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The definition and location of an intrinsic reaction coordinate path is of crucial importance in many
areas of theoretical chemistry. Differential equations used to define the path hitherto are
complemented in this study with a variational principle of Fermat type, as FukuiJ. Quantum
Chem., Quantum Chem. Symp5, 633(1981)] reported in a more general form some time ago.
This definition is more suitable for problems where initial and final points are given. The variational
definition can naturally be recast into a Hamilton—Jacobi equation. The character of the variational
solution is studied via the Weierstrass necessary and sufficient conditions. The characterization of
the local minima character of the intrinsic reaction coordinate is proved. Such result leads to a
numerical algorithm to find intrinsic reaction coordinate paths based on the successive
minimizations of the Weierstrads-function evaluated on a guess curve connecting the initial and
final points of the desired path. @005 American Institute of PhysidDOI: 10.1063/1.1927521

I. INTRODUCTION action coordinatélRC).2 However, in some cases the IRC is
not the most appropriated MEPThe tangent vector of the
An interesting problem in theoretical chemistry is to find Sp |ines and specifically the IRC curve line is characterized
the lowest energy path of an adiabatic potential energy sulhy an autonomous system of first-order differential equa-
face (PES associated to a molecular rearrangement from gjons. The tangent vector at each point of the lig(s)], is

stable configuration state to another, normally associated tgquated to the normalized gradient vectsig) =V V(q), of
reactants and products. This lowest energy path or minimurthis point of the PESY(q),

energy path(MEP) is often referred as reaction patRP).
From a mathematical point of view, the RP is defined as a
curved line in the coordinate space, connecting two minima
through a first-order saddle poifOSB, also known as the
transition state of a PES. The RPs are the grounds of manyhereq(s) represents a point of the curve ajgfiq(s)]| the
dynamical theories. The saddle point gives us the energgorm of the vectorg(q) evaluated at the poirg(s) of the
barrier, which is the most important quantity to evaluate thecurve. The dimension aj(s) position vector and the gradi-
transition rates of the rearrangements within the harmonient vectorg(q) is N, N being the number of independent
transition state theoryThe reformulation of the famous re- variables. There are a variety of numerical methods to solve
action path HamiltonianRPH) shows the importance to the differential equatioril). We propose an analysis of the
evaluate first a RP and second to run molecular dynamicSD curves and specifically of IRC curve through the calculus
constrained to this path. In this way, the RPH methodologyof variations and Hamilton—Jacobi thedryThe Hamilton—
and in turn the RP offers the possibility to study dynamics.Jacobi theory has been used in other fields to deal with the
Using this type of restricted nuclear movement one recoveritegration of ordinary differential equations. This theory
many important molecular dynamic effeéts. formulates the calculus of variations through a nonlinear
Different definitions of RP produce different curve lines first-order partial differential equation, called Hamilton—
in the PES and the parametrization of these lise called  Jacobi equatiofi.
the reaction coordinate. The reaction coordinate is in fact an  The integration of the partial differential equations is in
arc-length of the RP. In theoretical chemistry, one of the mosgeneral much more difficult than the integration of the ordi-
used RP is the corresponding steepest des(&D} curve nary differential equations. The Hamilton—Jacobi theory
from the FOSP to reactant or product. This SD reaction patlachieves, in a beautiful manner, to reverse this relationship in
in mass weighted coordinates is normally called intrinsic resome situations. Very often, many applied mathematical
problems lead to a system of ordinary differential equations
9E|ectronic mail: resqtc@iigab.csic.es as in the calculus of variations. These equations may be dif-
P'Corresponding author: jmbofill@ub.edu ficult to integrate by elementary methods, but the corre-

dq(s) _ 9]
s'=s |g[q(s)]|'

tla(s)]= (1)
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sponding partial differential equation can be transformeddescribe, from a rigorous mathematical point of view, the
easily into a complete integral by the separation of variables-ermat—Huyghens construction of propagation of Ii?th&s

If the complete integral is obtained, then one solves the corpointed out before, Tachibana and Fukui studied and ana-
responding system of characteristic differential equations byyzed the IRC curve using the calculus of variations and
a process based on differentiation and eliminafi@ecause Synge’s principlel,o’11 however, we revisit this study starting
the proposed IRC reaction path is described mathematicallffom a functional like the one that appears in the description
by the total differential equatioft), it should be interesting of Fermat-type variational principles.

to investigate the possibility to derive the corresponding We emphasize that the main aim of this work is to for-
Hamilton—Jacobi equation for this type of RP. In addition themulate, in a consistent and mathematically precise way, the
resulting Hamilton—-Jacobi equation may open other ways tvariational character of the IRC curves in terms of the
evaluate the IRC curve line. Tachibana and Fukui were thélamilton—Jacobi theory. Thus we give a sound basis to many
first authors to investigate the IRC path nature from the calof the ideas proposed and used in previous wétkes well
culus of variationd-** These authors obtained the variational as suggest a new algorithm, which we will describe later.
results by using different ways, namely, the Synge’s geodesic  The present work is organized as follows: first, in Sec. Il
principle, the Hamilton principle through an extended La-we present a derivation of the SD curves based on the Fermat
grangian, and finally geodesic lines in a Riemannian sblace_variational principle. The goal of this section is also to pro-
The results obtained by these authors have been developed\igle the necessary background on the Hamilton—Jacobi
propose new methods to evaluate the IRC path. The firgheory for a sufficient understanding of this paper. The for-
attempt to find an IRC based on variational methods, as famulation is written using the symbolism normally employed
as we know, is due to Staché and Barn fact the algorithm  in the Hamilton—Jacobi theory. We derive the corresponding
proposed by these authors consists in the variation of a guestmilton—Jacobi equation, the characteristic equations for
curve and the successive correction of this curve based dfie SD curve lines. The concept of the field of extremals
Mezey's theory of catchment regions of the gradient field ofapplied to SD curves is introduced, too. Two different deri-

the PESE Other methods to obtain the IRC path based orvations of Hamilton—Jacobi equation are reported. The
variations or shifts of an initial guess curve have been prosecond-order necessary and sufficient variational conditions

posed and are now widely us&g?4 are also studied to analyze the character of the extremal

The IRC path defined by Eql) is in fact an orthogonal ~CUrves, the SD curves. This result is done through the so-
trajectory to the contour surfac¥(q)=const. In the deter- called Weierstrass necessary and sufficient conditions and the
mination of this type of paths the relation between the graJaCObi equatiof® In particular, the solution of the Jacobi
dient fields and the associated maps of these orthogonal trduation for the SD curve situated in a region sufficiently
jectories is relevarf Due to this relation, there exists thus close to a first-order saddle point is reported and analyzed. In
both theoretical and practical reasons for expecting to gai€C- !l @ new method to evaluate the IRC path is formulated.
insight into the structural characteristics of the gradient fieldd" order to obtain a variational method, which actually speci-
of potential energy surfaces and the IRC paths. On the othé'r_es how to correct the set of parameters that _characte_nze a
hand, the basic and complete picture of the problems in thEi@l curve, one must expand the corresponding functional
calculus of variations from the Hamilton—Jacobi theory con-Peyond first order in the set of variational parameters. How-
sists in a relation between contours of a surface and curve§Ver 0 obtain sufficient conditions one must allow each pa-
These curves are never tangent to these contour surfaces. fineter to vary in the correct direction. As a consequence,
addition the difference between two contour lines of thesd"® Proposed method is based on the nature of the second-
surfaces is related to a functional depending on some argl5>_rder necessary and sufﬁmen't variational condl'tlon.s associ-
ments that characterize these curde3he parallelism be- ated with the IRC curve line. Finally an example is given and
tween the IRC curve model and the Hamilton—Jacobi theory©Me conclusions are drawn.
of the calculus of variations opens the question in both the
reformulation of the IRC path from this point of view and
new possibilities for determining this type of paths. These|. THE FERMAT VARIATIONAL PRINCIPLE AS A
two points are the aim of this paper. THEORETICAL BASIS OF IRC MODEL

The. SD curves emerging from a stationary pomt. characA_ The first-order necessary condition
ter minimum in the PES can be seen as traveling in an or-
thogonal manner through the contour lines of this PES. In  We consider the SD as a path that propagates in a media,
addition, it should be noted that the construction of contouthe PES, employing the minimum travel potential energy.
potential energy surface¥/(q)=const, such that all points The travel potential energy of this steepest descent is from a
satisfying this equation possess the same equipotential diffefixed pointgg to a variable end poirg in the PES. For future
ence with respect to another contour line and specificallypurpose, the fixed poingr is taken as a stationary point
with the value of the PES in the minimum, is similar to the character minimum of the PES. Using the calculus of varia-
construction of the Fermat—Huyghens of propagation of thdions, the above problem with these conditions can be formu-
cone rays. This similarity gives the possibility to study thelated as follows: we are choosing the curve from the set of all
SD curves from Hamilton—-Jacobi theory and the calculus osmooth curveg(s) all starting from the pointjg=q(0) and
variations point of view. It is important to remember that the passing through the poimt=q(s), with tangentdq/ds that
Hamilton—Jacobi theory was formulated for the first time tominimizes the integral,
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S ds
AVg q= | —
Ra fo U(S’),

2

wheres s the arc-length of the path joining the pointsand

g, and v(s') is a “velocity” or the continuous slowness

model. The magnitude(s’) is taken non-negativey(s’)

=0. In order to connect this variational principle with the SD
curve lines and specifically with the IRC, we take using Eq.
(1), v(s")=|dlq(s") ]I, the inverse of the gradient norm. On

the other hand, we consider the arc-lengjtho be a function
of a new parametet’ defined as

} d_qT<d_q>,
ds = ( dt,) g LU (3

where the superscripi means transposed. With these two

definitions, the above variational problem given in E2).
can be reformulated in the form

t
AVgr_.q(Q) = f Vlg(a)]Tg(e)]V(da/dt’) (da/dt’)dt’
0

)

This integral functional4) is positive homogeneous of de-
gree one with respect to the tangent veatqfdt’ and does
not depend explicitly on the choice of the parametethat
characterizes the cur?é® This type of functional was also
proposed some time ago by Fulatial*>**and Elberet al*®

F(q,dg/dt")dt’. (4)
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d
VqF - E(qu/dt’ F) =0. (6)

If the curveq(t’) is an extremal, the integral in E¢G) van-
ishes, then the conditiofAVg_4(q)=0 takes the form
{(Vegrar F)"AG + [ F = (Vg F) Tda/dt’ JAL}, = 0. (7)

Applying these general results to the present problem, the
Euler—Lagrange equatioi) takes the form

(o) (&)

dq
Hg dt/2 \“”ng
T T T =0,
N EIENEIR
dt’ dt’ dt’ dt’

(8)
whereH is the Hessian matri :ngT, andl is the identity
matrix. Thedq/dt’ vector is the tangent vector of thgt’)
curve. The solution of Eq8) is the autonomous differential
equation

Tl ©

dt’

whereg[q(t’)] is the gradient vector evaluated at the point
q(t’) of the curve. The normalization of E¢(P) leads to Eq.

In this formulation of the variational problem, the solution (1). We conclude that expressigf) is the normalized tan-
consists in finding the curveg(t’) connecting both points of gent vector of the path that extremalizes the functional
the PESgr=0(0) andgq=q(t), which minimize the integral AVy_4(q) defined in Eq.(4). In other words, the SD curve
functional(4). The integral functionaAVg_,4(q) given either  connecting the pointg andq is an extremal curve of the
in Eq. (2) or Eq.(4) is of the same type as that appearing invariational problem defined in expressiga), AVr_q4().
Fermat variational principlesFrom the calculus of varia- This point may be envisaged in the following way: a p&th
tions, we apply the basic formula for the general variation ofstarting at the pointjz=q(0), propagates through the PES

the functional to the problen¥), AVg_4(q), regarding the
pointgg as a fixed point and the poigtas a variable. In the
region of the PESAVg_4(q) is a single-valued function of
the coordinates of the poiat The basic formula which gives
the first-order variation of the function&lVg_,,(q) with re-
spect toq andt is

t T

d
5AVR~>q = f |:VqF - J(qu/dt/ F) Z(t’)dt’

0
+ {(qu/dtrF)TAq + [F - (qu/dtrF)qu/dt,]At}t,
(5

whereV;=(aldxy,...,dl dxy),z(t')=q"(t")-q(t’),q"(t") and

according to the speed law or continuous slowness model,
v(s)=|dlq(9)]|™%, arrives at the poing=q(s), traveling with

the least potential energy variatidtVg_4(q), as defined in
Eq. (4), then this path is characterized by the normalized
tangent given in Eq(1). We note that the condition of least
potential energy variatiom\Vg_4(q), as defined in Eq(4),

will be proved below.

B. Derivation of the Hamilton—Jacobi equation and
the corresponding characteristic system of
equations

The functionalF(q,dq/dt’), given in Eq.(4), is defined
on the curves lying in some region of the PES. We take the

q(t") being two neighboring curves in this region of the PES,unique extremal curve that goes through the pgigto the

both starting at the poimjgz. The curveq’(t’) connects the
pointsqg,t’=0 andq+Aq,t’ =t+At and the curvej(t’) con-
nects the pointsgjg,t’=0 andq,t’=t. The tangentq/dt’ is
evaluated at the poirg(t). Then, the conditior’AVg_4(q)
=0 implies that the curve(t’) must be an extremal, i.e., a
solution of Euler-Lagrange equatidalso known as Euler
equation or Lagrange equation

arbitrary pointg. The integral(4) evaluated along this ex-
tremal curve, namely, the SD curve, joining these two points
takes the valuel(q)=AVg_4(q). Using the language of
Hamilton—Jacobi theory, this functial{q) is called the geo-
detic distance between the poimig andg. As explained in
the Introduction, to see the IRC method through the
Hamilton—Jacobi theory, we use the symbols and the defini-
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tions normally employed in this mathematical theory. Apply-equation in the present variational problem. The connection
ing Eqg. (5) to the extremal curve, SD, at the poinft), and  between expressiofl6) and the Hamilton—Jacobi equation
taking the first-order variation in bothq and At, i.e., Aq is explained in detail in Appendix A, where another deriva-
—dg,At—dt, and the value of the tangent vector of the tion of Eq.(16) is also given. As far as we know, this is the
extremal curve at this pointlg/dt’|,,-,=dq/dt, OAVg_.4(a) first time the Hamilton—Jacobi equation is formulated for the
is transformed into a total differential equatiodAVg_.4(q) SD path, however, as indicated in the Introduction close re-
=dJ(g), namely, sults were obtained by Tachibana and Fuldt.
_ _ T Equation(16) tells us that as the parameteszvolves, the

AVR-4(Q) = dXq) = (VagiaF) 'da coordinatesqg(t) evolve and the contour line with constant
+[F- (qu,th)qu/dt]dt (10 potential energyl changes, through the coordinatgsand a
point of this contour line is linked to a point of the neighbor-
hood contour line. This set of points defines a curve which
extremalizes the functiond¥). This curve is in the present

evaluated at the poirg,t. From this total differential equa-
tion, we introduce the definition of the vector, namely,

dq \ﬁ case the SD line that goes from thg point to theq point in

Vagratk = at o\ g\ =Vql=p (11D the PES. Now we can establish some analogies between the

(_q) (_q) propagation of light through a medium having a variable

dt dt index of refraction and the present problem. The light rays

and are given as extremal paths of least time, now the SD curves
are extremal paths of the PES. The construction of solutions

= (qu,th)qu/dt: o =0. (12) of the eiconal equatiofiL6) as a contour line with constant
ot potential energy is similar to the Fermat—Huyghens principle

for the construction of wave fronts.

For future purposes, at this point, we deal briefly with
the concept of field of extremal curves which satisfy the
trivial Hamilton—-Jacobi equatio(iL6). The geodetic distance
depend only org. Proceeding as in the normal calculus of introduced above is dgflned frqm a fixed poip of the

) extremal curve to a point of a fixed surfatHq,t)=const.

variations, f_rom the expressu_mO) and using the_Legendre .This concept of geodetic distance arises by considering the
transformation, one derives the Hamilton—-Jacobi.

. . : initial poin f an extremal curv fix n kin
equation®?® However in this case the Legendre transforma- tial point gg of an extremal curve as fixed and seeking a

. . . o final point q on the given surfacél(q,t)=const in such a
tion cannot be applied since the functibnis homogeneous way that the geodetic distanckeremains stationary under
of degree one with respect tig/dt argument. This is the Y 9 y

: - variations of the point. Thus in formula(10) we have in-
reason why both Eq12) and the determinant of the matrix troduced the value zero for the variationdsf anddt of the

In the evaluation of both Eq$11) and (12), the functional
form of F given in the expressiofd) has been used. The
result of Eq.(12) is the reason why the geodetic distance
function J and its total differential form, given in Eq10),

dg\/dg\" end pointg sincedJ(q)=0 and the initial poinigg is fixed.

. Vg'g dt )\ at This condition is always satisfied if the poigtis varied on
VagratV agraF = o\ d I = dq\"/ dq the surfacdl(q,t) = const, which means that the vanishing of
\/(d—?> (d—?> (a) (E) Eqg. (10) is a consequence of the fact that the differentiated

form of the surfacell(q,t)=const, vanishes,
(13

all
— T T qt=
vanish. In the present case we proceed in the following way, diT=(Vqll)'dq + ot dt=0. 17

from Eq. (11) we obtain thedq/dt argument . )
Comparing both Eq910) and(17) and using Eqgs(11) and

( dg >T< dg ) (12) we see thap=VJ=V,I1=VqquF, and 4/ at=all/
dt dt =F—(qu,th)qu/dt=0. Notice that in the present case the
\ﬁ (14 surface depends only on the coordinagebl(q) =const, and
from this we infer thatll(q) corresponds td(q). The last
From the homogeneity relation & we have result is the so-called transversality condifiéfwhich in the
T - T present problem is a relation between the coordingqteta
F= (d_q) VoaF = (d_q) Vv .J= \ﬁ (d_q) <d_q) point of the surfacdl(q)=const, thep vector, and the tan-
dt/ de/ ¢ dt/ \dt gentdq/dt of the extremal curve, a SD line. Finally in the
(15) present problem, the field of extremal curves is centered in

o . the pointqg, where all the extremal curves, the SD lines,
Multiplying Eq. (14) from the left by(V,J)™ and using Eq. emerge.

dq

=V,J
dt ¢

(15 we obtain Expression(10) gives us the derivatives aof, and its
(V. 9)T(V,J) total differential form enables the evaluation of the geodetic
—qﬁ— =1. (16)  distance of an extremal curve as a line integral of this total

differential form and also the computation of this geodetic
Equation(16) is a partial differential equation in th€,J  distance independent of the curve used. Let us assume an
taking the place of the Hamilton—Jacobi equation or eiconaérbitrary piecewise smooth curéedefined in the region of
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the PES connecting the fixed poigg and the variable end 1 dq dq p
point g. This arbitrary curve, not necessarily an extremal \/ﬁ@ _d_s_ﬁ'
curve (SD curve, is defined at each point of this region by (—,) (—,)

the functiong.(t) and its tangent byq./dt. According to the dt dt

previous discussion, in the present field of extremals, th&quation(21) gives us the evolution of the tangent vector of

characterization of the extremal curves at each point of theghe extremal curve. The equation for the evolution of phe

considered regiong(t), embedded in this field, is given by vector is derived from the set of Eq®), (4), (6), and(11),
the corresponding tangent vectdg/dt and thep vector de-

(21)

fined in Eq.(11). The functionJ(q), as the line integral of the _ 1 = dp - Hi (22)
total differential form defined in Eq10) is /(d_q>T<d_q) dt’ ds g'g
at 5 dt’/ \dt’
J(q) = |:(VqJ)quC+ ?dt’] Equations(21) and (22) are the canonical system of differ-
9RO ential equations coming from the Euler—Lagrange differential
t quc ) equation(6) or, what is identical, the system of differential
= f (Vod) dt’ at dt’. (18) equations that characterizes the extremal curves of the

Hamilton—Jacobi partial differential equatiofi6).° The
Equation (18) is the Hilbert's invariant integrdl®® Using ~ Proof of this assertion is given in Appendix B. Finally we

Egs.(9), (11), and(12), Eq. (18) takes the simple form accept that the above results are quite trivial since one rec-
ognizes that Eq(21) is the tangent of the SD curve. How-
cdac) .., ever, we rewrite these equations in this manner to emphasize
Ja) = f dt’ dt that the theory of Hamilton—Jacobi can not only be used to

describe and analyze any SD curve and its field but also
+dqc gt because it gives us the basis of the proposed algorithm to
gC dt’ locate IRC paths explained below.

' ¢(dgc/dt’ _ - iati iti
:f { ge(dge/dt’) (Qe.dag/dt) |t C. The second-order variational conditions

VO¢geN (dac/dt’) T(da/dt’) So far, we have only been studying the necessary first-
(19) order variational conditions of a curve to be extremal of the
functional integral proposed in Ed@4). It is interesting to
with p being the vector field at the poirt.(t'’) and g  analyze the necessary and sufficient second-order variational
=0g[qc(t")]. According to the definition of geodetic distance conditions to ensure that the extremal curves characterized

J(q) given at the beginning of this section and the expressioy Eq. (9) minimize the functional(4). The second-order

(19), we have the next equality variational conditions are related to the weak Legendre
condition®2® and merely consist in analyzing the value and
Jq) = f Jg'o /( ) (dQ> dt’ the corTresponding sign of the determinant of the matrix,
dt’/ \dt’ VitV dg/at™ =Fdgrataqrar @long each point of the extremal
curve, wheredq/dt is the tangent of the extremal curve. If
f (92 qc)dt' :J F(q,dg/dt')dt’ this determinant is non-negative, kﬁgﬁ,dt’dq,szO, for all
dt’ points of the curve, then this curve is an extremal satisfying

‘ - , the second-order necessary weak Legendre condition and
:j { ge(dqc/dt) F(qe,dq /dt/)ldt/ possesses a minimum character in a neighborhood. On the
VolgeV(dgo/dt) T(dgy/dt) ¢ " other hand, ifFyqgyaqat 1S Strictly positive, deFgqa:agat
(20) >0, then we say that the extremal curve satisfies the second-
order necessary weak strengthened Legendre condition with
Whereg is evaluated at the pom“:(t’) of the extremal curve. minimum character in a neighborhOOd. For the present case,
We emphsize thatlq/dt’ is the tangent vector of the ex- the value of this determinant at each point of the extremal
tremal curve, namely, the SD curve joining the poigisand ~ curve, the SD line, is obtained by substituting in EIf) the
g, and the vectodg./dt’ is the tangent vector of an arbitrary Value of the tangent vector given in Eg),
curve joining the same points. Both curves are embedded in 99
the field of the vectorg. In the present variational problem, Vgrat¥ a4 = (' - T) =Fgg- (23
this field of p vectors are the gradient vectoszg(q). The « gg
two field vectors, namely, the tangent vector of the extremaFrom Eq.(23) we see that déty ;=0. This result means that
curvesdq/dt’ and thep vector, are regarded as a given func-the SD curve satisfies the necessary weak nonstrengthened
tion of the coordinates. Equation(20) will be used in the Legendre condition and makes the integral functiddala
following section. minimum with respect to continuous comparison functions,
Now, the two vectorsdg/dt’ andp, evolve in the field g’(t,7), with its continuous first derivatives in a neighbor-
of extremal curves through(t’) according to the following hood, i.e., as the parameter—0 the curveq’(t,7) —q(t)
equations. From Eg$3), (11), and(16) we have and the tangentiq”(t, 7)/dt—dg/dt, the SD curve and its
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tangent, respectively. A variationz(t,n=q"(t,n—-q(t), defined in Sec. Il B. In other words, the extremal curve, SD
which satisfies the previous two conditions7as 0, is called  line, can be embedded in the field of extremals, see below.
weak variation, and it means that the extremal cugig is ~ With this consideration, the Weierstrass sufficient condition
compared with curves that approximaté) in both slope as is formulated as follow&® we compare the values of the
well as position. In the present problem, an extremal curventegral (4) evaluated on both the extremal curve, a SD line
g(t) which minimizes the integral given in E¢4) with re-  joining the pointsgg andq(t), and an arbitrary curvé join-
spect to all weak variations is called a weak minimum and agng the same points in its neighborhood. The value of the
shown above satisfies the necessary weak Legendre conditegral (4) evaluated on this extremal curveJ&y) accord-
tion. ing to the discussion of the preceding section. We denote by

The Legendre condition is still not sufficient to guaran- A\/‘Lq(q) the value of the integrald4) evaluated over the
tee a minimum. To do so, we need to compare the extremalurveC. By evaluatingJ(q) as an integral along the path
curve with all possible curves. These types of comparisonas formulated in Eq(20), the comparison of these values is
between an extremal curve with any other type of curves imow reduced to a comparison of the integrands alone. Ac-
the basis of the second-order variation strong condition of acording to Sec. Il B, the extremal curve, the SD line, is em-
extremal also known as the Weierstrass necessajedded in the field of extremals where the tangent of the
condition?®® The Weierstrass sufficient condition in the extremals at each point of the region of the PES containing
present problem is obtained if one ensures that the region dhis extremal curveq(t’), and covered by this field is de-
the PES containing the extremal curve under considerationoted by dq/dt'=g[q(t’)]. With these considerations, the
(SD line) is covered by the type of field of extremal curves difference between these values is

t
A[AVR qle=AVk 4@ -J(@) = J [ Volge(dae/dt) T(dge/dt') - gl(dac/dt’) Jdt
0

t T ’
gl(dg./dt) } — -
= 1-+ VoggeV (dgo/dt’) T(dg/dt’) pdt’
LH Valoe(dae/dt)Tdgeldty | O ¢
t T ’ S
gl(dgc/dt) } f T
= 1- F(ge,dace/dt’) pdt’ = | | Voege = go(dae/ds)) [ds, 24
LH Voo (dagldt) (dgarary | 2 99/t) 0[ gge - GE(daclds)] (24

where the integration is taken along the cu€ye¢he gradient result means thai\/ﬁﬂq(q) =J(q), and consequently the ex-
vectorge=g(qc) and the vectodq./dt’ are the tangent vec- tremal curve, the SD line, connecting the poigtsandq(t),

tor of the field and the tangent vector of the cu6zembed- is actually a strong minimum. In particular, if we take all
ded in this field, respectively, and both tangents are evaluatealdmissible curveg different from the SD curve, which
at the pointg., a point of the region of the PES covered by means thatlq./dt’ # g., then we have a proper strong mini-
this field. To derive Eq(24), Egs. (4), (20), and (3) have  mum since in this casAVgﬁq(q)>J(q).

been used. Equatiai24) was first derived by Tachibana and The Legendre conditions are related with the Weierstrass

Fukui® The integrand of expressiai24), E-function through the expression

E(dc,9c,dgc/dt’)

=\gtgeV(dae/dt')T(dge/dt’) — gl (dac/dt’) E(dc, e, dgc/dt’)
_ [1 _ gl(dgc/dt’) F(qe.da/dt’) = 5(dae/dt’ = 90) | Vagar ng/th]dq/dt:g*c(qu/dt, -9,
[ [ , ; ’ ]
V9¢ge (dae/dt’) T(dac/dt’) (26)
(25

which in this case is a function of the argumeqtsg, and  where the matriXqu,dtVEq,th is that given in Eq(13) and
dq./dt’, is known as Weierstradgs-function. Since for each g}zgc+ 6(dg/dt’ —gc), with 0< #< 1. The proof of Eq(26)
point g, of the region of the PES covered by the field of is given in Appendix C. Since the matrix
extremals with tangerdg, and for all possible values of the [qu,dthq,th]dq,dt:g*c is a projector with respect to the vec-
tangent vectordqg./dt’, the Weierstras&-function is non- tor g, from Eg. (13 and (26) we see that,
negative, E(q.,0¢,dg./dt’) =0, then from the expression E(qc,g.,dqq/dt’)>0, if the vector(dq./dt’ —g,) is orthogo-
(24) we getA[AVg_,]=0 for all admissible curve€ de-  nal to the vectog., otherwiseE(q,gc,dq./dt’)=0. Finally,
fined in the region of the PES covered by this field. Thisusing Eq.(24)—(26), we obtain
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. dq
oint qt
nsversa\ 1in® P p,=VJ(g+dq) normal vector to transversal line
e SD €UV J V(g+da)-V(g,)
t q\ oo 5 =J(q+dq)=con,

\\4——— (1-p)dI=E(q,p, .dq./dt)dt
dJ=F(q,dqc/dtydt ™~ q+dq, where 1 zpcz-1
and con,-con,;=dJ >0

pcdJ=p] (dqc/dt)dt=p] dgc=dJc

dJ=F(q,dg/dt)dt\ arbitrary \
\__—\curve (C)
N,

tangent ‘\
dqc/ d} - ‘\'

V(@)-V(go) FIG. 1. The main scheme of the varia-
=J(g)=con, tional problem given in Eq(4). See
text for a detailed discussion.

P; =VI(q)
normal vectorto ~—~

transversal line
II at point q of
the SD curve

arbitrary
curve (C)

extremal curve (Si)l/ 4o

V{qo) =J(q,)
initial contour

geodetic circle J line of the PES
of radius dJ centered at the point q
A[AVRﬂq]C:AVgﬁq(q) -J(9) mum if in the region 6<t’ <t, whereqg=q(0) andq(t)=q,
" a conjugate point ofjz does not exist, and Eq27) is posi-
= J E(9c,ge,dgc/dt)dt’ tive definite in this interval of integration. If the interval of
0 integration 0<t’ <t containstep, 0<tcp<t, where q(tcp)

1t =(cpiS a conjugate point with respect to the central pqigt
= EJ {(dqcldt’ - gC)T[qu/dtvgq/th]dq/ng; then thg extremal cur\@(t’) is pot a minimum p'rovide(.j'that
0 the Weierstras€-function defined in Eq(26) is positive
X (dqu/dt’ - g )}dt’ (27) definite, E(qz,90,dg./dt’) =0, along the extremal cunfg.
¢ ¢ ' The conjugate pointjcp can be a stationary point character

Then the Weierstrass sufficient condition for an extremasaddle point or maximum in the PES. However, for saddle
curve to be minimal can be formulated, as E27), to be points with one negative eigenvalue, known as first-order
positive with the possibility to embed the extremal curvesaddle pointsFOSP$, only one SD curve emerging form the
joining the two pointsg(0) andq(t), in the field of extrem- ~ central pointqr arrives at this type of stationary points. As a
als. Equation(27) will be used in the following section. consequence, the first-order saddle points are not conjugate
The basic point in the theory of sufficient conditions just POINts with respect to the central poing, a stationary point
exposed and used above is the possibility of embedding th&ith character minimum in the PES. This result is proved
extremal curve under consideration in a field. If the end-from a rigorous mathematical point of view in Appendix D
points of the extremal curve are not too far, i.e., sntall using the Jacobi equation associated to the variational prob-
parameter, then it can always be embedded in a field. Wiem under consideratiot.
remember that a field is defined by the set of extremal curves Finally in Fig. 1 we show the basic scheme of all the
cutting the surfacell transversally. The set of extremal concepts just exposed for the present variational problem.
curves emerging from a central point will constitute a field The explanation of this figure is the following. A SD curve
up to its envelope or conjugate points to the central pointStarting at the pointy, of the PES transverses the contour
The first point at which neighboring extremal curves all start-lines V(q) —V(qo) =const=cor and V(q+dq) - V(qo) = const
ing at the same central point intersect is called conjugatecon, at the pointsg and q+dq, respectively. The normal
point with respect to the central point. In the envelope orvector of the transversal linell, at the pointq is p,;
conjugate points the set of extremals does notlgutans- =V4J(q)=V4V(q)=g,, whereas the normal vector of the
versally. In the present problem, the SD curves, emergingransversal line[l, at the pointg+dq is p,=V4J(q+dq)
from the pointgg, which is a stationary point character mini- =V4V(q+dq)=g,, J being the solution of the eiconal equa-
mum, intersect for the first time at the stationary points of thetion (16). These transversal lines are tangent to the contour
PES character saddle points and maxima. These types bhes. The difference between the contour lines;cmd con
stationary point are the conjugate pointss with respect to  is denoted bydJ, which is the infinitesimal geodetic distance
central pointqg. The above discussion about second-orderevaluated on the SD curve using Efj0), between the points
sufficient conditions is now reduced to the consideration thayy andq+dq. The tangent vector of the SD curve at the point
in the region of the PES containing the SD curve, the exq is dq/dt, anddq./dt denotes the tangent vector at the point
tremal curveq(t’), emerging from the poingg, is @ mini- g of another arbitrary curv€ passing through this point.



234105-8 R. Crehuet and J. M. Bofill J. Chem. Phys. 122, 234105 (2005)

The geodetic distancdJ is taken as a radius of a circle —p.F(q,dqg./dt)dt=(1-p.)dI=E(q,p4,dq./dt)dt, which is
centered at poingy, this circle is known as the geodetic non-negative everywhere as proved in Sec. Il C, specifically
circle. In this circle the equality,dJ=F(q,dqg/dt)dt after Eq.(24). These results show that for the variational
=[pip.1¥4(dg/dt)T(dg/dt)]¥?dt=F(q,dqc/dt)dt=[pip,]¥>  problem under consideration, defined in Ed), where the
X [(dg./dt)T(dg./dt) [V2dt, is satisfied. The SD path connect- functional F(q,dq/dt) is non-negative, the contour line gon
ing the pointsg andqg+dq is one of the radial curves of this is an envelope line of the geodetic circles centered on the
circle. Notice thatdJ>0, becausedt>0 and F(q,dq/dt)  contour line cop®® The above construction of solutions as
defined in expressiot¥) is positive definite and due to Eq. envelopes of the present variational problem is exactly the
(21), the value of the geodetic distancedd§=p]p,dt. Fur-  same as that used in the Fermat-Huyghens principle for the
thermore, comparing the normal vector of tHeline at the  construction of wave fronts in the propagation of Iiéﬁas
pointg+dg, we see that it coincides with the radius vector ofis already explained in the Sec. Il B.
the geodetic circle afj+dg, consequently both the contour
line con, and the geodetic circle are tangential to each othef||. THE WEIERSTRASS SUFFICIENT CONDITION AS
at that point. The above construction can be extended to all TOOL TO LOCATE THE IRC CURVE
geodetic circles of radiudJ with centers on the contour line .

A. Background of the algorithm
con,.. As a consequence of these results we say that the con-
tour line con=J(q+dqg)=con +dJ with dJ>0,J(q+dq) be- The above results about the variational nature of the SD
ing a solution of the Hamilton—Jacobi equati¢t), is an  curve open the possibility to use a variety of algorithms to
envelope line of the all possible geodetic circles of radidls integrate this type of curves and specifically the IRC curve
centered on the contour line con line. We present in this section a way to deal with the calcu-

In fact the above results only show that the geodetidation of the IRC line. The IRC curve is a SD curve line in
circles are tangential to the contour line goNow we need mass weighted coordinates connecting two minima in the
to prove that the line coris an envelope line of these circles, PES, namelygr and gp, through a first-order saddle point
in others words, the geodetic circles lie entirely on one sideqpospll Taking into account both the definition of IRC and
of the contour line conapart from the points of tangential the concept of centered field discussed in Sec. Il, the IRC
contact with it. We will show that this construction gives us path can be seen as a SD curve composed by two SD lines,
a geometrical meaning to both the Weierstr&sunction, each one being an extremal curve of one of the fields of
Eg. (25), and the Weierstrass necessary condition, (24). extremals centered or emerging from the miniggaand qp,

To prove the above question, we consider an arbitraryand both ending in a common poigposp Theqrogppoint is
curve C connecting the pointsgy and g+dg, such that not a conjugate point either for the SD line emerging from
F(q,dg./dt)dt=dJ. As a consequence the poigt-dg. lies  the gg point or for the SD line emerging from thgs point.
on the geodetic circle of radius], as shown in Fig. 1, and These two centered fields are identical, because for each field
now we need to prove that this point lies on the same side ahe corresponding vector of this field is a function of the
the contour line conas does the poing. We apply the dif-  corresponding geodetic distandgp=VJ, as explained in
ferential form of the Hilbert’s invariant integral, given in Eq. the preceding section, and this functidrshould satisfy the
(19), to the arbitrary curveC joining the pointsq and q same Hamilton—Jacobi equati¢h6). As a consequence for
+dqc, resulting in dJ.=pjdqg.=p;(dg./dt)dt=p;(dg./dt)  both the centered fields the vector of these fields3g(q).

x{[p1p:]¥4 (dg./dt)T(dg./dt) 1Y 1F(q,dg./dt)dt The geodetic distance from the central paipt(gp) to the
=pcF(q,dq./dt)dt=p.dJ. Clearly the values of, are in the variable end poingrospis denoted bylr(qrosp [Jp(Arosp -
domain -1< p,<1. Taking into account the values pgf and We propose to use the Weierstrass sufficient condition,

that cop—con=dJ>0, the pointq+dg, lies on the contour discussed in the preceding section, as a way to obtain the
line con+dJ.=com+pcdJ, not shown in the figure, such IRC curve. Since the IRC curve is composed by two ex-
that cop=con;+p.dJ. Consequently the poimj+dg, lies tremal curves, SD curves, each one being an extremal be-
on the same side of the contour line g¢@s does the poirg.  longing to one of the centered fields and for both fields the

Finally, from Eg. (25 we see that the Weierstrags  field vector isp=g(q), then the Weierstrass sufficient condi-
function takes the form dJ-dJ.=F(q,dg./dt)dt tion for the IRC curve given in Eq27) becomes

A[AVg_ple= A[AVR—@FOS,JC - A[AVP_’QFOSP]C
t

t
_JP(QFOSF)]:f E(dc,9c.dgc/dt’)dt’ ‘J E(dc.gc,dgc/dt’)dt’
0 t

f

=[AV4

R—0rosp

— Jx(Grosp] — [AVS

—0rosp

ts tt ,
= f E(qe.ge, dae/dt)dt’ = f [ Vodge\(dge/dt)T(dge/dt') - gl(dac/dt’) Jdt (29)

0 0
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wheret; is the value of the independent variatilein the  this curve, respectively, and their gradient vectors are zero,
origin of the field centered i, in other wordsgp=q(t;). 0r=9(0c0) =9p=0(gcn)=0. Now, we expand the function
From Eq.(28) it is clear thatA[AVg_p].=0. According to  {A[AVg_.p]ctapprox UP to first order in a Taylor series with
the discussion of preceding section, the sufficiency conditiomespect to the parameters that characterize the arbitrary curve
for the IRC path is achieved since it is a SD curgét’), C,

connecting the pointgz=q(0) andgp=q(t;) of the PES if in

the interval 0<t’ <t;, a conjugate point with respect to both {A[AVRplerbapprox

pointsqg andqgp does not exist. This shows clearly that the = {A[AVg_pletapprox

IRC is an extremal curve of the functional given in E4)

n-1
with character strong minimum in a neighborhood. T
Minimizing the A[AVg_ p] function given in Eq.(28) * 21 (Qcri = Aei) [chziEappmiin’gCi’Ain)u' (30)
with respect to the parameters that characterize a given arbi-
trary C curve connecting the fixed end poirdg andgp of  where (' is other arbitrary curve and

the PES, iteratively, we will find the near SD curve to tdis VinEappm)(qci ,0ci»Adg) is the Weierstrasg-gradient vector
curve. The curveC is assumed to satisfy the differential evaluated in the position vectors that characterize the curve
equationdqc(t’)/dt’ |-, =f[g.(t)], where Ost<t; andf isa (. The explicit form of the Weierstrads-gradient vector is
vector of a field vector. This curv€ is represented as a

polygonal line or a chain line defined in the region of the anEapproiin'QCiqufii)

PES under consideration and connecting the pajptsind _ ,

gp and the vectof=Aq.,Aq. being the difference vector = \r’Aq}iAinHC( /ch. - A?C' )

between two consecutive vertex points of the chain. The VOei9ci  VAQAQe

minimization of theA[AVg_,p]e function has the effect of [ T—( Qeiot AQei_g )

transforming the curve into another curve such that the | VOci-19ci-1| = T T
VOci-19ci-1  VAdei-1Adgi-1

field vectorf at each point of this new curve coincides as
much as possible with the field vectgy which is the field —( Y Agg;
vector of the field of extremals of the functional given in Eq. ~V8ala\ T T AT aan) |
(4). This is the basis of the proposed algorithm to find the SD Vi NAcia
curve connecting the stationary points character minimum ofvhere the matrixH =H(q;) is the Hessian matrix at the
the PESgg andgp. The resulting SD curve is the IRC path point .. The first term of the right-hand side of E(1)
if conjugate points do not exist in this curve, in others words,involves a Hessian matrix, however, this term can be simpli-
if the SD curve does not contain stationary points charactefied because the curvé is embedded in a gradient vector
saddle point with more that one negative eigenvalue, afield, the field of extremal curves corresponding to the varia-
shown in Appendix D. tional problem given in the expressidd). Taking into ac-
The basis of the algebraic process of the proposed alg@ount this consideration, the teri Aq is transformed
rithm is the following: first we approximate the integf@8)  into H.Aq:=H¢i(Acie1—Aci) = AQei=0cis1—9ci» Where the

(31

by using a set oh+1 points of an arbitrary curvé, equality is achieved when the poigg;.; of the curveC is
. within the quadratic expansion of the PES centeredin
f . . ..
- N The other termH g, is the gradient variation vector along
A[AV, = | E(q¢,9e.dgo/dt’)dt crach .
[AVr-rle JO (de:Gc.dqc/dt) the SD curve running through the poi, see Eq(22). As
y a consequencedigsi~ (g —gci)/ 7, g being the gradient
:j [V"g}gc\e"(dqcldt’)T(qu/dt’) vector of a point close to the poigt; and situated on the SD
0 curve that links this point and thg, point andr; the dis-
T T tance between these two points. With these two approxima-
~ gi(da/dt’) Jot tions Eq.(31) is transformed into the expression
n-1
~ > (Vofige VAl Ade - gfiAdc) VagEapproi dcisGci»Adc)
= AqiAde (G - go
1 — \‘A’/Q?AQG (9 7--ga) - Age
= E EapproXdci» 9ci- Adci) VOciei '
N _ l\rgT g ( Yoi-1 Aqgi-1 )
= /ICi-19Ci-1
{A[AVRﬂP]C}approxv (29) : V/ggi—lgci—l \/Aqgi_lAin_l
whgre{qci L, denotes a set afi+1 position vec_tors of the B \ﬁ( Oci Age; ) (32)
arbitraryC curve,Aq¢i=0ci+1—Yci» andge;=09(qc;) is the gra- Cid \’/QEiQCi \,'AqgiAin '

dient vector evaluated a the poigg;. Notice that this set of

selected position vectors is the point vertices of the chairNotice that in Eq(32) only gradient and position vectors are
that represents the curd& The point vectorgp=gr and involved. Either Eq(31) or Eq.(32) is the basic expressions
dcn=0p do not appear in the evaluation @[AVg_plctapprox ~ for the proposed algorithm. Equati¢d2) should be used for
function, because they are the fixed initial and final points oflarge molecular systems.
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Finally we have to impose the sufficiency conditions oncurve, chli and chli+1, have a ratio larger than a given
the algorithm. These sufficiency conditions consist in avoidthreshold, say 0.7, the central poit i+, is moved along its
ing the existence of higher order saddle points and maximangent to center it. Finally, the Weierstrasgradient vector
in the region of the PES where the search to locate the IRW, E,ypofdcis9eir Adci)le=c, for each vertex point, i
path is focused. Since these types of stationary points pos1,...,n-1, of the new curv&, is computed. If the conver-
sess higher potential energy with respect to first-order saddigence criteria is not satisfied for each vertex point, then the
points, during the location process the condition of lowerrectangular matricesRi(l) and Gi<1) for i=1,...,n-1, are
energy at each step is imposed. This restriction is imposed byyilt and stored according to the expressi¢Bg) and (E7),
assuring that at each point vertex of the néivcurve the  respectively, and iteratio begins, otherwise the converged

corresponding value of the potential energy is lower than oturve(; is the chain representation of the IRC path between
equal to the corresponding point vertex of the previ6us the pointsgg andqgp.

curve. At the u!" iteration, for w>1, the Newton—
_ o Raphson method described in Appendix E is applied. In
B. Algorithm description this case and for each vertex pointwe have, the posi-

The minimization scheme of the function tion vector e, i the WeierstrassE-gradient vector
{A[AVR_plctapproxiS carried out by using a Newton—Raphson chi_'fapproiq(ii Yo quCi)|C=C#_1' and th? rectangular matrices
method solved in a Krylov subspace and its complementari;" ~ and G* ™. The set of equation$E1l), (ES), and
subspace. This method has been employed by Brasks (E12) is solved and the new position vectgy ; of the new
al.2%for hoth finding minima and locating the IRC curve in curveC,, is then computed by a slight modification of Eq.
the PES. However, there is an important difference with re{E13),
spe_ct to_ th(_a algorlth_m propc_)sed by these authors, _namely, Qe i=Ce i+ 77i[Ai(,L—1)(qC )
their objective function is different from that used in the u wml w wot
present algorithm which iSA[AVg_plc}approx defined in Eq. +B* (e - 0qc i):|, (34)
(29). We recall that this function is related through the cal- woe
culus of variations with the exact definition of the SD pathWhere the factory; plays the same role as explained in the
given in Eqg.(1). This function and its derivatives with re- iteration u=1. After the evaluation of all new vertex points,
spect to the position coordinates, given in the expressiond reparametrization of the new cur@g may be necessary to
either (31) or (32), are well defined. In addition, using this ensure that vertex points do not cluster and this is done by
function and the corresponding derivatives we avoid compliiSing the same procedure as reported in the itergiiod.
cated iterative numerical procedures as those that appear if'e ~ set  of  Weierstrass E-gradient  vectors,
the algorithm described by the above auttfiEhe grounds Vo, Eapprofdei-Gei» Adcile=c,, for i=1,...,n-1, of the new
and basic equations of the present method are explained fHrveC, is computed. If the convergence criteria is not sat-
Appendix E. Now we outline the algorithm. isfied for each vertex point then we update and store the new

At the initial iteration,z=1, a guess curvé, is defined  rectangular matrice® " andG"* fori=1,...,n-1, and the
by a set ofn+1 point vectors. Normally, thi€, curve is a  new iteration(u+ 1)'" begins, otherwise the converged curve
straight line. The vectorg, andq,, correspond to the station- C, is the chain representation of the IRC path between the
ary points character minima in the PES related with the gepointsqg andgp.
ometry structure associated with the reactants and products, To introduce stability in this minimization algorithm just
respectively. These two vectors are fixed during all the optidescribed, in the evaluation of the Weierstrdsgradient
mization processes. The restmf 1 points,{qe }i=;, corre- vector, Vg, Eappro{dei Ocir Adei)|e=c , using either Eq(31) or
spond to the vertices of the chain representation of the curved. (32), the current gradient vectay ; of the point vortex
Co and are selected in such a way that they are equidistantc ; is replaced by the vectdge j.1+0c i)/2, which is the
The Weierstrass E-gradient vector, average gradient vector of the segment vediqf ;=0c i+1
VinEappm)(in,gCi,Ain)|C=CO, for each point vertex,i ~dc, i In addition, if the angle between the regultiné aver-
=1,...,n-1, is computed by using either E(B1) or Eq. aged gradient vectay, ; and the vectoAq, ; is outside the
(32). Taking these gradient vectors as direction vectors, aange[w/2,-m/2], then the sign ofAqe ; vector has to be
new set ofn—1 point vertex is computed through the equa-changed accordingly. a
tion In the present implementation of the algorithm, the

- Weierstrass E-Hessian matrix
.= .+ . V E 0 .,A . - - . ) 1
Aeyi = ey + 7 Vg, Eapprod Aci- Oci» Adcile=c, | VinVZCiEappm)(in,gCi,Ain)|C:CM, is taken as the unit matrix.
Oi,i=1,...,n-1, (33

C. Locating the IRC curve on a symmetric potential

where the vectog, ; corresponds to the new position vector
! energy surface

of the vertexi of the new curve’;, and the scale factow; is
selected in such a way th\a{(qcli)<V(qcoi). After the evalu- The above proposed integration technique has been ap-
ation of all new vertex points a reparametrization of the newplied to find the IRC curve of the surface equatidfix,y)
curveC; may be necessary to ensure that the vertex points de 2(x?—2)?+[(x—y)2—- 1]2+4(1-x2-y?)2+[(x+y)?-1]?,

not cluster. A very simple scheme has been adopted hererhich is shown in Fig. 2. The gray arrows are the gradient
when the length of two consecutive segments of this newectors of the field. As explained in the previous sections,
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1.5
1
0.5
> 0
-0.5 FIG. 3. Evolution of the algorithm to find the IRC curve line based on the
minimization of the Weierstrass-function, as defined in Eq29), for the
PES given in Fig. 2. The solid lines are some contours of the potential
energy. The white open dots are the set2dfpoints of the initial guess
-1 curve. The dark dots indicate the final converged position oRthpoints.
In this final position, all points are located in the IRC curve. The IRC curve
line follows the sequence of stationary poirfs:> FOSP— P. The gradient
-1.5 faced points indicate the behavior of the algorithm during the minimization

process.

FIG. 2. Representation of the PES of Sec. Ill C. The solid lines are somavere taken this way. This procedure also allows to generate a
contours of the potential energy. The light solid arrows are some selectedgat of matricesR.(") and G(M) as defined in EqE2) and
gradients of the field, which are the vectors of the figldf the proposed L L

variational problem defined in E¢4). The dark dots are the set 21 points (E7), reSpeCtIVEIy’ fori=2,.. & 20. At every Newton—

of the initial curve. The poinR is labeled ad and the poinP as21. The ~ Raphson step and for eaghpoint, we first evaluate the new
bold faced arrows are the WeierstrassE-gradient vectors position due to the space spanned by the set of difference
VoiEapprof .8, Ad)lc,,_, associated with the points of the initial curve.  sitions using EqSE11) and (ES). If the new point implies

a descen¥(x,y), then it is accepted, otherwise the Newton—
these gradient vectors are the tangent vectors of the S aphson step is rejected and a steepest descent step is taken.

' ; inally the variation due to the complementary subspace is
;:rl;lervses and these curves define the field of extremals. Dueé@omputed through EQ(E12 and properly scaled by to
ymmetry of the surface, only two SD paths are tht_a IR uarantee  a  descent effect in  the function
curves. These two paths follow the sequence of stationar; (.0 AG)|
points R— FOSP— P, and correspond to the SD paths con- —PP™ Gi- 8 A%l g_py
nectingR andP, such that the integral given in E@f) evalu- For the sake of completeness, we have compared the
ated on this curve has the lowest value. This surface is chaPresent method with the nudged elastic band methtid

lenging because it presents a maximum, which is an attractéNEB) With a tangent vector defined ag;=g.,—q; for |

of the SD lines. The algorithm has to make sure that it con=2»+» 20 on the current curvé(R— P). In such a case the
orithm is unstable and, as expected, leads to Kifikge

verges to the SD line that passes through FOSP. For the sa?ég ¢ g 48 )
of simplicity, in this section we have dropped the subsafipt 2'€ @ware that corrections to this are possiblajt this com-
in the q;,g;, andAg; vectors. parison was only done to show that the method presented

The set of open dots defines a broken line, which is thd1€"® does not suffer from this problem and is stable even
initial guess curveC(R— P). This initial curve is character- With @ crude tangent estimation.
ized byn=21 points, where the point$;=gr andg,;=dp The convergence of this method has also been tested.

are fixed and the rest of the points are allowed to move. Th igure 4 shows i the. decrease : inthe function
bold faced arrows correspond to the set 1§ vectors, AErA\r/]FtHP]erappfroxr c:ﬁf'”ﬁdv\': ::qézg)ﬁ b’inglcur?it:mpzj, therib g
tiEappm)(qi,gi,Aqi)|c<RﬁP) for i=2,..., 20, of the initial ~ CUENt curve, for the Newton—raphson aigo escribe

-P o here and a quenched velocity Verlet as the one used in
curve C(R— P). The direction of these vectors is different NEB 78]t has to be mentioned that each quenched velocity

depending on the point, and for poirgend13a decrease of et step involves a single gradient evaluation for each
the Weierstrask-function would imply an increase of poten- point, whereas the Newton—Raphson step may involve sev-
tial eneTrgy. Therefore they factors applie_d to the points gq) gradient evaluations to choose the coregaif Eq. (34).
whereg;[VqEapprol i, 9, Adlc, ,]<0fori=2,..,20are  poyever, we have seen that the number of gradient evalua-
chosen positive and vice versa. In this manner the new set dions is, on average, close 105 per point, or even less when
generated points will possess lower potential energy. Finallywe get closer to the optimized path.

the algorithm converges in the way that 2l points are The use of the approximate Weierstr&sgradient vec-
located in the IRC curve. This final position is represented bytor, through Eq(32), is also surprising, because its conver-
a set of dark dots in Fig. 3. gence behavior is excellent until very close to converged

As is conventional in many minimization procedures, welRC path (Fig. 4). At that point, a more accurate gradient
take some steps as steepest descent, until we get close to theuld be needed to decrease the value of the function
quadratic region, by using E¢33). In this examplel0steps  {A[AVg_plctapprox Equation((32)) is therefore useful to get
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2 Hamilton—Jacobi equation associated with this Fermat varia-
tional principle has been derived, resulting in a very simple
0 : expression. As in the normal calculus of variations, from the

propose new algorithm to locate IRC curves.

equation (32)

=

g

2,
H§ , \Ver'et derived eiconal equation we obtain the associated character-
& " istic system of equations of the IRC curve. The analysis of
X g Y the second-order variation permits to establish the strong
<  Maioms minimum character of the IRC path and from this analysis to
2

=11
=

v‘. equation (31
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pretty accurate paths that can then be refined by increasing
the number of points in the discretization or with conven-
tional transition state searches.

It is also worth pointing out that the reparametrization o
the currentC(R—P) is only necessary during the initial
steps, because the Weierstrdsgradient vector, evaluated In this appendix we establish the connection between
by using Eq(31), once we are close to the final SD curve, is Eq. (16) and the Hamilton-Jacobi equation or, in others
pferpendicular to th!s curve. This is also true for t.he Perpenyords, we show that Eq16) plays the role of a Hamilton—
dicular force used in the NEB method, but the difference isjacopi equation. To prove this assertion, the basic idea is to
that Eq.(31) corresponds to a gradient vector of a certaingea| with homogeneous functional with respect to the argu-
objective function while the NEB projection makes its force mentdqg/dt, but of degree greater than one, because in this
nonconservative. case it is possible to apply the Legendre transformation and

Certainly a number of authors have also worked on thenen to derive in the standard way the corresponding
convergence of NEB or similar chain-of-states methods suciyamiiton-Jacobi equatich?® In addition this new homoge-
as that used in the proposed _algontl"ﬁfﬁ ““7Vanden-  pegus functional should be related to the functional of ex-
Eijden et al.~ and Waleset al™ implemented a Broyden— pressjon(4). To this aim, we first choose the functiarix)
Fletcher-Goldfarb—Shann@FGS minimizer type;” both  ¢,ch that variation of the integral
achieving superlinear convergence. We have also commented ) ) .
briefly on the differences and similarities of the recent NEB |(q):fx 5<q d—q>dx= fx ng(d_Q> (d—q>dx (A1)
improved algorithm described in Ref. 29. The NEB method 0 "dx 0 dx/ \dx

has also been coupled to Car—Parrinello molecular _ . _ o
dynamicé® for better convergence with density functional With respect to this function vanishes. The variabie pro-

theory calculations. All of these methods outperform thePortional to the variablé of variational problem(4) in the
steepest descent minimization of the original NEB methodV@y thatdx=F(q,dq/dt)dt, where botht and F(q,dq/dt)
that we, and the other reported authors, have used for con'® those given in expressiod). We note that the functional
parison. It would surely be interesting to compare all of them>d.dd/dx) of Eq. (A1) is homogeneous of degree two with
but this is beyond the scope of this work. Indeed, the algof®SPect to the argumedt/dx. The extremal curveg(x) of
rithm presented in this paper was mainly formulated to provéhe variational probleniAl) satisfy the Euler—Lagrange dif-

and to show the potential applications of a correct descripférential equation

tion of IRC method via Hamilton—Jacobi theory. A computa- d

tionally less expensive formulation of the method would be ~ V¢S~ &(qu/dxs) =0. (A2)
desirable and is part of our future work, nevertheless, we

would like to stress that the described algorithm representhe tangent of these extremal curvesldg dx=g/(g'g). Due
an improvement of the original NEB method. to the homogeneity of th&functional, it satisfies the relation

APPENDIX A: ALTERNATIVE DERIVATION OF THE
fHAMILTON-JACOBI EQUATION FOR THE
EXTREMAL CURVES OF THE TYPE SD LINE

dg\T
IV. CONCLUSIONS S=-S+ (&) (VagiaS) - (A3)
The calculus of variations and specifically the FermatDifferentiating Eq. (A3) with respect tox and using Eq.
variational principle can be used as a tool to study the naturéA2), we conclude that the function& becomes constant
of the IRC model and to establish new algorithms to evaluat@long an extremal curvg(x), becausedS/dx=0. In other
this type of path. From this point of view, the IRC paths arewords,S=const=1 along an extremal curve. With this result,
extremal curves of a Fermat variational principle. TheEq. (A2) can be transformed into the following way:
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1 [ d ] 1V 40 SdS APPENDIX B: THE CHARACTERISTIC SYSTEM OF
—=| VS VS| + - DIFFERENTIAL EQUATIONS OF THE
2VS dx 4 S dx HAMILTON-JACOBI EQUATION (16)
= irVqS— E(L_qu/dxs) Let us assume thal(q) is the geodetic distance function
2VS dx\ 2ys and a solution of the partial differential equati¢t6); then
dt d we want to characterize the field of extremals such that these
= &{VqF - a(qu,th)] =0. (A4)  extremal curves transverse all families of contour line sur-

faces,J(q)=const, as explained in Sec. Il B. Now we define

) . a field vectorp in the region of the PES considered by the
Since,dt/dx=1/F(q,dg/dt) # 0, any extremal curve satisfy- equation

ing Eg. (A2) also satisfies Eq.(6). Consequently the
Hamilton—Jacobi equation of the variational probléii) is p=Vya). (B1)
related with the Hamilton—Jacobi equation of the Variatio”"’“Substituting Eq(B1) in Eq. (16) we have

problem (4). To prove this assertion, first we derive the .

Hamilton—-Jacobi equation for the variational problé#i). PP _ 1 (B2)
Since S is an homogeneous functional of degree two with g'g '

respect to the argumerdq/dx, or in other words, det
[qu,dxvgq,dxs]:ZQTg;éO, except in stationary points, we
can use the Legendre transformation. Defining the veztor

Now we use the family of curves defined by the ordinary
differential equatior(14),

1 d d
as = 4.a. P (B3)
) (G) " =
. d e )
P = VigaS= ZQng_?( (A5) dt’/ \dt

where the vector¥,J(q) andg that appear on the right-hand
and substituting in the right-hand side of H&3), the ex- side of Eq.(14) are suk_)stituted by _the vectprby using Egs.
pression of the vectodq/dx as a function ofp” obtained (B1) and(B2), respectively. Equatio(8) has also been used

from Eq. (A5), we get the transformed Legendre function of {©© change the independent variableThe vectomp becomes
a function of the independent variabié along the curve

S, namely, : . . :

characterized by the system of differential equati¢B8).

1(0")Tp" By differentiation of the vectop with respect to this inde-
L(q,p") = ZQ (A6)  pendent variablé’, we obtain
g4g
;d_p - [V VT‘](q)]d_q;

We emphasize that the left-hand side of EA&3) is equal to dg\"/dgdt 47 dt’ dg\"/dq)’
the transformed Legendre functidriq,p’) and, as a conse- dt' ) \dt dr' ) \dt

quence, in this cask(q,p’)=9(q,dg/dx). If J°(q,x) is the
geodetic distance corresponding to the variational problem (B4)
(A1), then its total differential form, whose general formula By differentiation of the partial differential equatiofi6)
is given in EQ.(10), now reads with respect tag, and after some trivial rearrangements we
obtain the identity
dJ(0,%) = (Vg "'dat + [ S (VS "da/dx]dx

o [V ¥I@)] = -H——=o0. (B5)
A Ny — “\T o7 Vp'p Vg9
=p dg - L(q,p)dx=(VyJ) dq+( aX)dx,
A7) Finally using Eqs(B3)—(B5) and(3), we get
1 _®._d_, 9 (86)
where Eqgs(A3) and(A5) have been used. From Ed7) we dg\"(dg)dt’" ds Vg'g’
havep”=V,J(q,x) and dt’/ \dt’
a3 (%) 1(V,3)V.J Thus Egs(B3) and(B6) or Egs.(21) and(22) characterize a
———=-L(q,VyJ) = - - (A8)  family of curves as extremal curves and correspond to the
X 4 99 characteristic system of differential equations associated to

o ) ) the partial differential equatiofil6) and consequently these
In the derivation of expressiofA8), expression(A6) has  gyiremal curves are the extremals of the variational problem
been used. Equatiai@8) is the Hamilton—Jacobi formula of given in Eq.(4).

the variational problen{Al). Since the right-hand side of
Eq. (A8) is independent of, a solution of this partial differ-
ential equation is)(q,x)=Cx+2J(q), whereC is a constant.
Using the fact that (q,p")=1, we haveC=-1 and as a result The functionalF(q,dqg/dt’) defined in Eq.(4) can be
we obtain Eq.16). expanded with respect to the argumegt dt’ using a Tay-

APPENDIX C: PROOF OF EQ. (26)
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lor’s series up to first order with the remainder around theboth z(t") and dz(t’)/dt’, and finally combining terms, we
point dg/dt’ =g, the tangent of the extremal curves of the obtain the linear differential equation
field of extremals,

d dz(t’)}

.
F(de. dae/dt’) = F(ge,ge) + (dae/dt’ = ge) 'V gy E{(qu/dt’vdq/dt’F) av

X F(qC7dq/dtl)|dq/dt’:gC + 5(dgc/dt’ d T
; - {(VqVEF) - —,(Vquq,dt,F)}z(t’) =0. (D2

= 90 TV grar ¥ g F (e A/t ) =g, dt

X (daeldt’ - g), (c1)  Equation(D2) is the Jacobi equatiéh of the variational

. _ _ problem given in expressidd). The Jacobi equation, except

where the vectog=gc+ 6(dgc/dt’' —ge) with 0<6<1,0ciS  for infinitesimals of order higher than one with respect to
a point of the region of the PES covered by the field of;(t') anddz(t’)/dt, is the linear differential equation satis-
extremal curves, the SD lines emerging from the fixed pointieq by the difference between two neighboring or infinitely
0r.dqc/dt" is the tangent vector of an arbitrary curem-  ¢jose extremal curves. Given two neighboring extremal
bedded in this field of extremals at the poig¢t and the curves,q’(t') and q(t’), of a centered field of extremals,
gradient vectorg,=g(q.) is the tangent vector of the ex- emerging from the same initial pointig=q(0), the differ-
tremal curve also called tangent of the field at this paint  apce vector functiorg(t’)=q" (t')—q(t’), satisfying Eq(D2)

Now we rearrange EqC1) as follows: is a nonzero solution of Jacobi equation within an infinitesi-
F(qc,dac/dt’) — F(de,ge) - (dae/dt’ = ge) 'Vgar mal order higher than one relative 2¢t”) and_dz(t’)/(_jt’. In
L : the present casé\ solutions of the Jacobi equatiaiD2)
X F(de, da/dt’)|aq/ar=g, = 2(dac/dt’ - ge) exist, N being the dimension off vector. The set of initial
T , . conditions for each one of thed¢ solutions of the Jacobi
><[qu/dt’vdqldt’F(q‘f’dq/ dt )]dq’dt’zgc(dqcl dt’ —ge). equation(D2) are obtained as follows: the initial point is the

(c2)  central pointq(0)=gg, and the vector differencg0) is a set

o ) ] equal to the zeroed vectar(0) =0, whereas its first deriva-
Substituting in the left-hand side of EC2) the expressions  tiye  with respect to t',dz(t')/dt|,_o=1, where 1T

for F(qc,dgc/dt’) and Vg4 F(de,dg/dt’), which are given =(1y,..., 1)
in the Egs.(4) and (11), respectively, and after some trivial Lo

Given an extremal curve(t’) the pointqcp=q(tcp) is
rearrangements we get

said to be a conjugate point to the central point of the field

VaegeV(dge/dt')T(dae/dt’) — gl(dac/dt’) dr=0(0), if at gcp=q(tcp) the differenceq’ (tcp) ~a(tce),
N , N T g (t') being a neighboring extremal curve emerging from the
= 5(dac/dt’ = 9¢) [Vagrar Vagrar same initial pointggr=q(0), is an infinitesimal of order
><F(qc,dq/dt’)]dq/dtrzgz(dqc/dt’ ~ g0 (C3) higher than one relative ta(tcp) and dz(t’)/dt’|t,=tcp.

Now, we apply these results to the SD curve emerging

Finally, substituting Eq(C3) in Eq. (25) we obtain Eq(26).  from thegg point that arrives to the first-order saddle point
Orosp Substituting the integranB(q,dqg/dt’), given in ex-

APPENDIX D: ANALYTICAL REPRESENTATION OF pression(4), into Eg. (D2), after some rearrangement we
CONJUGATE POINTS BELONGING TO SD obtain the corresponding Jacobi equation for the variational
LINE, PROOF THAT A SD CURVE CONNECTING problem(4),

BOTH A MINIMUM AND A FIRST-ORDER SADDLE

POINT IN THE PES AND EMBEDDED IN A +dzt')  —=(g'Hg
CENTERED FIELD OF SD CURVES DOES NOT ~ggP~ 2 ~\9d 9’ (I1+Q)-HQ
CONTAIN CONJUGATE POINTS dz(t')
z(t'
The origin of the concept of conjugate points of a field - QH) av T (HPH - HPHQ - HQHP
of extremal curves is related to the following question: given
an extremal curve(t’), i.e., a curve satisfying Eq6), and - PHQH - QHPH)z(t') =0, (D3)

the varied curvey”(t’)=q(t")+z(t"), which conditions have ] ] o ] ]
to be imposed orx(t') such that the varied cung’(t’) is wherel is the unlt' matrix,g is j[he gradient vector, and is
also an extremal curve satisfying E)? To answer this e Hessian matrix at the poigt of the SDT curve, the ma-
question first we substitute the curgé&t’)=q(t’)+z(t’) into trlceTs PTand Q are the projectorsP=1-gg'/(g'g), andQ
the Euler—Lagrange equatid) =gg'/(g'0), .respectlv.ely. In the derlvatlon of E¢D3) only
the quadratic terms in the expansion of the PES around the
V4F(q +2z,dg/dt’ +dz/dt’) point g have been considered. As a consequence the whole
d integration of the Jacobi equation frogr=q(0) to grosp
- E[qu/dt'F(q +2,dg/dt’ +dz/dt’)] = 0. (D1)  =q(t) associated to a SD curve is carried out by stepwise
guadratic approximation, using E@3). Notice thatt’ =0 at
Second, taking into account thg(t’) is also a solution of the thegg point andt’ =t at theqgpgppoint. The vector(t’) and
Euler-Lagrange equatio(®), using Taylor's series and ne- its derivatives with respect tt are expressed as a linear
glecting infinitesimal order higher than one with respect tocombination of the eigenvectors of the Hessian malttix
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namely, z(t')=Va(t'),dz(t')/dt' =Va'(t'), and d?z(t')/dt'>  the complementary subspace. Bat’ and Bi(“) are the ma-
=Va"(t’), V being the matrix defined by the set of orthonor- trices of dimensioiN X N. These matrices have the following
mal eigenvectors of thel matrix. When the SD curve arrives properties:A; “)+B(“)—I A(")A = =A; (1) B(“)B “)—B(“) and
at the first-order saddle poiggosp then around this pointin - A¥B*=0, wherel is the NX N |dent|ty matrix ando is

the direction of the SD curve, the gradient vector can bqheNx N zeroed matrix. The explicit form of thé(” matrix
approximated ag= Cvy, Wherevqy is the column vector of g

theV matrix corresponding to the normalized eigenvector of () m () ()
the Hessian matrix with negative eigenvalue &hd small A" [(R ) (R )] (R ) (ED)

With these conS|derat|ons at the flrst order saddle po'mwhose column vectors are defined by vector differences be-

d(t)=drosn the first two terms of Eq(D3) vanish. On the  yeen the current and the previous position vectors,
other hand since at the first-order saddle point the matrix

P=I-vrwy, and the matrixQ=vpw1,, then the terms, R :[(qcli_qcﬂi)!--w(QC#_li_qc#i)]- (E2)
PHQ=QHP=0, O being the zeroed matrix. As a conse-
guence the remainder term of E(P3) is HPHVa(t)=0.
Since we are interested in the SD curve that arrives at the.
first-order saddle point, we multiply from the left the remain-
ing term by bothvr1,, and | —=vr\i,, resulting in[a(t) ]y
#0 and[a(t)];=0 O i=1,N andi # TV, respectively. Taking
into account the initial conditions, z(0)=0 and
dz(t")/dt'|;,—o# O, and invoking the continuous dependences [ VinVgCiEappm)(in,gCi,Ain)‘C:C ](q%li - QCMi)

of the solution of Eq(D3) with respect to these initial con- .

ditions, thena(t) #0,a’(t) #0, anda’(t) # 0. Consequently, ch,EapmeQChQCi,A%)|CZC : (E3)
the solution of Eq(D3) related with the SD curve that ar-

rives at the first-order saddle poimiross=0(t), from the whereqCM i is the position vector of the vertéxof the new
minimum  point, ggr=q(0), is such that z(t) CUfVGC,ﬁl. and the matrixv, V «EapproddeirGei» Adci)e= =,
#+0,dz(t")/dt'|,-# 0 and d?z(t")/dt'?|,-,#0, by invoking is the Weierstras&- Hessmn matrlx evaluated in the point
the transformationz(t’)=Va(t’),dz,(t')/dt'=Va'(t’), and vertexi of the curveC,. Using the above projectors and their
d?z(t")/dt’ =Vva”(t’) att’=t. This result shows that the first- properties, Eq(E3) can be rearranged as

order saddle point is not a conjugate point with respect to th%gﬂ)(q Qe )

central pointgg, a stationary point character minimum in the ' Curth HC

The set of column vectors that defines m&“ rectangular
matrix is assumed to be linearly mdependent

The application of the Newton—-Raphson method to
minimize the function{A[AVg_p]ctapprox defined in Eq.
(29), at the point for the iterationu, results in the following
expression:

PES. [ anv Eapprm(qci:gcirAin)‘Czc ]_1
2
APPENDIX E: MATHEMATICAL BASIS OF THE { ch.Eapprox(qa,gaichO\C:gﬂ
NEWTON-RAPHSON METHOD SOLVED IN BOTH A V. VI E (G Gen A ')‘
KRYLOV SUBSPACE AND ITS COMPLEMENTARY [ g ¥ ac;—approx ei»Gi» Adci c:cﬂ]

SUBSPACE USED IN THE MINIMIZATION OF THE w
FUNCTION GIVEN IN EQ. (29) XA (e, i ‘qC#i)}- (E4)

In this appendix we derive the set of equations of theFrom Eq.(E4) we see that if we know the variation of the
Newton—Raphson algorithm to be applied in the minimiza-position vector within the current Krylov subspace,
tion of the function given in Eq(29) with respect to the A'¥(q i~ dc i), then we can compute the variation of the
parameters that characterize the arbit@mgurve to locate a pos|t|on vector in the corresponding complementary sub-
SD curve. The Newton—Raphson equations are projected ary;l;aceB ”)(QC i—de, ). If we define the vector; ) of di-
solved in both a Krylov subspace and its complementarynensmn,u 1"as
subspace. The Krylov subspace is generated during the mini-
mization process. This method has been reviewed several
times and used in different contestfs?>3%-34

At the (u+1)™ iteration of the minimization procesg,

R*ci# = Aim(q%ﬂi ~dec,i) (ES

and we multiply Eq(E4) from the left byAi(“), we obtain

>1, the current curve is denoted By, the point vector of O:A(" [ VqC.V Eappro)(qci,gci,Ain)‘czc ]‘1

the vertexi by g, ;, and the Weierstrads-gradient vector by H
VqCIEapprox(qcl,ngL,VqC,)|C -, The dimension of these two X { VinEapprm(QCirgCiiAin)|C:CM

vectors isN. The Weierstrasg- -gradient vector can be evalu-

ated by either Eq(31) or Eq. (32). There exists a set gi [ Vo,V agiEapprod i Gei Adci)| ., ]Ri(” o )}-
vectors {qC %, and the corresponding Weierstrass s

. E6
E-gradients{V,, Eapproxqc.,gc.,ch.)lc ¢, }tcy for each point (E®)

vertexi. We deflne the matri; () \which is a projector onto Now, the action of the Weierstrasg-Hessian matrix
the subspace defined by the vector dlfferen({(asc) anvgcl appm)(qc,,gc,,chl)|C_C on theR“) matrix is ap-
~d, 5“1 The matrle(") corresponds to the projector onto proximated as follows:
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[ VinVJCi Eapproddci Iei» Adci) | C:Cu] R

l

- Vin EapproiQCiigCiaAin)|C:CM)’ ey

X(
- Vg, Eappro£QCi,gCi,chi)|C:CM)] =G,

The Gi(") matrix is a rectangular matrix of dimensiad

chi Eapprm(qci ’ gci ’ Ain) ‘C:cl

chi Eappro>(in ,9ci»Adci) |c:cﬂ_1

(E7)

X (u—1) defined by the set of vector differences between the{Ell) (ES), and(E12), and finally using Eq

current and previous Weierstragsgradient vectors. Multi-
plying Eg. (E6) from the left by(Ri(m)T and substituting Eq.
(E7), we obtain

ol = (RFM))T[ VinVgCiEapprm(%iyga,AQCi)‘C:C ]_l
.

X { chi EapproiQCiagCiaAin)|C:CM + Gi('u)ci('u)}’
(E8)

where0® is a zeroed vector of dimensign—1. To solve
Eq. (E8), first we define the matrix

Di(M) = (Ri(#))T[ VinVECi Eappro>(in1gCi-Ain)‘ C:Cﬂ]_lGi(M)
(E9)
and the vector
e = (Ri(”))T[ VinVECi EapproXQCiaQCi,AQCi” C:C/;I_l

X Vin EapproiQCi Jeis Ain) |C=C#' (ElO)

Notice that the dimensions of tH2!* matrix and thee’
vector are(u—1) X (u—1) and(x—1) respectively. With the
above definitions, the solution of E(ES) is

== (D) (D)D) el

Substituting the resulting value of tlmé“) vector in Eq.(E5)
we obtainAi(")(qCMi—qCMi) vector. Using the set of equa-
tions (E4), (E5), and(E7), we obtain an expression to com-
pute the ternBi("“)(qcmli—qcﬂi),

Bi(#)(qcuﬂi ~c,i)
= —[ chiVECiEappm)(in’gCi’Ain)‘C:CM]_l

X{ chi Eapprm(qciagCiaAin)‘C:CM + Gi('u)ci('u)}'

(E12
Finally, taking the vectom\i(")(ch, |
Bi(M)(quli_QCﬂi), evaluated from Eq(E12), we obtain the
position vector of the vertekof the new curveC,,, ,,

de,i* Ai(“)(QCWi =)+ Bi(“)(QCWi ~dc,i)

=0c,it (QC#ﬂi - QC#i) =0c,.i-

(E11)

i—gc i) and the vector

(E13
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E-Hessian matriquCiVECi Eapproddci» O ,chi)|czcﬂ, which
appears in Eq(E11), through theDi(“) matrix and theel(")
vector, and in Eq(E12), is normally taken as a unit matrix or
as a diagonal matrix.

As a summary the algorithm at tifg + 1) iteration, and
for each point vertexi, only needs the position vector
de i the Weierstrass  E-gradient vector
V4, Eapproldei ,gci,Ain)|C:C#, and the matricesRi(") and
Gi("l), defined in the expressiofiE2) and (E7), respectively.
With these vectors and matrices solve the set of equations
(E13 compute

the new position vectoqcmli.
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