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Rostislav Černý · Stefan Funken · Evgueni Spodarev

Received: 16 October 2006 / Accepted: 1 March 2007 /
Published online: 13 September 2007
© Springer Science + Business Media, LLC 2007

Abstract The Boolean model of Wiener sausages is a random closed set that can be
thought of as a random collection of parallel neighborhoods of independent Wiener
paths in space. It describes e.g. the target detection area of a network of sensors
moving according to the Brownian dynamics whose initial locations are chosen in
the medium at random. In the paper, the capacity functional of this Boolean model is
given. Moreover, the one- and two-point coverage probabilities as well as the contact
distribution function and the specific surface area are studied. In R

2 and R
3, the

one- and two-point coverage probabilities are calculated numerically by Monte Carlo
simulations and as a solution of the heat conduction problem. The corresponding
approximation formulae are given and the error of approximation is analyzed.
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1 Introduction

A parallel neighborhood of a path of the Brownian motion is named after Norbert
Wiener a Wiener sausage. This random closed set is used in physics, chemistry,
biology and telecommunication to model various phenomena; cf. references in Yang
et al. (2000). More complicated random closed sets can be constructed on its basis
using the paradigm of germ–grain models. For that, a number of random locations in
space called germs is supplied with random grains placed in these locations.

A germ–grain model with the spatially homogeneous Poisson point process of
germs and independent identically distributed grains is a Boolean model. It is
distinguished by the structural simplicity and the availability of analytical formulae
for its characteristics; (cf. e.g. Stoyan et al. 1995). Boolean models with convex,
polyconvex or smooth grains appear naturally in many applications in materials
science, biology and medicine; (cf. e.g. Molchanov 1997). For this reason, most
applied papers deal with these very well studied classes of primary grains. Extending
the class of possible grains to parallel neighborhoods of fractal sets such as Wiener
sausages and providing analytical formulae for the new type of grains would give
practitioners more flexibility in modelling rough geometric structures.

Boolean models of Wiener sausages appear in connection with sensor networks
(cf. e.g. Shakkottai 2005 and Kesidis et al. 2003). Imagine that sensors scattered
initially at random in a non-transparent medium start moving according to the
Brownian dynamics. Each sensor can detect a target within a range r > 0. The target
detection area of such sensor network up to time T > 0 forms a Boolean model with
the Wiener sausage of radius r as a primary grain. The probability of target detection
(also known as the one-point coverage probability or volume fraction of the Boolean
model) in three dimensions is given in Kesidis et al. (2003).

In this paper, we deal mainly with the two-point coverage probabilities of the
Boolean model of Wiener sausages that are often called the covariance function. We
give approximation formulae for the covariance function in two and three dimensions
based on Monte Carlo simulations and numerical solutions of the heat conduction
equation.

In Section 2, preliminaries on Wiener sausages are given. Section 3 deals with the
capacity functional of the Boolean model of Wiener sausages connecting it with the
initial and boundary value problems for the heat equation. A general representation
of the volume fraction, the covariance function and the contact distribution function
as values of the capacity functional on particular test sets follows easily. This repre-
sentation involves an integral of the solution of the heat conduction problem in some
region. For the covariance function, this is an exterior of the union of two (possibly
overlapping) spheres. If these spheres coincide an explicit analytical solution can be
given in any dimension. Nevertheless, in all dimensions excepting three this formula
can not be used in practice since it involves integrals of a combination of Bessel
functions. Moreover, in general case the corresponding analytical expression is still
unknown and has to be assessed numerically. In Section 3.3, a formula for the specific
surface area of the Boolean model of Wiener sausages is given. The numerical
analysis of the covariance function in two and three dimensions is performed in
Section 4 by means of finite element method and by simulation (Sections 4.1 and
4.3, respectively). Simple approximation formulae are provided and the error of
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approximation is discussed. Results of different computation methods are compared
in Section 4.4. We conclude with a brief discussion of open problems.

2 Preliminaries

Let A ⊕ B be the pointwise sum of two sets A and B in R
d. For the ball B = B(o, r)

of radius r � 0 in R
d centered at the origin, the set Ar = A ⊕ B(o, r) is called the

r-parallel neighborhood of A. The operation A �→ Ar is known as dilation. Let us
write Vd(A) for the volume of a Borel set A ⊂ R

d. For any set A, denote Ǎ = −A.
Let ωd = πd/2/�(1 + d/2) be the volume of the unit ball in d dimensions.

Let {Bx(t), t ≥ 0} be the d-dimensional Brownian motion in R
d with variance

σ 2 > 0 starting at Bx(0) = x ∈ R
d. Throughout the paper, we assume that d � 2.

Given a radius r > 0 and a time T > 0 we set

Sx
r,T = {Bx(t) : 0 ≤ t ≤ T} ⊕ B(o, r) . (2.1)

Sx
r,T is called the Wiener sausage; (cf. e.g. Sznitman 1998, p. 64). It is a random

compact set (in the sense of Matheron, see Matheron 1975). We shall write only
Sr,T for So

r,T if the Brownian motion starts at the origin. It is known that all moments
of the volume Vd(Sr,T) are finite, see Sznitman (1987).

3 Boolean Model of Wiener Sausages

Assume ϕ={xn}∞n=1 to be a stationary Poisson point process in R
d with intensity λ > 0

(see e.g. Stoyan et al. 1995 for more details). Consider an independent identically
distributed collection of Wiener sausages {(Sr,T)n}∞n=1 (each starting at the origin)
which are independent of the process ϕ. Introduce the Boolean model � of Wiener
sausages (Fig. 1) by putting

� =
∞⋃

n=1

(
xn + (Sr,T)n

)
. (3.1)

Fig. 1 Three realizations of Boolean models of Wiener sausages for T = 10 and r = 1. The intensity
λ is chosen to fit volume fractions 0.25, 0.5 and 0.75, respectively
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Since E Vd(Sr,T ⊕ B(o, r′)) = E Vd(Sr+r′,T) < ∞ for all r′ > 0, � is a random closed
set (see Stoyan et al. 1995). The isotropy of Sr,T and stationarity of ϕ imply that � is
stationary and isotropic. It means that the probability distribution of � is invariant
with respect to rigid motions.

3.1 Capacity Functional, Volume Fraction and Covariance Function

The capacity functional T�(C) = P(� ∩ C �= ∅) for all compact C ⊂ R
d plays the

same role in the theory of random sets as the distribution function of random
variables in the classical probability theory. Namely, it defines the distribution law
of � uniquely. It is known that the capacity functional of the Boolean model is
given by

T�(C) = 1 − e−λ E Vd(Sr,T ⊕Č) (3.2)

for all compact C; cf. Stoyan et al. (1995).
Following Spitzer (1964), we can compute the expected volume of Sr,T ⊕ Č using

Fubini’s theorem as

E Vd

(
Sr,T ⊕ Č

)
=

∫

Rd

P
(

x ∈ Sr,T ⊕ Č
)

dx =
∫

Rd

P
(
τ x

C⊕B(o,r) ≤ T
)

dx , (3.3)

where τ x
A = inf{s>0 : Bx(s) ∈ A} is the first hitting time of a Borel set A for the

Brownian motion starting at x∈R
d. Introduce the notation u(t, x)=P

(
τ x

C⊕B(o,r) ≤ t
)
,

x ∈ R
d, t � 0. Kolmogoroff and Leontowitsch (1933), Hunt (1956) and Doob (1955)

showed that u(t, x) is the unique bounded solution to the following heat conduction
problem:

∂u
∂t

= σ 2

2
� u, t > 0, x ∈ R

d \ (C ⊕ B(o, r)),

u(0, x) = 0, x∈ R
d \ (C ⊕ B(o, r)),

u(t, x) = 1, t � 0, x ∈ ∂(C ⊕ B(o, r)) .

(3.4)

For arbitrary compact sets C the problem (3.4) has to be solved by numerical
methods. In some special cases (for instance, if C = {o}) an analytical solution is given
in Berezhkovskii et al. (1989). This is the expected volume of the Wiener sausage:

E Vd(Sr,t) = ωdrd + d(d − 2)

2
ωd σ 2rd−2t

+4d ωd rd

π2

∞∫

0

1 − e− σ2 y2 t
2r2

y3
(
J2
ν (y) + Y2

ν (y)
) dy, d � 2, (3.5)
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where Jν and Yν are Bessel functions of the first and second kind of order ν = (d −
2)/2. In three dimensions, this formula simplifies to

E V3(Sr,t) = 4

3
πr3 + 4σr2

√
2π t + 2πσ 2rt , (3.6)

compare Spitzer (1964).
The volume fraction p� of the Boolean model � defined by

p� = P(o ∈ �) = E Vd(� ∩ [0, 1]d)

is just the one-point coverage probability of �. It follows from relations p� =
T�({o}), Eqs. 3.2 and 3.5 that

p� = 1 − e

−λ

⎛

⎜⎜⎝ωdrd + d(d − 2)

2
ωd σ 2rd−2T + 4d ωd rd

π2

∞∫

0

1 − e− σ2 y2 T
2r2

y3
(
J2
ν (y) + Y2

ν (y)
) dy

⎞

⎟⎟⎠

.

(3.7)

For d = 3 this formula can be found in Kesidis et al. (2003).
The covariance function of the isotropic Boolean model � can be introduced by

C�(h) = P(o, h · u ∈ �), (3.8)

where u is an arbitrary unit vector in R
d and h ≥ 0; (see Stoyan et al. 1995

and Molchanov 1997). It follows from Eq. 3.2 and the formula of total pro-
bability that

C�(h) = 2p� − T�({o, h · u}) = 2p� − 1 + e−λ E Vd(Sr,T∪(Sr,T+h·u)) . (3.9)

It follows from relations (3.2) and (3.3) that the mean volume

E Vd(Sr,T ∪ (Sr,T + h · u)) =
∫

Rd

P
(
τ x

B(o,r)∪B(h·u,r) ≤ T
)

dx (3.10)

in formula (3.9) can be computed by integrating the solution of the heat conduction
problem (3.4) where

C ⊕ B(r, o) = {o, h · u} ⊕ B(o, r) = B(o, r) ∪ B(h · u, r) . (3.11)

The mean volume in Eq. 3.10 is related to the covariogram

CSr,T (h) = E Vd(Sr,T ∩ (Sr,T + h · u))

of the Wiener sausage Sr,T by

E Vd(Sr,T ∪ (Sr,T + h · u)) = 2 E Vd(Sr,T) − E Vd(Sr,T ∩ (Sr,T + h · u)) (3.12)

where E Vd(Sr,T) is given in Eq. 3.5.
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3.2 Contact Distribution Function

For a compact test set C ⊂ R
d, o ∈ C, the contact distribution function of a random

closed set � is introduced as

HC(ρ) = P(dC(o, �) � ρ | o �∈ �), ρ > 0,

where dC(x, A) = min{ρ � 0 : (x + ρC) ∩ A �= ∅} is the distance from a point x ∈ R
d

to a closed set A ⊂ R
d measured by “inflating” the test set C. It can be easily

shown that

HC(ρ) = P(� ∩ ρC �= ∅ | o �∈ �) = T�(ρC) − T�({o})
1 − T�({o}) ,

cf. Stoyan et al. (1995). If � is the Boolean model of Wiener sausages then T�({o})
is given by relation (3.7). The value of T�(ρC) can be assessed numerically if C is a
general compact set; see the next section for an example of such numerical analysis.
However, if C is a unit ball then the spherical contact distribution function HB(o,1)(ρ)

can be given explicitly, since by Eq. 3.2 we get

T�(ρB(o, 1)) = T�(B(o, ρ)) = 1 − e−λ E Vd(Sr,T⊕B(o,ρ)) = 1 − e−λ E Vd(Sr+ρ,T )

which together with relation (3.5) yields the formula

HB(o,1)(ρ) = 1 − e−λM(d,σ 2,r,ρ,T) ,

where

M(d, σ 2, r, ρ, T) = ωd
(
(r + ρ)d − rd) + d(d − 2)

2
ωd σ 2

(
(r + ρ)d−2 − rd−2

)
T

+4d ωd

π2

⎛

⎝(r + ρ)d

∞∫

0

1 − e− σ2 y2 T
2(r+ρ)2

y3
(
J2
ν (y) + Y2

ν (y)
) dy

−rd

∞∫

0

1 − e− σ2 y2 T
2r2

y3
(
J2
ν (y) + Y2

ν (y)
) dy

⎞

⎠ .

3.3 Specific Surface Area

The specific surface area S� is defined as the mean surface area of � per unit
volume. More formally, consider the measure S�(B) = E Hd−1(∂� ∩ B) for all Borel
sets B ⊂ R

d, where Hd−1 is the (d − 1)-dimensional Hausdorff measure. Due to the
stationarity of �, the measure S� is translation invariant. By Haar’s lemma, there
exists a constant S� ∈ (0,∞) such that S�(B) = S� · Vd(B) for all Borel sets B. The
factor S� is called the specific surface area of the Boolean model � (cf. Stoyan et al.
1995, p. 235). The following formula (3.13) is well-known for Boolean models with
convex compact grains; cf. e.g. Lemma 4.1 of Heinrich and Molchanov (1999). We
prove that it holds also in the case of the Boolean model of Wiener sausages whose
boundaries are Lipschitz manifolds almost surely in dimensions two and three.
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Proposition 3.1 The specific surface area of � in R
d (d = 2, 3) is equal to

S� = λ E Hd−1(∂Sr,T)e−λ E Vd(Sr,T ), r > 0, (3.13)

where the mean volume E Vd(Sr,T) is given in Eq. 3.5 and

EHd−1(∂Sr,T) = dωdrd−1 + 4d2 ωd rd−1

π2

∫ ∞

0

1 − e− σ2 y2 T
2r2

y3
(
J2
ν (y) + Y2

ν (y)
) dy

+ dωdσ
2rd−3T

(
(d − 2)2

2
− 4

π2

∫ ∞

0

e− σ2 y2 T
2r2

y
(
J2
ν (y) + Y2

ν (y)
) dy

)
(3.14)

is the mean surface area of the Wiener sausage. In three dimensions, formula (3.13)
simplifies to

S� = 2πλ
(

2r2 + 4rσ
√

2T/π + σ 2T
)

e−2πλr(2/3r2+2σr
√

2T/π+σ 2T) . (3.15)

Proof Since � is isotropic, and since the boundary of the Wiener sausage is a
(d − 1)–dimensional Lipschitz manifold almost surely (cf. Rataj et al. 2006, Corollary
4.1) we can use the relation

S� = − d ωd

ωd−1
C′

�(0) (3.16)

to get S�; (cf. e.g. Stoyan et al. 1995, p. 204). The covariance function (3.9) rewrites

C�(h) = 2p� − 1 + (1 − p�)2eλCSr,T (h)
, h � 0 .

Its first derivative in zero is given by

C′
�(0) = λC′

Sr,T
(0)e−λ E Vd(Sr,T ) . (3.17)

It is shown in Černý and Rataj (2006) that

C′
Sr,T

(0) = −ωd−1

d ωd
EHd−1(∂Sr,T), r > 0. (3.18)

The analytical formula (3.14) together with its simplified counterpart for d = 3 is
given in Rataj et al. (2006). Combining expressions (3.16), (3.17), and (3.18) yields
the result (3.13). Its special case (3.15) in three dimensions follows from formula
(3.6) of this paper and relation (2.3) of Rataj et al. (2006). ��

4 Numerical Assessment of the Covariance Function

As far as it is known to the authors, it is difficult to find an explicit analytical
solution to Eq. 3.4 on the complement of the union of two spheres. Hence, numerical
methods can be used to solve Eq. 3.4 and get a graph of the covariance function C�.
In Section 4.1, we perform this numerical analysis by means of the finite element
method (fem, for an introduction see Braess 2001; Ciarlet 2002, and references
quoted therein). Alternatively, a large number of Monte Carlo simulations of Wiener
sausages can lead to precise estimates of C� as it is done in Section 4.3.
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Fig. 2 Zoom of the used fem
mesh (left) and corresponding
computed solution u (right) of
Eq. 3.4 for d = 2, σ = 1, r = 1,
h = 2.2 and t = 100

The MATLAB- and FEMLAB-Code which was used to compute the results
below by the Monte Carlo simulations resp. the finite element method can be
downloaded from the web.1

4.1 Numerical Solution of the Heat Conduction Problem

For d = 2, 3 we used the finite element method to compute an approximate solution
u of Eq. 3.4. To solve the problem efficiently we used rotational and axial symmetry
in 3D resp. axial symmetries in 2D to reduce the complexity of problem (3.4).
Furthermore, we restricted the resulting problem to a bounded domain h with
maxx,y∈h |x − y| > 10(2 + h) for r = 1, 0 ≤ h ≤ 20, and 0 ≤ t ≤ 100. This domain is
large enough to provide the same numerical results for the problem (3.4), (3.11)
solved in h. For discretisation we used a graded mesh with minimal mesh size
hmin = 0.015 along the boundary of the balls B(o, r), resp. B(h · u, r) and a mesh
grading of 1.3, i.e. the rate how the mesh size grows as |x| tends to infinity. A
zoom of the resulting finite element mesh is shown in Fig. 2 for r = 1 and h = 2.2.
As ansatzspace we used globally continuous, piecewise polynomials of degree 4
and an adaptive timestepping scheme. These calculations were done by using the
software package FEMLAB/COMSOL (Funken 2003) or can be done by adapting
Alberty et al. (1999).

4.2 Approximation Formulae

In the following we shall give an approximation C̃� for the covariance function C�

given in Eq. 3.8 for some fixed volume fraction p�, namely

C�(h) ≈ C̃�(h) := 2p� − 1 + (1 − p�)κ(h,t) , (4.1)

with κ(h, t) given by Eqs. 4.5 and 4.6 below. Let d = 2, 3 and

Ar(h, t) := E Vd(Sr,t ∪ (Sr,t + h · u)) = Vd(B(o, r) ∪ B(h · u, r)) +
∫

Rd\(B(o,r)∪B(h,r))

u(t, x) dx ,

(4.2)

(compare Eq. 3.10) where u(t, x) denotes the solution of Eq. 3.4 for some given h ≥ 0,
r > 0 and C ⊕ B(r, o) as in Eq. 3.11. For some given volume fraction p� of the

1http://www.mathematik.uni-ulm.de/numerik/staff/funken/software

http://www.mathematik.uni-ulm.de/numerik/staff/funken/software
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Fig. 3 Computed approximation of Ar(h, t)/Ar(0, t) in 2D (left) resp. 3D (right) for r = 1, 0 ≤ h ≤
20 and total times 0 ≤ t ≤ 100

Boolean model � we substitute λ implicitly defined by Eq. 3.7 in Eq. 3.9 which
leads to

C�(h) = 2p� − 1 + (1 − p�)Ar(h,t)/Ar(0,t) .

For t = 0 and d = 2 analytic calculations of Vd(B(o, r) ∪ B(h · u, r)) give

Ar(h, 0)

Ar(0, 0)
= κ(h, 0) :=

⎧
⎨

⎩
2
π

(
π − arccos

(
h
2r

)
+ h

2r

√
1 − ( h

2r

)2
)

, if h ≤ 2r ,

2, otherwise ,

(4.3)

resp. for d = 3

Ar(h, 0)

Ar(0, 0)
= κ(h, 0) :=

{
1
2

( h
2r

)3 − 2
( h

2r

)2 + 5
2

h
2r + 1, if h ≤ 2r ,

2, otherwise .
(4.4)

For t > 0 and d = 2, 3 a closed formula for Ar(h, t)/Ar(0, t) is not known to the
authors. In the following we give some approximation κ(h, ν(t)) (computed by
the finite element method and some elementary postprocessing) to the quotient
Ar(h, t)/Ar(0, t) (Fig. 3), where we used the scaling invariants of Ar(h, t)/Ar(0, t)
w.r.t. the radius r,

Ar(h, t)
Ar(0, t)

≈ κ(h, t) =
{(

h
ν(t)

)3 − 3
(

h
ν(t)

)2 + 3 h
ν(t) + 1, if h ≤ ν(t) ,

2, otherwise ,
(4.5)

with

ν(t) =
{

2.998 t0.3991 + 2.991, d = 2 ,

3.744 t0.2182 + 1.454, d = 3 .
(4.6)

Using Eq. 4.1 with Eq. 4.3 or 4.4 resp. Eqs. 4.5 and 4.6 gives an approximation
formula for the covariance function C�. For p� = 0.75, r = 1, 0 ≤ h ≤ 20 and
0 ≤ t ≤ 100 numerical calculations show (see Fig. 4) that pointwise in 2D the absolute
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Fig. 4 Estimated relative errors in 2D (left) resp. 3D (right) of covariance function |C�(h) −
C̃�(h)|/|C�(h)| for p� = 0.75, r = 1, 0 ≤ h ≤ 20 and total times 0 ≤ t ≤ 100

error |C�(h) − C̃�(h)| ≤ 0.0134, the relative error |C�(h) − C̃�(h)|/|C�(h)| ≤ 0.02
resp. in 3D |C�(h) − C̃�(h)| ≤ 0.0063 and |C�(h) − C̃�(h)|/|C�(h)| ≤ 0.01, where C�

is the result of the computation of the covariance function by the finite element
approximation.

4.3 Estimation by Monte Carlo Simulation

There are two ways leading to estimates of the covariance C� from simulations.
The first way is to use the definition (3.8) and simulate many realizations of the
Boolean model � in a finite observation window estimating the two-point coverage
probability from each of them and then averaging over all realizations. The second
way is to simulate one Wiener sausage many times and estimate its covariogram. By
expressions (3.9) and (3.12), this would lead to an estimate of the covariance C�. We
would prefer the second approach since it leads to more precise results.

In order to do so, simulate N independent copies {(Sr,T,n)k}N
k=1 of the approxi-

mated Wiener sausage Sr,T,n for sufficiently large approximation parameter n and
compute the volume of intersection Sr,T,n ∩ (Sr,T,n + h · u) by averaging over N
realizations. To get a realization of Sr,T,n, we use a piecewise linear approxima-
tion Wn

i (t) of each coordinate Wi(t) of B(t) = Bo(t) = (W1(t), . . . , Wd(t)), where
Wi(t), i = 1, . . . , d are standard one-dimensional Wiener processes.

We assume for simplicity T = σ = 1. Let Yi
0 = 0 and Yi

1, Yi
2, . . . be independent

sequences of i.i.d. random variables with the distribution N(0, 1), i = 1, . . . , d. Set

Si
n =

n∑

k=0

Yi
k

to be a special case of the symmetric random walk. Introduce the piecewise linear
process Wn

i (t), t ∈ [0, 1] by

Wn
i (t) = Si

k−1√
n

+ nt − (k − 1)√
n

Yi
k, t ∈

[
k − 1

n
,

k
n

)
. (4.7)
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Following the well-known invariance principle of Donsker (cf. e.g. Billingsley 1999,
Theorem 8.2) it holds

Wn
i (t), t ∈ [0, 1] D→ Wi(t), t ∈ [0, 1], n → ∞, i = 1, . . . , d. (4.8)

In other words, the approximations Wn
i (t), i = 1, . . . , d converge in distribution to

independent standard Wiener processes Wi on [0, 1]. It follows

Bn(t) = (
Wn

1 (t), . . . , Wn
d(t)

)
, t ∈ [0, 1] D→ B(t), t ∈ [0, 1] .

Set Sr,1,n = {Bn(t) : t ∈ [0, 1]} ⊕ B(o, r) for any n ∈ N. Let us show that the covari-
ance function of the Boolean model with primary grain Sr,1,n approximates C� as n
tends to infinity. It suffices to prove the following

Proposition 4.1 It holds

CSr,1,n(h) → CSr,1(h), n → ∞, h � 0 . (4.9)

First we need the following auxiliary result.

Lemma 4.1 Let {Yi}i∈N be a sequence of i.i.d. random variables with Yi ∼ N(0, 1).
Then, the inequality

P
[

max
1≤k≤n

|Sk| ≥ x
]

≤ 2 P[|Sn| ≥ x/2], x � 0

holds for Sk = Y1 + . . . + Yk, k = 1, . . . , n.

Proof Using arguments similar to (Billingsley 1999, p. 256), one can prove the
following variant of Etemadi’s inequality:

P
[

max
1≤k≤n

|Sk| ≥ x
]

≤ P[|Sn| ≥ x/2] + max
1≤k≤n

P[|Sk| ≥ x/2], x � 0 .

Since Sk ∼ N(0, k), it is easy to see that for any k = 1, . . . , n

P[|Sk| ≥ y] = 1√
2π

∫

R\(−y/
√

k,y/
√

k)

e−z2/2 dz � P[|Sn| ≥ y], y � 0 .

Hence, it holds

max
1≤k≤n

P[|Sk| ≥ x/2] = P[|Sn| ≥ x/2] ,

and the lemma is proved. ��

Proof of Proposition 4.1 Since the mapping A �→ Vd(A ⊕ B(o, r)) is continuous in
the Hausdorff metric (see the proof of Stachó 1976, Theorem 3), we have by the
mapping theorem for convergence in distribution (Billingsley 1999, Theorem 2.7)

Vd(Sr,1,n)
D→ Vd(Sr,1), n → ∞.

Our aim is to show that

E Vd(Sr,1,n) → E Vd(Sr,1). (4.10)
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This convergence holds if Vd(Sr,1,n), n = 1, 2, . . . are uniformly integrable random
variables (Billingsley 1999, Theorem 3.5). A sufficient condition for the uniform
integrability is

sup
n∈N

E(Vd(Sr,1,n))
2 < ∞. (4.11)

We can write

Vd(Sr,1,n) ≤ ωd(r + max
t∈[0,1]

|Bn(t)|)d ≤ ωd

(
r +

d∑

i=1

max
t∈[0,1]

|Wn
i (t)|

)d

.

Since the distributions of |Wn
i (t)|, i = 1, . . . , d are identical we get

E(Vd(Sr,1,n))
2 ≤ ω2

d E

[
r +

d∑

i=1

max
1≤k≤n

|Si
k|√
n

]2d

= ω2
d

∑

k0 ,...,kd�0:
k0+...+kd=2d

(d + 1)!
k0! . . . kd!r

k0

d∏

i=1

E max
1≤k≤n

( |Sk|√
n

)ki

,

where Sk
D= Si

k ∼ N(0, k). Using Lemma 4.1, we get the upper bound

E max
1≤k≤n

( |Sk|√
n

)m

= 1

nm/2

∞∫

0

P
[

max
1≤k≤n

|Sk| ≥ x1/m
]

dx

≤ 2

nm/2

∞∫

0

P[|Sn|≥x1/m/2] dx= 2m+1

nm/2

∞∫

0

mym−1 P[|Sn|≥ y] dy

= 2m+1

nm/2
E |Sn|m �m! 2m, m ∈ N ,

where the latter inequality follows from the fact that Sn ∼ N(0, n). Hence, condition
(4.11) is verified, and the convergence (4.10) of mean volumes holds.

We can proceed in the same way and show that

E Vd(Sr,1,n + h · u) → E Vd(Sr,1 + h · u),

E Vd(Sr,1,n ∪ (Sr,1,n + h · u)) → E Vd(Sr,1 ∪ (Sr,1 + h · u))

as n → ∞. Together with Eq. 3.10 we get relation (4.9), and Proposition 4.1 is proved.
��

Remark 4.1 According to the invariance principle of Donsker, Proposition 4.1 holds
(with slight changes in the proof) for any choice of symmetric random walk Si

n in
Eq. 4.7. We choose the random variables Yi

n standard normally distributed to reduce
the error of approximation and increase the speed of convergence of the algorithm.

Relation (4.9) together with the law of large numbers allow us to estimate the
covariance function of the Boolean model � from sufficiently many approximations
Sr,T,n. In Fig. 5, such estimates are given in two and three dimensions. For T = 1,
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Fig. 5 Estimated covariance functions of the planar and spatial Boolean model of Wiener sausages
with r = 1 and total time T = 50. In each case, the intensity λ is chosen to fit volume fractions 0.25,
0.5 and 0.75, respectively. Estimates for T = 1 and T = 10 are similar and therefore are omitted here

T = 10 and T = 50, 10,000 approximations of Wiener sausages with r = 1 were simu-
lated. To evaluate the volume of Sr,T,n and its covariogram numerically, realizations
of Wiener sausages have to be discretized on a quadratic (cubic) grid in R

2 (R3), and
the number of pixels (voxels) belonging to Sr,T,n has to be counted. Hence, besides
the error of the approximation of the Wiener sausage, the discretization error occurs.

Given the total runtime T, the maximal shift distance hmax for which the covari-
ogram CSr,T was computed is given by

hmax = 2 · F−1
0,T(0.99),

where F−1
0,T is the quantile function of the normal distribution N(0, T). This value

hmax yields a good empirical upper bound for the range of dependence of the
covariance function C�. It means that C�(h) ≈ p2

� is approximately constant for
h > hmax.

4.4 Comparison of Results

We now compare the numerical calculations by the finite element method (Sec-
tion 4.1) versus the Monte-Carlo simulation (Section 4.3) with respect to efficiency
and accuracy.

Table 1 shows run times for both approaches to compute the covariance function
C�(h) for r = 1 and total times T = 1, T = 10, and T = 50 in two and three

Table 1 Computing times for 1,000 Monte Carlo simulations and one finite element run to approxi-
mate the covariance function C�(h) for r = 1 and total times T = 1, T = 10, and T = 50

Monte Carlo simulations Finite element method

2D 3D 2D (s) 3D (s)

T = 1 1 h 8 min 19 h 53 min 17.85 s 19.15 s
T = 10 2 h 13 min 65 h 8 min 18.46 s 19.45 s
T = 50 4 h 20 min 180 h 33 min 18.76 s 20.06 s
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Fig. 6 Differences in approximations of Ar(h, t)/Ar(0, t) by the finite element method (see
Section 4.1) and the Monte Carlo simulation (see Section 4.3) in 2D (left) resp. 3D (right) for r = 1
and total times T = 1, T = 10 and T = 50

dimensions. Since adaptive time-stepping was used for the fem, the run time increases
only slightly with increasing T. The run time of the Monte Carlo method for T = 1
corresponds roughly to 230 evaluations by the fem for different h. Due to rotational
symmetry and the reduction of dimension, the run times for 2D and 3D using the
fem are almost the same. In contrast, the Monte Carlo simulations in 3D are much
more time consuming. The run time depends on several factors such as efficiency of
implementation, programming language, computer, to mention a few but not all; we
believe, however, that the trend in Table 1 shows the overall efficiency of the fem.

In Fig. 6 we depict the difference between the approximation of Ar(h, t)/
Ar(0, t) by the finite element method and the Monte Carlo simulations in 2D and
3D. Asymptotically both methods seem to converge to the same limit, namely 2.
Preasymptotically the maximal difference for T = 10 is less than 0.006 in 2D and less
than 0.01 in 3D. Additional numerical experiments, where we decreased the mesh-
size for the fem, did not give smaller deviations which suggests that the fem is more
accurate than the Monte Carlo simulation.

To summarize, the comparison of the numerical performance of the finite ele-
ments method (fem) and the Monte Carlo simulation shows clear advantages of
the fem. Hence, fem can be recommended for the computation of the covariance
function of the Boolean model of Wiener sausages.

5 Open Problems

Beside the covariance function and the contact distribution function, there are many
other quantities in stochastic geometry describing the geometrical properties of the
Boolean model. As an example, specific intrinsic volumes (cf. e.g. Schneider and Weil
2000) can be mentioned including the volume fraction, the specific surface area and
the specific Euler–Poincaré characteristic. They describe mean curvature properties
of �. Formulae for the volume fraction and the specific surface area are given in
this paper. It is an open problem to find other d − 1 specific intrinsic volumes of
the Boolean model of Wiener sausages. The core of the problem lies in computing
the mean curvature measures of the Wiener sausage explicitly. The first attempt to
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do that is made in the recent paper Last (2006), where the computation of mean
curvature measures is reduced to two mean curvature functions of Wiener paths.
Unfortunately, the explicit form of these functions is still unknown.
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