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MINIMAX THEOREMS IN PROBABILISTIC METRIC SPACES

Y.J. CHO, S.S. CHANG, J.S. JUNG, S.M. KANG AND X. Wu

In this paper, new minimax theorems for mixed lower-upper semicontinuous func-
tions in probabilistic metric spaces are given. As applications, we utilise these re-
sults to show the existence of solutions of abstract variational inequalities, implicit
variational inequalities and saddle point problems, and the existence of coincidence
points in probabilistic metric spaces.

I. INTRODUCTION AND PRELIMINARIES

The minimax problem is of fundamental importance in nonlinear analysis and,
especially, plays an important role in mathematical economics and game theory.

The purpose of this paper is to obtain some minimax theorems for mixed lower-
upper semi-continuous functions in probabilistic metric spaces which extend the mini-
max theorems of von Neumann types [1, 3, 4, 5, 6, 8, 10, 11, 12]. As applications, we
utilise these results to study the existence problems of solutions for variational inequal-
ities and implicit variational inequalities in probabilistic metric spaces and to show the
existence of coincidence points and saddle points in probabilistic metric spaces.

Throughout this paper, let R — (—oo,+oo) and R+ = [0,+oo).

DEFINITION 1.1: A mapping F : R —> R+ is called a distribution function if it is
nondecreasing and left-continuous with inf F(t) — 0 and sup F{t) = 1.

In what follows we always denote by T> the set of all distribution functions and by
H the specific distribution function defined by

( 0, if t ^ 0,
H(t)=\

\ 1, if t> 0.

DEFINITION 1.2: A probabilistic metric space (briefly, a PM-space) is an ordered
pair (X, !F), where X is a nonempty set and T is a mapping from X x X into V.
We denote the distribution function T(x,y) by Fx<y and FXlV(t) represents the value
of Fx>y at t £ R. The function FXiV is assumed to satisfy the following conditions :

(PM-1) FXlV(t) = 1 for all t> 0 if and only if x = y,
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(PM-2) 1^,(0) = 0,
(PM-3) Fx,y(t) = Fv,.(t) for all t G R,

(PM-4) if FXiV(h) = 1 and Fy>2{t2) = 1, then Fx,z(h + t2) = 1.

DEFINITION 1.3: A mapping T : [0,1] x [0,1] - • [0,1] is called a t-norm if it
satisfies the following conditions:

(T-l) T(a,l) = a,

(T-2) T(a,b) = T(b,a),

(T-3) T(c,d) ^T{a, b) for c> a and O b,

(T-4) T(T(a,b),c) = T(a,T(b,c)).

DEFINITION 1.4: A Menger PM-space is a triplet ( X . ^ T ) , where (X,F) is a
PM-space and T is a t-norm satisfying the following triangle inequality:

Fx,z{h + t2) > W,B(*l)>*V,*(<2))

for all x,y,z G X and t\,t2 ^ 0.

Schweizer and Sklar [9] have proved that if (X, F, T) is a Menger PM-space with
a continuous t-norm T, then (X,U) is a Hausdorff topological space in the topology
T induced by the family of neighbourhoods

{Up(e,X):PeX, e>0, A > 0},
where

DEFINITION 1.5: Let (X,F) be a PM-space. A subset D of X is said to be

chainable if for any a,b 6 D, X £ (0,1] and e > 0, there exists a finite set {a =

Po,Pi, • • • ,Pn —b}cD such that

The set {po,Pi,--- ,Pn} is called a (e, X)-chain joining a and 6.

In the sequel, we consider the empty set <f> to be chainable.

DEFINITION 1.6: Let (X, f,T) be a Menger PM-space with a continuous <-norm
T. (X,T,T) is called a probabilistic interval space if there exists a mapping [•,•] :
X x X —> CI(X), the family of all chainable subsets of X, such that for any x\,x2 € X,

[xi,x2] is a compact chainable subset of X and [xi,Z2] = [z2,Zi] D {xi,x2}. In this
case, the set [21,22] is called a probabilistic interval in X.

REMARK. It should be pointed out that if (X,T,T) is a Menger PN-space with a
continuous t-norm T, then (X, F,T) must be a probabilistic interval space. In fact,
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for any 21,22 G X, letting [21,22] = co{xi,X2}, then it is obvious that [21,22] is a
chainable comapct subset of X containing 21,22 and [21,22] = [z2izi]-

DEFINITION 1.7: Let (X,F,T) be a probabilistic interval space with a continuous
t-norm T. A subset D of X is called W- chainable if for any 21,22 G D, the proba-
bilistic interval [21,22] C D. A function / : X —> R is said to be probabilistic quasi-
convex (respectively, probabilistic quasi-concave) if {2 £ X : f(x) ^ r } (respectively,
{2 6 X : f[x) ^ r}) is PF-chainable for all r G 72. f : X —* R is said to be upper-
compact (respectively, lower-compact) if for any r G i?, the set {2 G Ji : / (2 ) ^ r }
(respectively, {2 G .Y : / (2 ) ^ r}) is compact in X.

DEFINITION 1.8: Let X and Y be two topological spaces. A function f-.Xx.Y~*

R is said to be lower-upper semi-continuous if 2 1—v f(-,y) and y i-» f(x,-) are lower
and upper semi-continuous, respectively.

DEFINITION 1.9: Let (X,F,T) and \Y,?,T\ be two probabilistic interval spaces.

A function / : X X Y —* R is said to be probabilistic quasi-convex-concave if i •-»

f(-,y) and y H-» f(x,-) are probabilistic quasi-convex and probabilistic quasi-concave,

respectively.

PROPOSITION 1 . 1 . In probabilistic interval spaces,

(1) tie intersection of ai/ W-cfrainabie subsets is still a W-chainable subset
(the empty set <f> is assumed to be W-chsiaable).

(2) Each W-chainable subset is a chainable subset.

PROPOSITION 1.2. Let (X, J",T) be a Menger PM-space with a continuous
t-nonn T. If {pn} and {^n} are two sequences of X satisfying pn —» p, gn —> 9 and
for ail n,

t ien p—q.

PROOF: For any e > 0 and A > 0, by the continuity of T , there exists A' G (0,1]
such that T( l — A',1 — A ' ) > 1 — A. Hence there exists a positive integer N such that
for n ^ N

1/n < min{e/2, A'}, FP n,p(£/2) > 1 - A'.

Thus, for any n ^ N, we have

Fp, , n(£) £ T(F p , P n ( e /2) ,F P n , , n ( £ /2) ) ^ T( l - A',1 - A') > 1 - A,

which implies that qn —» p . Since qn —> g, we have p = g. This completes the proof. D
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2. MINIMAX THEOREMS IN PM-SPACES

Now, we are ready to give our main theorems.

THEOREM 2 . 1 . Let(X,T,T) be a probabilistic interval space with a continuous

t-norm T and (Y,F, T) be a compact Menger PM-space with a continuous t-norm T.

Let f : X x Y —> R be a function satisfying the following conditions:

(i) V *-* f{xi) JS upper semi-continuous,
(ii) for any finite set A C X and for all r G R, f\ {y G Y : f(x,y) > r} is

chainable, *eA

(iii) x \-y f(-,y) is probabilistic quasi-convex and lower semi-continuous on

any probabilistic interval of X.

Then
sup ini f(x,y)= inf sup f(x,y).

PROOF: Let

r»r sup inf f(x,y)

and
r* = inf sup f(x,y).

x € X Y

It is obvious that r* ̂  rt. Next we prove that r« ̂  r*. In fact, for any x £ X and for

any r < r* , letting

M(x,r) - {y G Y : f(x,y) > r}, M(x,r) = {y£Y: f(x,y) > r},

by the definition of r*, we have M(x,r) ^ <j>. By the condition (i), {M(x,r) : x G

X, r < r*} is a family of nonempty closed sets in Y. Now we prove that the family

{M(X,T) : x G X, r < r*} has the finite intersection property.

In fact, for any x £ X and for any r < r* , by the above discussion, M(x,r) ^ <j>.

Now, by induction, we assume that for any n elements in {M(x,r) : x £ X, r < r*},
n ^ 2, their intersection is nonempty. Then we prove that for any n + 1 elements in
{M(x,r) : x £ X, r < r*}, their intersection is also nonempty. Suppose the contrary.
Then there exist {xi,--- ,xn+i} C X and {ri,--- ,rn+i} C R with r* > r\ ^ r^ ^
• • • ̂  r n+i such that

n+l
(2.1)

By the density of R, there exists r G i2 such that ri < f" < r* . Letting

n+l
T{x) = M{x,n), f(x) = M(x,r1) and JJ = f] T{Xi

«=3
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for any x G X, in view of the inductive assumption, we have

#nT(x) = ( pM(asi,ri)j nM(x,n)D ( f] M(x,-,r)J n % f ) ^ .

On the other hand, by the condition (i), we have

n+l

(2.2) (H n T(xj)) n (JJ n T(x2)) C Q M{xi,r{) = <f>.

2

Hi/ i U T(x<),then/(xi,2/) ^ n , i = 1,2, and so {xi,x2} C {x G X : f(x,y) ^n}.

By the condition (iii), we know that [xi,X2] C {x G X : f{x,y) ^ r i } . Hence for any
x G [xi,x2] we have f(x,y) ^ r i , that is, y £ T(x). This implies that T([zi,x2]) C

2 2

U T(xi) and so H D T([xi,x2]) C U -ffnT(zi). Thus for any xG [ii ,x2],

2

j?nr(z)c|jFnr(zO.

Next we prove that for any x G [xi,x2],

(2.3) HnT{x)cHnT{Xl) or H HT(x) C H DT{x2).

In fact, if there exist 3/1,1/2 G J? fl T(x) such that 1/1 G ff D T(xi) and j / 2 G ff D
T(z2), since JJnT(z) is chainable, for any positive integer n, there exists a ( l /n, l /n)-
chain joining 3/1 and y2 . Hence there exists pn G H D T(x\) and qn G H D T(x2) such
that -Fpn.^lAO > 1 — 1/n. Since J (~l T(x,) is compact, i = 1,2, without loss of
generality, we assume pn -» p £ H D T(zi) and gn -» 5 £ 5 n ^(x2). By Proposition
1.2, p = q and so we have

P = q G (F n r(*x)) n ( f n r(z2)),

which contradicts (2.2). Thus (2.3) is true.
Letting

Ei ={zG [x!,z2] : H n T ( x ) c f f

E2 = { X G [ X ! , Z 2 ] : J m r ( i ) c i

it is obvious that z; G JBJ, i = 1,2, Ei n E2 — <j> and JBi U E2 = [xi,x2]. Hence E^
or E2 is not a relatively closed set in [xi,x2]. Otherwise, since [xi,x2] is chainable
and xi,x2 G [zi,x2], for any n, there exists a (l/n,l/n)-chain joining xi and x2 in
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• It follows from Ex D E2 = <f> and x,- G Ei, i = 1,2, that there exist a,, G Ex

and bn G E2 such that

Fan,bJl/n)>l-l/n, n = l , 2 , - -

Since [xi,x2] is compact, we may assume that an -* a and 6n —> 6. By Proposition
1.2, we know that a = b E Ei f"l E2, which is a contradiction.

Without loss of generality, we assume that E2 is not a relatively closed set in
[xi, x2] . Then there exists x0 G (£2\.E2) D JSj. Hence we have H D T(x0) C f f l T(xx)
and there exists a net { x a } a £ / C £2 such that xa —* x0 . By the definition of 252, we
have H D T(xa) C H C\ T(x2) for all a G / .

On the other hand, since HnT(x0) ^ <j>, there exists y0 G HnT(x0) C HC\T(xi).
Hence we have yo £ H D T{x2) and so y0 £ H n T(xa) for all a G /• This implies
that yo ^ ^(xa ) for all a E I, that is, /(za,3/o) ^ fi for all a G / . By the condition
(iii), we have f(xo,yo) ^ n , that is, y0 $ T(x0), which contradicts the choice of yQ.
This shows that {M(x,r) : x G X, r < r*} has the finite intersection property. Since
Y is compact, we have

x€X,r<r*

Hence there exists y G M(x,r) for all x G X and for all r < r*, and so we have

sup inf f(x,y) ^ r.

By the density of R, we have

r, = sup inf /(x,y) ^ r*

This completes the proof. D

THEOREM 2 . 2 . Let (X, T, T) be a probabilistic interval space with a continuous

t-norm T and \Y,T,T\ be a compact Menger PM-space with a continuous t-norm T.

Let f : X x Y —» R be a function satisfying the following conditions:

(i) y t-» / (x , - ) is upper semi-continuous,

(ii) for any finite set A C X and for any r G R, |"| {y G V : f(x,y) ^ r} is
xeA

chainable,
(iii) x i-> /(-,{/) is probabilistic quasi-convex and lower semi-contiuous on any

probabilistic interval of X.
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Then
sup inf f(x,y) = inf sup/(z,y).

PROOF: Let

7v» = sup inf f(x,y)

and
r* = inf sup/(x,j/).

x€Xy€Y

First we prove that for any finite set A C X and for any r G R, the set Q {y G F :
f(x,y) > r} is chainable. In fact, since

f|feey:/M>r}= |J p\{yeY:f(x,y)2r + e},
x€A t>0i£A

if for any e > 0, fl iv e ̂  : /(a,!/) ^ r + e} = <}>, then f| {y G Y : /(x,y) > r} = <t>
x£A x£A

is chainable. Therefore, without loss of generality, we may assume that there exists an
e0 > 0 such that f\ {y G Y : f(x,y) ^r + eo}^(f>. Note that if e > e0, then

x€A

f| {y e Y : /(*,») ^ r + £„} D fj {y € F : /(z,») £ r + e}

and so we have

f){yeY:f(x,y)>r}= \J f| {y e Y : /(*,») ^ r + e}.

Since

n ( C \ [] Y : f(x,y) ^ r + e0} ̂  </>,
/ x&A

there exists y0 G D {y G Y" : f{x,y) ^ r + e} for all e with 0 < e < e0- For any
x€A

yi>S/2 G n {y G y : f(x,y) > r}, there exist £i,£j with 0 < ei ^ e0, * = 1,2, such

that
W G f| {y G y : f(x,y) >r + e,}, t = 1,2.

On the other hand, for any 7\ > 0 and A 6 (0,1], by the condition (ii), there exists
an (77,A)-chain joining j/i and j/o in f) {y G Y : f(x,y) ^ r + £1} and there exists

x€A
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an (7/,A)-chain joining y0 and y2 in f| {y G Y : f{x,y) ^ r +£2}- Hence there
x€A

exists an (77, A)-chain joining t/1,3/2 in f| {y G Y : f(x,y) > r}. This implies that
x€A

Pi {y G Y : f(x,y) > r} is chainable. Hence all the conditions in Theorem 2.1 are

satisfied. Thus, this theorem follows from Theorem 2.1. This completes the proof. D

COROLLARY 2 . 3 . Let (X,^,T) be a probabilistic interval space with a con-

tinuous t-norm T and [Y^J7,Tj be a compact probabilistic interval space with a

continuous t-norm T. Let f : X x Y —* R be a function satisfying the following

conditions:

(i) y \-> f(x,y) is upper semi-contiuous and probabilistic quasi-concave,

(ii) x >-* f(x,y) is probabilistic quasi-convex and lower semi-contiuous on any

probabilistic interval of X.

Then

sup inf / (x ,y)= ini sup f(x,y).
Y*£x x€x Y

PROOF: Noting that the intersection of any number of PK-chainable subsets is

also W-chainable and every VK-chainable subset is chainable, then the condition (ii) in

Theorem 2.2 is satisfied. Thus, by Theorem 2.2, the conclusion follows. U

COROLLARY 2 . 4 . Let {X,F,T) and (Y,iF,T\ be two probabilistic interval

spaces with continuous t-norms T and T, respectively, and (Y,T,TJ be compact.

Let f : X x Y —> R be a function satisfying the following conditions:

(i) y t-> f(x,y) is upper semi-continuous,

(ii) for any r g R and for any x G X, {y G Y : f(x,y) > r} is W-chainable,

(iii) x i-> f(x,y) is probabilistic quasi-convex and lower semi-contiuous on any

probabilistic interval of X.

Then

ini sup f(x,y) = sup inf f(x,y).
x£X Y Yx^x

PROOF: By the same method as stated in Corollary 2.3 and using Theorem 2.1,

the conclusion is obtained. U

REMARK. The results presented in this section improve and extend the corresponding

results in [l , 3, 4, 5, 6] and [7, 8, 9], and generalise them to the cases of probabilistic

metric spaces.
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3. ABSTRACT VARIATIONAL INEQUALITIES IN P M - S P A C E S

In this section, we shall apply the results presented in the section 2 to show the exis-
tence problems of solutions for abstract variational inequalities in probabilistic interval
spaces.

THEOREM 3 . 1 . Let {X,T,T) be a compact probabilistic interval space with a
continuous t-norm T and f : X xX —> R be a function with f(x,x) ^ 0 for all x G X.
If the following conditions are satisfied:

(i) / is lower-upper semi-continuous,
(ii) for any finite set A C X and for any r G R, f| {y G X : f(x,y) > r} is

zeA
chainable,

(iii) x >—> f{x,y) is probabilistic quasi-convex,

then there exists a y G X such that f{x,y) ^ 0 for all x G X.

PROOF: By Theorem 2.1, we have

sup inf f{x,y) = inf sup f(x,y).

By the condition (i), since y i-» f(x,y) is upper semi-continuous, [2, Proposition 1.4.6]
inf f(x,y) is upper semi-continuous in y. Since X is compact, there exists an y £ Y

such that sup inf f(x,y) — inf f(x,y) and so
xx£x x^x

sup/(as,y) ^ inf f(x,x) ^ 0.
X XEX

Therefore, we have f(x,y) ^ 0 for all x G X. This completes the proof. D

THEOREM 3 . 2 . Let (X,T,T) be a compact probabilistic interval space with a
continuous t-norm T and f : X x X —> R a function with f(x,x) ^ 0 for all x G X.

If the following conditions are satisfied:

(i) / is lower-upper semi-continuous,
(ii) for any finite set A C X and for any r G R, f] {y G X : f(x,y) > r} is

chainable, xeA

(iii) x i—> f(x,y) is probabilistic quasi-convex,

then there exists x G X such that f(x,y) $J 0 for ail y G X.

PROOF: The proof is similar to Theorem 3.1, we omit it here. D

COROLLARY 3 . 3 . Let (X,T,T) be a compact probabUistic interval space with
a continuous t-norm T. Let <p : X x X —» R and h : X —* R be two functions satisfying
tp(x,x) ^ 0 for all x G X and the following conditions:

(i) ip is lower-upper semi-continuous and h is upper semi-continuous,
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(ii) for any finite set A C X and for any r G R, f\ {y E X : <p{x,y) + h(y) >
x€A

r + h(x)} is chainable (or f| {y E X : <p(x,y) + h(y) ^ r + h(x)} is
x£A

chainable),

(iii) <p(x,y) — h(x) is probabilistic quasi-convex in x.

Then there exists a i / g l such that <p(x,y) ^ h(x) — h(y) for all x G X.

PROOF: Letting f(x,y) = ip(x,y) — h(x) + h(y), it is easy to prove that / satisfies
all the conditions in Theorem 3.1. Thus, the conclusion is obtained from Theorem 3.1
immediately. D

Using Theorem 3.2, we can prove the following:

COROLLARY 3 . 4 . Let (X, T, T) be a compact probabilistic interval space with
a continuous t-norm T. Let tp : X xX —> R and h : X —» R be two functions satisfying
<p(x,x) ^ 0 for all x £ X and the following conditions:

(i) (p is lower-upper semi-ccontinuous and h is upper semi-continuous,
(ii) for all finite set A C X and for any r G R, f] {y G X : ip(x,y) + h(y) >

x£A

r} is chainable (or f\ {y G X : <p(x,y) + h(y) ^ r + h(x)} is chainable),
*eA

(iii) <p(x,y) — h(x) is probabilistic quasi-convex in x,
then there exists an x G X such that tp{x,y) ^ h(x) — h(y) for all y G X.

4. SADDLE POINT THEOREMS IN PM-SPACES

In this section, by using Theorem 2.1, we give some saddle point theorems in
probabilistic interval spaces.

THEOREM 4 . 1 . Let {X, F, T) be a probabilistic interval space with a continuous

t-norm T and \Y,F,T) be a compact Meager PM-space with a continuous t-norm T.

Hf:XxY—>Risa function satisfying the following conditions:

(i) / is lower-upper semicontonuous,

(ii) for any finite set A C X and for any r G R, f\ {y € Y : f(x,y) > r}
x€A

(or P| {y G Y : f(x,y) > r}) is chainable,
xeA

(iii) x i-> f(x,y) is probabilistic quasi-convex and there exists a j/i G Y such
that x >—> f(x,yi) is lower-compact.

Then there exists (x,y) G X x Y such that f(x,y) ^ f{x,y) < f{x,y) for all x G X
and y eY.

PROOF: Let

<p(x) = supf(x,y),
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By [2, Proposition 1.4.6], <p is lower semi-continuous and rp is upper semi-continuous.
Since Y is compact and y i-» f(x,y) is upper semi-continuous, (p is a function from X

to R and rf> is a function from Y to i2U {-co}. Besides, by the condition (iii), since
x i-» /(as, j/i) is lower-compact, for any x\ £ X, letting

Li = {x G X : / (x,yi) <

then £i is a nonempty compact subset of X and

It follows from the lower semi-continuity of /(-,2/i) and the compactness of L\ that
there exists x, E L\ such that

™i f(x,y!)= inf /(x,yj) = / (x , , i / i ) .

Therefore, i>(yi) G JR and so ifr ^ —oo.

Again by the upper semi-coninuity of V1 and the compactness of Y, there exists a
y G Y such that

Letting

Qi = {x e X : <p{x) £ <p{xi)},

by the lower semi-continuity of <p, we know that Qi is a nonempty closed set and

Since f(-,yi) is lower-compact, i?i is compact and so Qi is compact. Besides, it is
obvious that

Hence there exists a n i E Q i such that

inf w(z) = inf <p(x) = ¥>(£).

However, from Theorem 2.1, we have

sup inf f(x,y) = in{ sup f(x,y).
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Therefore, we have ij>(y) = <p(x), which implies that for all x G X and y G Y

f{x,y) < sup f(x,y) = <p(x) = i/>(y) = inf f(x,y) ^ f(x,y).

Taking x = x and y — y in the preceding expression, we have

f{x,y) = <p(x) = i>{y).

Hence we have

f(x,y) ^ sup f(x,y) = f(x,y) = inf f{x,y) ^ f(x,y)

for all x G X and y G Y. This means that (x,y) G X x Y is a saddle point of / . This
completes the proof. U

From Theorem 4.1, we can obtain the following:

COROLLARY 4 . 2 . Let {X,F,T) be a probabilistic interval space with a con-

tinuous t-norm T and (Y,p, TJ be a compact probabilistic interval space with a

continuous t-norm T. If f : X xY —> R is a function satisfying the followig conditions:

(i) / is lower-upper semi-continuous,

(ii) / is probabilistic quasi-convex-concave,

(iii) there exists y\ G Y such that /(-,j/i) is lower-compact.

Then f has a saddle point (x,y) G X x Y.

REMARK. Corollary 4.2 generalises the famous von Neumann saddle point theorem to
the case of probabilistic metric spaces.

5. COINCIDENCE POINT THEOREMS IN P M - S P A C E S

THEOREM 5 . 1 . Let (X,^, T) be a compact probabih'stic interval space with a

continuous t-norm T and Y be a topological space. Let S : X —» Y be a continuous

mapping and F : X —> 2Y be a mapping with nonempty closed values satisfying the

following conditions:

(i) for any finite set A C X, f| S-1.F(a;) is chainable,
x€A

(ii) for all x G X, X\F~1(5(a;)) is a closed W-chainable subset of X,

(iii) forany xeX, S^F^) ^ <f>.

Then there exists an x G X such that S(x) G F(x).

PROOF: Define a function / : X x X -> R by

JO, i£S(z)$F(x),
f(x,z) — <

\ l , i£S(z)eF(x).
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If F and 5 have no coincidence point in X, then for any x £ X, S(x) ^ F(x) and so

/(*,*) = 0.

Next we prove that all the conditions in Theorem 3.2 are satisfied. In fact,

(I) For any a £ R and for any i £ j f , w e have

(
X, if a ^ 0,

<t>, if a > 1,

Since F has closed values and 5 is continuous, M is a closed set in X. Hence y

f(x,y) is upper semi-continuous.

(II) For any a £ R and for any finite set A C X, we have

{
X, if a < 0,

By the condition (i), it is chainable.

(III) For any a £ R and for any z £ X, we have

if a < 0,

if a ^ 1,

By the condition (ii), we know that P is a closed W-chainable subset. Hence f(-,z) is
a lower semi-continuous and probabilistic quasi-convex function. By Theorem 3.2, there
exists an x G X such that f(x, z) ^ 0 for all z £ X. Since f(x, z) ^ 0 for all z £ X ,
wehave/ (x ,s ) = 0. Hence for all z EX, we have 5(z) £ F(x) , that is, S - ^ x ) =<£.
This contradicts the condition (iii). Therefore, 5 and F have a coincidence point, that
is, there exists a x* £ X such that S(x*) £ F(x*). This completes the proof. D

COROLLARY 5 . 2 . Under the conditions in Theorem 5.1, but with condition (i)

replaced by the following conditon:

(i ') for ail x EX, S^F^x) is W-chainable,

then S and F have a coincidence point in X.

Taking Y — X and S = Ix (the identity mapping on X) in Theorem 5.1 and
Corollary 5.2, we have the following:
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COROLLARY 5 . 3 . Let (X, F, T) be a compact probabilistic interval space with
a continuous t-norm T. Let F : X —» 2X be a set-valued mapping with nonempty
closed values satisfying the following conditions:

(i) for any finite set A C X, f| F{x) is chajnable (or for any x E X, F(x)

is a W-chainable subset in X ) ,

(ii) for any x E X, X\i?1~1(x) is a closed W-chainable subset.

Then F has a fixed point in X.

6. IMPLICIT VARIATIONAL INEQUALITIES IN PM-SPACES

In this section, by using some results from the previous sections, we show the
existence of solutions of variational inequalities in PM-spaces.

THEOREM 6 . 1 . Let (X,T,T) be a compact probabilistic interval space with a
continuous t-norm T. Let -ip : X x X x X —> R, g : X x X —* R be two functions
satisfying T{>(Z,X,X) ^ 0 for all z,x G X and the following conditions:

(i) ip(z, -,y) is lower semi-continuous, ip(z, x, •) is upper semi-continuous and

g(z,-) is upper semi-continuous,

(ii) ij)(z,x,y) + g(z,y) is probabilistic quasi-concave in y,

(iii) ip(z,x,y) — g(z,x) is probabilistic quasi-convex in x,

(iv) for any x E X, {z £ X : sup[^(2,3, y) + g{z,y)] > g(z,x)} is a closed
sex

W-chainabie subset in X.

Then there exists a "z G X such that il>(z*,~z,y) ^ g(z,z) — g{z,y) for all y 6 X.

PROOF: For any z e X, let

f{x,y) =iJ>(z,x,y), h(x)=g(z,x).

It is easy to check that all the conditions in Corollary 3.4 are satisfied. Hence, by

Corollary 3.4, it follows that

(6.1) <p{x,y)^h{x)-h(y)

for all y G X has a solution in X. Let S(z) be the set of solutions of the variational
inequality (6.1). Then 5 : X —* 2X is a multi-valued mapping. Let {xa}aej be any
net in S(z) and xa -* x. Since {xa}a^j C S(z), we have <p(xa,y) ^ h(xa) — h(y) for
all y G X and a G J, that is, ij>(z,xa,y) < g(z,xa) - g(z,y). By the condition (i), we
know

ij>(z,x,y) - g(z,x) ^ hm[ij>(z,xa,y) - g(z,xa)} < -g(z,y), y G X.
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Therefore, we have
i/>(z,x,y) ^ g(z,x) - g(z,y), y G X,

that is, x G S(z). This implies that S{z) is a nonempty closed set in X.

On the other hand, for any finite set {z\,• • • ,zn} C X we have

t = l

f I Sizi) = f ]{x €E -̂ T : tbiz^.x,y\ ^ Q\%iy •") — dt^i*y) for -̂11 y G -X"/

n

n n
By the condition (iii), f] S(zi) is W-chainable. Hence P| S(zi) is chainable. On the

t=i t=i

other hand, for any x S X, we have

XXS-^x) = {zeX :z<£ S'^x)} = {z G X : x $ S(z)}

= {z G X : s\ip[i/>(z,x,y) + g{z,y)] > g(z,x)}.
vex

By the condition (iv), X\S~1(x) is a closed W-chainable subset. It follows from
Corollary 5.3 that there exists a ? G 5(z), that is, •t{)(1i,'z,y) < g(z,z) — g(z,y) for all
y G X. This completes the proof. D

By Corollaries 3.3 and 5.3 and using the similar method as in the proof of Theorem

6.1, we can obtain the following:

THEOREM 6 . 2 . Let (X, T, T) be a compact probabilistic interval space with a
continuous t-norm T. Let ij>;XxXxX-+R and g : X x X —> R be two functions
satisfying ip(z,x,x) ^ 0 for all z,x G X and the following conditions:

(i) i/>(z, -,y) is lower semi-continuous, i/)(z, x, •) is upper semi-continuous and
g(z,-) is upper semi-continuous,

(ii) if>(z,x,y) + g(z,y) is probabUistic quasi-concave in y,
(iii) i/)(z,x,y) — g(z,x) is probabilistic quasi-convex in x,
(iv) for any y G X, {z G X : inf [i/>(z,x,y) - g(z, x)] < -g(z,y)} is a closed

x£JC

W-chainable subset in X.

Then there exists a ? £ l such that il>(z, x, z) ^ </(?, x) — g(1i, z~) for all x G X.

COROLLARY 6 . 3 . Let (X, T, T) be a compact probabUistic interval space with

a continuous t-norm T. Let t/> : XxXxX —» R be a function satisfing ip(z,x,x) ^ 0 for

all z,x G X (respectively, ij>(z,x,x) ^ 0 for all z, x G X) and the following conditions:

(i) ij>{z, -,y) is lower semi-continuous and probabilistic quasi-convex,
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(ii) ip(z,x,-) is upper semi-continuous and probabilistic quasi-concave,
(iii) for any x G X, the set {z G X : &uptj)(z,x,y) > 0} (respectively, the

vex
set {z G X : inf rj>(z,x,y) < 0} for all y e X) is a closed W-chainable

x£X

subset.

Then the implicit variational inequality of Ky Fan type

4>(z,z,y) ^ 0

for all y G X (respectively, if>(z, x, z) ^ 0 for all x G X) has a solution in X.
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