scaled byhi to
guarantee a descent effect in the function
Eapproxsqi ,gi ,DqiduCsR→Pd

.

For the sake of completeness, we have compared the
present method with the nudged elastic band method17,18

sNEBd with a tangent vector defined asDqi =qi+1−qi for i
=2,…, 20 on the current curveCsR→Pd. In such a case the
algorithm is unstable and, as expected, leads to kinks.18 We
are aware that corrections to this are possible,18 but this com-
parison was only done to show that the method presented
here does not suffer from this problem and is stable even
with a crude tangent estimation.

The convergence of this method has also been tested.
Figure 4 shows the decrease in the function
hDfDVR→PgCjapprox defined in Eq.s29d, beingCsR→Pd, the
current curve, for the Newton–Raphson algorithm described
here and a quenched velocity Verlet as the one used in
NEB.17,18 It has to be mentioned that each quenched velocity
Verlet step involves a single gradient evaluation for each
point, whereas the Newton–Raphson step may involve sev-
eral gradient evaluations to choose the correcthi of Eq. s34d.
However, we have seen that the number of gradient evalua-
tions is, on average, close to1.5per point, or even less when
we get closer to the optimized path.

The use of the approximate WeierstrassE-gradient vec-
tor, through Eq.s32d, is also surprising, because its conver-
gence behavior is excellent until very close to converged
IRC path sFig. 4d. At that point, a more accurate gradient
would be needed to decrease the value of the function
hDfDVR→PgCjapprox. Equationss32dd is therefore useful to get

FIG. 2. Representation of the PES of Sec. III C. The solid lines are some
contours of the potential energy. The light solid arrows are some selected
gradients of the field, which are the vectors of the fieldp of the proposed
variational problem defined in Eq.s4d. The dark dots are the set of21 points
of the initial curve. The pointR is labeled as1 and the pointP as21. The
bold faced arrows are the WeierstrassE-gradient vectors
=qiEapproxsqi ,gi ,DqiduCsR→Pd

associated with the points of the initial curve.

FIG. 3. Evolution of the algorithm to find the IRC curve line based on the
minimization of the WeierstrassE-function, as defined in Eq.s29d, for the
PES given in Fig. 2. The solid lines are some contours of the potential
energy. The white open dots are the set of21 points of the initial guess
curve. The dark dots indicate the final converged position of the21 points.
In this final position, all points are located in the IRC curve. The IRC curve
line follows the sequence of stationary points:R→FOSP→P. The gradient
faced points indicate the behavior of the algorithm during the minimization
process.
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pretty accurate paths that can then be refined by increasing
the number of points in the discretization or with conven-
tional transition state searches.

It is also worth pointing out that the reparametrization of
the currentCsR→Pd is only necessary during the initial
steps, because the WeierstrassE-gradient vector, evaluated
by using Eq.s31d, once we are close to the final SD curve, is
perpendicular to this curve. This is also true for the perpen-
dicular force used in the NEB method, but the difference is
that Eq. s31d corresponds to a gradient vector of a certain
objective function while the NEB projection makes its force
nonconservative.

Certainly a number of authors have also worked on the
convergence of NEB or similar chain-of-states methods such
as that used in the proposed algorithm.19–21,23,29 Vanden-
Eijden et al.19 and Waleset al.21 implemented a Broyden–
Fletcher–Goldfarb–ShannosBFGSd minimizer type,30 both
achieving superlinear convergence. We have also commented
briefly on the differences and similarities of the recent NEB
improved algorithm described in Ref. 29. The NEB method
has also been coupled to Car–Parrinello molecular
dynamics23 for better convergence with density functional
theory calculations. All of these methods outperform the
steepest descent minimization of the original NEB method
that we, and the other reported authors, have used for com-
parison. It would surely be interesting to compare all of them
but this is beyond the scope of this work. Indeed, the algo-
rithm presented in this paper was mainly formulated to prove
and to show the potential applications of a correct descrip-
tion of IRC method via Hamilton–Jacobi theory. A computa-
tionally less expensive formulation of the method would be
desirable and is part of our future work, nevertheless, we
would like to stress that the described algorithm represents
an improvement of the original NEB method.

IV. CONCLUSIONS

The calculus of variations and specifically the Fermat
variational principle can be used as a tool to study the nature
of the IRC model and to establish new algorithms to evaluate
this type of path. From this point of view, the IRC paths are
extremal curves of a Fermat variational principle. The

Hamilton–Jacobi equation associated with this Fermat varia-
tional principle has been derived, resulting in a very simple
expression. As in the normal calculus of variations, from the
derived eiconal equation we obtain the associated character-
istic system of equations of the IRC curve. The analysis of
the second-order variation permits to establish the strong
minimum character of the IRC path and from this analysis to
propose new algorithm to locate IRC curves.
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APPENDIX A: ALTERNATIVE DERIVATION OF THE
HAMILTON–JACOBI EQUATION FOR THE
EXTREMAL CURVES OF THE TYPE SD LINE

In this appendix we establish the connection between
Eq. s16d and the Hamilton–Jacobi equation or, in others
words, we show that Eq.s16d plays the role of a Hamilton–
Jacobi equation. To prove this assertion, the basic idea is to
deal with homogeneous functional with respect to the argu-
mentdq /dt, but of degree greater than one, because in this
case it is possible to apply the Legendre transformation and
then to derive in the standard way the corresponding
Hamilton–Jacobi equation.6,26 In addition this new homoge-
neous functional should be related to the functional of ex-
pressions4d. To this aim, we first choose the functionqsxd
such that variation of the integral

Isqd =E
0

x8
SSq,

dq

dx
Ddx=E

0

x8
gTgSdq

dx
DTSdq

dx
Ddx sA1d

with respect to this function vanishes. The variablex is pro-
portional to the variablet of variational problems4d in the
way that dx=Fsq ,dq /dtddt, where botht and Fsq ,dq /dtd
are those given in expressions4d. We note that the functional
Ssq ,dq /dxd of Eq. sA1d is homogeneous of degree two with
respect to the argumentdq /dx. The extremal curvesqsxd of
the variational problemsA1d satisfy the Euler–Lagrange dif-
ferential equation

=qS−
d

dx
s=dq/dxSd = 0. sA2d

The tangent of these extremal curves isdq /dx=g/ sgTgd. Due
to the homogeneity of theS functional, it satisfies the relation

S= − S+ Sdq

dx
DT

s=dq/dxSd. sA3d

Differentiating Eq. sA3d with respect tox and using Eq.
sA2d, we conclude that the functionalS becomes constant
along an extremal curveqsxd, becausedS/dx=0. In other
words,S=const=1 along an extremal curve. With this result,
Eq. sA2d can be transformed into the following way:

FIG. 4. The behavior of loghDfDVR→PgCjapprox, defined in Eq.s29d, vs itera-
tion number, during the minimization process of the WeierstrassE-function,
for the example discussed in Fig. 2 and 3. See the text for more details.

234105-12 R. Crehuet and J. M. Bofill J. Chem. Phys. 122, 234105 ~2005!



1

2ÎS
F=qS−

d

dx
=dq/dxSG +

1

4

=dq/dxS

S

dS

dx

=
1

2ÎS
=qS−

d

dx
S 1

2ÎS
=dq/dxSD

=
dt

dx
F=qF −

d

dt
s=dq/dtFdG = 0. sA4d

Since,dt/dx=1/Fsq ,dq /dtdÞ0, any extremal curve satisfy-
ing Eq. sA2d also satisfies Eq.s6d. Consequently the
Hamilton–Jacobi equation of the variational problemsA1d is
related with the Hamilton–Jacobi equation of the variational
problem s4d. To prove this assertion, first we derive the
Hamilton–Jacobi equation for the variational problemsA1d.
Since S is an homogeneous functional of degree two with
respect to the argumentdq /dx, or in other words, det
f=dq/dx=dq/dx

T Sg=2gTgÞ0, except in stationary points, we
can use the Legendre transformation. Defining the vectorp*

as

p* = =dq/dxS= 2gTg
dq

dx
sA5d

and substituting in the right-hand side of Eq.sA3d, the ex-
pression of the vectordq /dx as a function ofp* obtained
from Eq. sA5d, we get the transformed Legendre function of
S, namely,

Lsq,p*d =
1

4

sp*dTp*

gTg
. sA6d

We emphasize that the left-hand side of Eq.sA3d is equal to
the transformed Legendre functionLsq ,p*d and, as a conse-
quence, in this caseLsq ,p*d=Ssq ,dq /dxd. If J*sq ,xd is the
geodetic distance corresponding to the variational problem
sA1d, then its total differential form, whose general formula
is given in Eq.s10d, now reads

dJ*sq,xd = s=dq/dxSdTdq + fS− s=dq/dxSdTdq/dxgdx

= p*dq − Lsq,p*ddx= s=qJ*dTdq + S ]J*

]x
Ddx,

sA7d

where Eqs.sA3d andsA5d have been used. From Eq.sA7d we
havep* ==qJ*sq ,xd and

]J*sq,xd
]x

= − Lsq,=qJ*d = −
1

4

s=qJ*dT=qJ*

gTg
. sA8d

In the derivation of expressionsA8d, expressionsA6d has
been used. EquationsA8d is the Hamilton–Jacobi formula of
the variational problemsA1d. Since the right-hand side of
Eq. sA8d is independent ofx, a solution of this partial differ-
ential equation isJ*sq ,xd=Cx+2Jsqd, whereC is a constant.
Using the fact thatLsq ,p*d=1, we haveC=−1 and as a result
we obtain Eq.s16d.

APPENDIX B: THE CHARACTERISTIC SYSTEM OF
DIFFERENTIAL EQUATIONS OF THE
HAMILTON–JACOBI EQUATION „16…

Let us assume thatJsqd is the geodetic distance function
and a solution of the partial differential equations16d; then
we want to characterize the field of extremals such that these
extremal curves transverse all families of contour line sur-
faces,Jsqd=const, as explained in Sec. II B. Now we define
a field vectorp in the region of the PES considered by the
equation

p = =qJsqd. sB1d

Substituting Eq.sB1d in Eq. s16d we have

pTp

gTg
= 1. sB2d

Now we use the family of curves defined by the ordinary
differential equations14d,

1

ÎS dq

dt8
DTS dq

dt8
D

dq

dt8
=

dq

ds
=

p
ÎpTp

, sB3d

where the vectors=qJsqd andg that appear on the right-hand
side of Eq.s14d are substituted by the vectorp by using Eqs.
sB1d andsB2d, respectively. Equations3d has also been used
to change the independent variablet8. The vectorp becomes
a function of the independent variablet8 along the curve
characterized by the system of differential equationssB3d.
By differentiation of the vectorp with respect to this inde-
pendent variablet8, we obtain

1

ÎS dq

dt8
DTS dq

dt8
D

dp

dt8
= f=q=q

TJsqdg dq

dt8

1

ÎS dq

dt8
DTS dq

dt8
D .

sB4d

By differentiation of the partial differential equations16d
with respect toq, and after some trivial rearrangements we
obtain the identity

f=q=q
TJsqdg p

ÎpTp
− H

g
ÎgTg

= 0. sB5d

Finally using Eqs.sB3d–sB5d and s3d, we get

1

ÎS dq

dt8
DTS dq

dt8
D

dp

dt8
=

dp

ds
= H

g
ÎgTg

. sB6d

Thus Eqs.sB3d andsB6d or Eqs.s21d ands22d characterize a
family of curves as extremal curves and correspond to the
characteristic system of differential equations associated to
the partial differential equations16d and consequently these
extremal curves are the extremals of the variational problem
given in Eq.s4d.

APPENDIX C: PROOF OF EQ. „26…

The functionalFsq ,dq /dt8d defined in Eq.s4d can be
expanded with respect to the argumentdq /dt8 using a Tay-
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lor’s series up to first order with the remainder around the
point dq /dt8=g, the tangent of the extremal curves of the
field of extremals,

FsqC,dqC/dt8d = FsqC,gCd + sdqC/dt8 − gCdT=dq/dt8

3FsqC,dq/dt8dudq/dt8=gC + 1
2sdqC/dt8

− gCdTf=dq/dt8=dq/dt8
T FsqC,dq/dt8dgdq/dt8=gC

*

3sdqC/dt8 − gCd, sC1d

where the vectorgC
* =gC+usdqC /dt8−gCd with 0,u,1,qC is

a point of the region of the PES covered by the field of
extremal curves, the SD lines emerging from the fixed point
qR,dqC /dt8 is the tangent vector of an arbitrary curveC em-
bedded in this field of extremals at the pointqC and the
gradient vectorgC=gsqCd is the tangent vector of the ex-
tremal curve also called tangent of the field at this pointqC.
Now we rearrange Eq.sC1d as follows:

FsqC,dqC/dt8d − FsqC,gCd − sdqC/dt8 − gCdT=dq/dt8

3FsqC,dq/dt8dudq/dt8=gC = 1
2sdqC/dt8 − gCdT

3f=dq/dt8=dq/dt8
T FsqC,dq/dt8dgdq/dt8=gC

*sdqC/dt8 − gCd.

sC2d

Substituting in the left-hand side of Eq.sC2d the expressions
for FsqC ,dqC /dt8d and=dq/dt8FsqC ,dq /dt8d, which are given
in the Eqs.s4d and s11d, respectively, and after some trivial
rearrangements we get

ÎgC
TgCÎsdqC/dt8dTsdqC/dt8d − gC

TsdqC/dt8d

= 1
2sdqC/dt8 − gCdTf=dq/dt8=dq/dt8

T

3FsqC,dq/dt8dgdq/dt8=gC
*sdqC/dt8 − gCd. sC3d

Finally, substituting Eq.sC3d in Eq. s25d we obtain Eq.s26d.

APPENDIX D: ANALYTICAL REPRESENTATION OF
CONJUGATE POINTS BELONGING TO SD
LINE, PROOF THAT A SD CURVE CONNECTING
BOTH A MINIMUM AND A FIRST-ORDER SADDLE
POINT IN THE PES AND EMBEDDED IN A
CENTERED FIELD OF SD CURVES DOES NOT
CONTAIN CONJUGATE POINTS

The origin of the concept of conjugate points of a field
of extremal curves is related to the following question: given
an extremal curveqst8d, i.e., a curve satisfying Eq.s6d, and
the varied curveq*st8d=qst8d+zst8d, which conditions have
to be imposed onzst8d such that the varied curveq*st8d is
also an extremal curve satisfying Eq.s6d? To answer this
question first we substitute the curveq*st8d=qst8d+zst8d into
the Euler–Lagrange equations6d

=qFsq + z,dq/dt8 + dz/dt8d

−
d

dt8
f=dq/dt8Fsq + z,dq/dt8 + dz/dt8dg = 0. sD1d

Second, taking into account thatqst8d is also a solution of the
Euler–Lagrange equations6d, using Taylor’s series and ne-
glecting infinitesimal order higher than one with respect to

both zst8d and dzst8d /dt8, and finally combining terms, we
obtain the linear differential equation

d

dt8
Fs=dq/dt8=dq/dt8

T Fd
dzst8d

dt8
G

− Fs=q=q
TFd −

d

dt8
s=q=dq/dt8

T FdGzst8d = 0. sD2d

Equation sD2d is the Jacobi equation26 of the variational
problem given in expressions4d. The Jacobi equation, except
for infinitesimals of order higher than one with respect to
zst8d anddzst8d /dt8, is the linear differential equation satis-
fied by the difference between two neighboring or infinitely
close extremal curves. Given two neighboring extremal
curves,q*st8d and qst8d, of a centered field of extremals,
emerging from the same initial point,qR=qs0d, the differ-
ence vector function,zst8d=q*st8d−qst8d, satisfying Eq.sD2d
is a nonzero solution of Jacobi equation within an infinitesi-
mal order higher than one relative tozst8d anddzst8d /dt8. In
the present case,N solutions of the Jacobi equationsD2d
exist, N being the dimension ofq vector. The set of initial
conditions for each one of theseN solutions of the Jacobi
equationsD2d are obtained as follows: the initial point is the
central point,qs0d=qR, and the vector differencezs0d is a set
equal to the zeroed vector,zs0d=0, whereas its first deriva-
tive with respect to t8 ,dzst8d /dt8ut8=0=1, where 1T

=s11,… ,1Nd.
Given an extremal curveqst8d the pointqCP=qstCPd is

said to be a conjugate point to the central point of the field
qR=qs0d, if at qCP=qstCPd the differenceq*stCPd−qstCPd,
q*st8d being a neighboring extremal curve emerging from the
same initial point qR=qs0d, is an infinitesimal of order
higher than one relative tozstCPd anddzst8d /dt8ut8=tCP

.
Now, we apply these results to the SD curve emerging

from theqR point that arrives to the first-order saddle point
qFOSP. Substituting the integrandFsq ,dq /dt8d, given in ex-
pressions4d, into Eq. sD2d, after some rearrangement we
obtain the corresponding Jacobi equation for the variational
problems4d,

− gTgP
d2zst8d

dt82 − ÎgTgSgTHg

gTg
sI + Qd − HQ

− QHDdzst8d
dt8

+ sHPH − HPHQ − HQHP

− PHQH − QHPHdzst8d = 0, sD3d

whereI is the unit matrix,g is the gradient vector, andH is
the Hessian matrix at the pointq of the SD curve, the ma-
trices P and Q are the projectors,P= I −ggT/ sgTgd, and Q
=ggT/ sgTgd, respectively. In the derivation of Eq.sD3d only
the quadratic terms in the expansion of the PES around the
point q have been considered. As a consequence the whole
integration of the Jacobi equation fromqR=qs0d to qFOSP

=qstd associated to a SD curve is carried out by stepwise
quadratic approximation, using Eq.sD3d. Notice thatt8=0 at
theqR point andt8= t at theqFOSPpoint. The vectorzst8d and
its derivatives with respect tot8 are expressed as a linear
combination of the eigenvectors of the Hessian matrixH,
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namely, zst8d=Vast8d ,dzst8d /dt8=Va8st8d, and d2zst8d /dt82

=Va9st8d, V being the matrix defined by the set of orthonor-
mal eigenvectors of theH matrix. When the SD curve arrives
at the first-order saddle pointqFOSP, then around this point in
the direction of the SD curve, the gradient vector can be
approximated asg<CvTV, wherevTV is the column vector of
theV matrix corresponding to the normalized eigenvector of
the Hessian matrix with negative eigenvalue andC a small
scalar taking the valueC=0 at the first-order saddle point.31

With these considerations, at the first-order saddle point,
qstd=qFOSP, the first two terms of Eq.sD3d vanish. On the
other hand, since at the first-order saddle point the matrix
P= I −vTVvTV

T and the matrixQ=vTVvTV
T , then the terms,

PHQ=QHP=O, O being the zeroed matrix. As a conse-
quence the remainder term of Eq.sD3d is HPHVastd=0.
Since we are interested in the SD curve that arrives at the
first-order saddle point, we multiply from the left the remain-
ing term by bothvTVvTV

T and I −vTVvTV
T resulting infastdgTV

Þ0 andfastdgi =0 ∀ i =1,N andi ÞTV, respectively. Taking
into account the initial conditions, zs0d=0 and
dzst8d /dt8ut8=0Þ0, and invoking the continuous dependences
of the solution of Eq.sD3d with respect to these initial con-
ditions, thenastdÞ0,a8stdÞ0, anda9stdÞ0. Consequently,
the solution of Eq.sD3d related with the SD curve that ar-
rives at the first-order saddle point,qFOSP=qstd, from the
minimum point, qR=qs0d, is such that zstd
Þ0,dzst8d /dt8ut8=tÞ0 and d2zst8d /dt82ut8=tÞ0, by invoking
the transformationzst8d=Vast8d ,dz,st8d /dt8=Va8st8d, and
d2zst8d /dt8=Va9st8d at t8= t. This result shows that the first-
order saddle point is not a conjugate point with respect to the
central pointqR, a stationary point character minimum in the
PES.

APPENDIX E: MATHEMATICAL BASIS OF THE
NEWTON–RAPHSON METHOD SOLVED IN BOTH A
KRYLOV SUBSPACE AND ITS COMPLEMENTARY
SUBSPACE USED IN THE MINIMIZATION OF THE
FUNCTION GIVEN IN EQ. „29…

In this appendix we derive the set of equations of the
Newton–Raphson algorithm to be applied in the minimiza-
tion of the function given in Eq.s29d with respect to the
parameters that characterize the arbitraryC curve to locate a
SD curve. The Newton–Raphson equations are projected and
solved in both a Krylov subspace and its complementary
subspace. The Krylov subspace is generated during the mini-
mization process. This method has been reviewed several
times and used in different contexts.28,29,32–34

At the sm+1dth iteration of the minimization process,m
.1, the current curve is denoted byCm, the point vector of
the vertexi by qCmi, and the WeierstrassE-gradient vector by
=qCi

EapproxsqCi ,gCi , =qCiduC=Cm
. The dimension of these two

vectors isN. The WeierstrassE-gradient vector can be evalu-
ated by either Eq.s31d or Eq. s32d. There exists a set ofm
vectors hqCvijv=1

m and the corresponding Weierstrass
E-gradientsh=qCi

EapproxsqCi ,gCi ,DqCiduC=Cv
jv=1

m for each point
vertex i. We define the matrixA i

smd which is a projector onto
the subspace defined by the vector differenceshsqCvid
−qCmijv=1

m−1. The matrixBi
smd corresponds to the projector onto

the complementary subspace. BothA i
smd andBi

smd are the ma-
trices of dimensionN3N. These matrices have the following
properties:A i

smd+Bi
smd= I ,A i

smdA i
smd=A i

smd ,Bi
smdBi

smd=Bi
smd, and

A i
smdBi

smd=O, whereI is the N3N identity matrix andO is
theN3N zeroed matrix. The explicit form of theA i

smd matrix
is

A i
smd = Ri

smdfsRi
smddTsRi

smddg−1sRi
smddT, sE1d

whereRi
smd is a rectangular matrix of dimensionN3 sm−1d

whose column vectors are defined by vector differences be-
tween the current and the previous position vectors,

Ri
smd = fsqC1i − qCmid,…,sqCm−1i − qCmidg . sE2d

The set of column vectors that defines theRi
smd rectangular

matrix is assumed to be linearly independent.
The application of the Newton–Raphson method to

minimize the functionhDfDVR→PgCjapprox, defined in Eq.
s29d, at the pointi for the iterationm, results in the following
expression:

fu=qCi
=qCi

T EapproxsqCi,gCi,DqCiduC=Cm
gsqCm+1i − qCmid

= u− =qCi
EapproxsqCi,gCi,DqCiduC=Cm

, sE3d

whereqCm+1i is the position vector of the vertexi of the new
curveCm+1, and the matrix=qCi

=qCi

T EapproxsqCi ,gCi ,DqCiduC=Cm

is the WeierstrassE-Hessian matrix evaluated in the point
vertexi of the curveCm. Using the above projectors and their
properties, Eq.sE3d can be rearranged as

Bi
smdsqCm+1i − qCmid

= − fu=qCi
=qCi

T EapproxsqCi,gCi,DqCiduC=Cm
g−1

3hu=qCi
EapproxsqCi,gCi,DqCiduC=Cm

+ fu=qCi
=qCi

T EapproxsqCi,gCi,DqCiduC=Cm
g

3A i
smdsqCm+1i − qCmidj . sE4d

From Eq.sE4d we see that if we know the variation of the
position vector within the current Krylov subspace,
A i

smdsqCm+1i −qCmid, then we can compute the variation of the
position vector in the corresponding complementary sub-
spaceBi

smdsqCm+1i −qCmid. If we define the vectorci
smd of di-

mensionm−1 as

Ri
smdci

smd = A i
smdsqCm+1i − qCmid sE5d

and we multiply Eq.sE4d from the left byA i
smd, we obtain

0 = A i
smdfu=qCi

=qCi

T EapproxsqCi,gCi,DqCiduC=Cm
g−1

3 hu=qCi
EapproxsqCi,gCi,DqCiduC=Cm

+ fu=qCi
=qCi

T EapproxsqCi,gCi,DqCiduC=Cm
gRi

smdci
smdj .

sE6d

Now, the action of the WeierstrassE-Hessian matrix
=qCi

=qCi

T EapproxsqCi ,gCi ,DqCiduC=Cm
on the Ri

smd matrix is ap-
proximated as follows:
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fu=qCi
=qCi

T EapproxsqCi,gCi,DqCiduC=Cm
gRi

smd

< fsu=qCi
EapproxsqCi,gCi,DqCiduC=C1

− u=qCi
EapproxsqCi,gCi,DqCiduC=Cm

d,…,

3su=qCi
EapproxsqCi,gCi,DqCiduC=Cm−1

− u=qCi
EapproxsqCi,gCi,DqCiduC=Cm

dg = Gi
smd. sE7d

The Gi
smd matrix is a rectangular matrix of dimensionN

3 sm−1d defined by the set of vector differences between the
current and previous WeierstrassE-gradient vectors. Multi-
plying Eq. sE6d from the left bysRi

smddT and substituting Eq.
sE7d, we obtain

0smd = sRi
smddTfu=qCi

=qCi

T EapproxsqCi,gCi,DqCiduC=Cm
g−1

3 hu=qCi
EapproxsqCi,gCi,DqCiduC=Cm

+ Gi
smdci

smdj ,

sE8d

where0smd is a zeroed vector of dimensionm−1. To solve
Eq. sE8d, first we define the matrix

Di
smd = sRi

smddTfu=qCi
=qCi

T EapproxsqCi,gCi,DqCiduC=Cm
g−1Gi

smd

sE9d

and the vector

ei
smd = sRi

smddTfu=qCi
=qCi

T EapproxsqCi,gCi,DqCiduC=Cm
g−1

3 u=qCi
EapproxsqCi,gCi,DqCiduC=Cm

. sE10d

Notice that the dimensions of theDi
smd matrix and theei

smd

vector aresm−1d3 sm−1d andsm−1d respectively. With the
above definitions, the solution of Eq.sE8d is

ci
smd = − fsDi

smddTsDi
smddg−1sDi

smddTei
smd. sE11d

Substituting the resulting value of theci
smd vector in Eq.sE5d

we obtainA i
smdsqCm+1i −qCmid vector. Using the set of equa-

tions sE4d, sE5d, andsE7d, we obtain an expression to com-
pute the termBi

smdsqCm+1i −qCmid,

Bi
smdsqCm+1i − qCmid

= − fu=qCi
=qCi

T EapproxsqCi,gCi,DqCiduC=Cm
g−1

3hu=qCi
EapproxsqCi,gCi,DqCiduC=Cm

+ Gi
smdci

smdj .

sE12d

Finally, taking the vectorA i
smdsqCm+1i −qCmid and the vector

Bi
smdsqCm+1i −qCmid, evaluated from Eq.sE12d, we obtain the

position vector of the vertexi of the new curveCm+1,

qCmi + A i
smdsqCm+1i − qCmid + Bi

smdsqCm+1i − qCmid

= qCmi + sqCm+1i − qCmid = qCm+1i . sE13d

In standard applications of the above method, the Weierstrass

E-Hessian matrix=qCi
=qCi

T EapproxsqCi ,gCi ,DqCiduC=Cm
, which

appears in Eq.sE11d, through theDi
smd matrix and theei

smd

vector, and in Eq.sE12d, is normally taken as a unit matrix or
as a diagonal matrix.

As a summary the algorithm at thesm+1dth iteration, and
for each point vertexi, only needs the position vector
qCmi, the Weierstrass E-gradient vector
=qCi

EapproxsqCi ,gCi ,DqCiduC=Cm
, and the matricesRi

smd and
Gi

smd, defined in the expressionsE2d and sE7d, respectively.
With these vectors and matrices solve the set of equations
sE11d, sE5d, andsE12d, and finally using Eq.sE13d compute
the new position vectorqCm+1i.
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