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Prime JB*–Triples and Extreme Dual Ball Density
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∗) and B. Sheppard of Reading
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Abstract. Properties of the extreme points ∂e(E∗
1 ) of the closed dual ball E∗

1 of a JB*–triple E
are studied. It is shown that the canonical mapping from ∂e(E∗

1) onto the structure space, Prim(E),
of primitive M–ideals of E is an open mapping. This property is utilised to show that ∂e(E∗

1) is
weak* dense in E∗

1 if and only if E is an infinite dimensional Hilbert space, an infinite dimensional
spin factor or E is prime with zero socle.

1. Introduction

A Banach space E is prime (in the sense of M–ideals) if the set ∂e

(
E∗

1

)
of extreme

points of the closed dual ball E∗
1 is weak* dense in the dual sphere S

(
E∗

1

)
. A converse

obtains under favourable conditions on the canonical structure map ψ : ∂e

(
E∗

1

) →
Prim(E), where Prim(E) is the structure space of primitive M–ideals (see Section 2).
The converse is far from generally true, however, and the question arises which prime
Banach spaces satisfy the extreme dual density condition.

In this paper we seek an answer in the case of the large class of complex Banach
spaces whose open unit ball is a bounded symmetric domain. Originating in the
study of complex Banach manifolds [23, 33] these complex Banach spaces, known as
JB*–triples, which have received considerable recent attention, occur naturally in op-
erator algebras and as images of contractive projections on them [17, 24, 32]. Connec-
tions to holomorphy, convexity, quantum physics and Jordan structures is extensively
exposed in [11, 30, 31, 33].

Studies of prime JB*–triples are contained in [5, 7, 10, 15, 26]. Related investigations
of structure spaces can be found in [8, 9]. We remark prime JB*–triples with non–zero
socle are identified as the generalised Cartan factors in [5] and that [26] derives a deep
Zel’manovian classification of prime JB*–triples. The present note is inspired by the
pervasively influential paper [19].
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We review prime structure in Banach spaces in Section 2. For every JB*–triple E we
prove in Section 3 that the structure map ψ : ∂e

(
E∗

1

) → Prim(E) is an open mapping,
via dual space atomic theory [16] and the use of norming subsets. The roles of Hilbert
spaces and spin factors are discussed in Section 4. For a JB*–triple E it turns out,
modulo the minor exceptions of finite dimensional Hilbert spaces, that ∂

(
E∗

1

)
is weak*

dense in the unit ball if it is weak* dense in the unit sphere. Our main classification
result, given in Section 5, is that for a JB*–triple E, ∂e

(
E∗

1

)
is weak* dense in E∗

1

if and only if E is an infinite dimensional Hilbert space, an infinite dimensional spin
factor or is prime with zero socle.

2. Prime structure in Banach spaces

For a (real or complex) Banach space E let ∂e

(
E∗

1

)
denote the set of extreme points

of the norm closed dual ball E∗
1 . If X is contained in E∗

1 , co(X) denotes the convex
hull of X and X denotes the weak* closure of X. By the Krein–Milman theorem X
contains ∂e

(
E∗

1

)
if and only if E∗

1 = co(X). M–structure [1, 4, 21] arises naturally
in the consideration of stronger density conditions, as explained below. We refer
to the comprehensive and lucid exposition [21] for any unexplained terms involving
M–structure.

Since E∗ is the l1–sum of P (E∗) and kerP for any L–projection P of E∗, we have
∂e

(
E∗

1

)
is contained in P (E∗) ∪ kerP . Thus, if ∂e

(
E∗

1

)
is weak* dense in S

(
E∗

1

)
and

P is weak* continuous then E∗ = P (E∗) ∪ kerP so that P = 0 or P = I.
Similarly, if ∂e

(
E∗

1

)
is norm dense in S

(
E∗

1

)
then all L–projections of E∗ are trivial

which via [21, 1.9] implies that E∗∗ has no non–trivial M–projections.
For an M–ideal J of E we have E∗ is the l1–sum of

J0 = {ρ ∈ E∗ : ρ|J = 0} � (E/J)∗

and

J# = {ρ ∈ E∗ : ‖ρ|J‖ = ‖ρ‖} � J∗

(where � indicates the canonical isometries). We have ∂e

(
E∗

1

)
= ∂e

(
J0

1

) ∪ ∂e

(
J#

1

)
and

the restriction map is an isometry from ∂e

(
E∗

1

)\J0 onto ∂e

(
J∗

1

)
. When convenient we

shall identify J0 with (E/J)∗.
We say that E is prime if whenever I and J are M–ideals with I ∩J = 0, then I = 0

or J = 0.

Proposition 2.1. Let E be a Banach space such that ∂e

(
E∗

1

)
is weak* dense in

S
(
E∗

1

)
. Then E is prime.

Proof . Let I and J be M–ideals of E with I ∩ J = 0. Since I and J are
M–summands of the M–ideal K = I + J [21, 1.17], K∗ has a non–trivial weak*
continuous L–projection if I and J are non–zero. In which case by the above remarks
there exists ρ in S

(
K∗

1

)
outside ∂e

(
K∗

1

)
so that no extension of ρ in S

(
E∗

1

)
can be in
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∂e

(
E∗

1

)
. Hence, I = 0 or J = 0. �

The structure space of a Banach space E is the set

Prim(E) =
{
ψ(ρ) : ρ ∈ ∂e

(
E∗

1

)}

of primitive M–ideals of E where for each ρ in ∂e

(
E∗

1

)
, ψ(ρ) is the largest M–ideal in

ker ρ. For S ⊂ Prim(E) and X ⊂ E, k(S) is the largest M–ideal of E contained in the
intersection of the members of S, and h(X) is the set of primitive M–ideals containing
X. Prim(E) is to be regarded as a topological space with the structure topology —
the unique topology for which h(k(S)) is the closure of S ⊂ Prim(E).

Proposition 2.2. ([1, 3.3], [4, 3.17].) If E is a Banach space the map

ψ : ∂e

(
E∗

1

) −→ Prim(E) (ρ �→ ψ(ρ))

is continuous
(
with respect to the weak* topology on ∂e

(
E∗

1

))
.

Examples of prime Banach spaces for which ∂e

(
E∗

1

)
is weak* closed and not equal

to S
(
E∗

1

)
include spaces of rectangular matrices Mm,n(C ), where m, n ≥ 2, and the

disc algebra. We further remark that the structure map, ψ, of 2.2 need not be open,
as the example of the disc algebra again shows.

We shall need the following partial converse of 2.1 in Section 5.

Theorem 2.3. Let E be a prime Banach space such that
(a) the structure map ψ : ∂e

(
E∗

1

) → Prim(E) is open;
(b) ∂e

(
E∗

1

)
is weak* dense in S

(
E∗

1

) ∩ ψ(ρ)0 for each ρ in ∂e

(
E∗

1

)
.

Then ∂e

(
E∗

1

)
is weak* dense in S

(
E∗

1

)
.

Proof . By the Bishop–Phelps theorem it is enough to show that ∂e

(
E∗

1

)
is weak*

dense in the norm attaining elements of S
(
E∗

1

)
. Take φ in S

(
E∗

1

)
and x in E such

that φ(x) = ‖x‖ = 1. Let 0 < ε < 1 and consider the basic (relatively) open subset of
S
(
E∗

1

)

U =
{
φ′ ∈ S

(
E∗

1

)
: |φ′(ai) − φ(ai)| < ε, i = 1, . . . , n

}

where the ai are non–zero elements of E. We shall show that U has non–empty
intersection with ∂e

(
E∗

1

)
. There is no loss in assuming that

‖ai‖ ≤ 1 , for i = 1 , . . . , n ,

since if α = maxn
1 ‖ai‖ > 1 we may replace the ai and ε with α−1ai and α−1ε without

affecting U . Further, since we can cut down U by intersecting with
{
φ′ ∈ S

(
E∗

1

)
: |φ′(x) − φ(x)| < ε

}
,

no harm can come from letting a1 = x in the definition of U .
Let 0 < 6δ < ε. Via the Krein–Milman theorem choose σ = λ1ρ1 + . . . + λmρm

where the ρi ∈ ∂e

(
E∗

1

)
, λi ≥ 0 with λ1 + . . .+ λm = 1 such that

|σ(ai) − φ(ai)| < δ for i = 1 , . . . , n .(2.1)
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In particular, we have

|σ(x)| > φ(x) − δ = 1 − δ .

For each j = 1, . . . , m form the open neighbourhood of ρj in ∂e

(
E∗

1

)

Vj =
{
τ ∈ ∂e

(
E∗

1

)
: |τ (ai) − ρj(ai)| < δ, i = 1, . . . , n

}
.

Since E is prime the condition (a) implies that we can choose τ = τ1 in V1 and τj in
Vj such that ψ(τ ) = ψ

(
τj

)
for j = 2, . . . , m. Thus with f = λ1τ1 + . . .+ λmτm we

have f ∈ ψ(τ )0 and

|f(ai) − σ(ai)| < δ for i = 1 , . . . , n .(2.2)
In particular,

‖f‖ ≥ |f(x)| > |σ(x)| − δ > 1 − 2δ .

Therefore, g = ‖f‖−1f ∈ S
(
E∗

1

) ∩ ψ(τ )0 ⊂ ∂e

(
E∗

1

)
by (b) and for each i = 1, . . . , n

|g(ai) − f(ai)| ≤ ‖f‖−1(1 − ‖f‖) < 2δ(1 + 3δ) < 3δ .(2.3)

The inequalities (2.1), (2.2) and (2.3) give

|g(ai) − φ(ai)| < 5δ < ε for i = 1 , . . . , n ,

so that g belongs to U ∩ ∂e

(
E∗

1

)
, whence the result. �

Remark 2.4. The unit ball E1 of an infinite dimensional Banach space is the weak
closure of its unit sphere S(E1). Thus ∂e

(
E∗

1

)
is weak* dense in E∗

1 if ∂e

(
E∗

1

)
is weak*

dense in S
(
E∗

1

)
and E is infinite dimensional.

A subset X of E∗
1 , where E is a Banach space, is said to be homogeneous if λX is

contained in X for all scalars λ of modulus one. The subset X is said to norm E if,
for each x in E, ‖x‖ = sup{|ρ(x)| : ρ ∈ X} . By the Krein–Milman theorem ∂e

(
E∗

1

)

norms E. More generally, since co(X) is balanced if X is homogeneous we have the
following.

Lemma 2.5. If X is a homogeneous subset of E∗
1 , where E is a Banach space, then

X norms E if and only if ∂e

(
E∗

1

) ⊂ X.

3. JB*–Triples

A JB*–triple E is a complex Banach space with a continuous ternary product
(a, b, c) �→ {abc} conjugate linear in b and symmetric bilinear in a and c satisfying

{ab{xyz}} = {{abx}yz} + {xy{abz}} − {x{bay}z}
such that ‖a‖3 = ‖{aaa}‖ and x �→ {aax} is an hermitian linear operator on E with
non negative spectrum.

For each a in E we write D(a, a)(x) = {aax} and Qa(x) = {axa} for each x in E.
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The geometry and algebra of JB*–triples are intimately related by the property [23]
that the surjective linear isometries are the algebraic isomorphisms. A JB*–triple with
a (necessarily unique) Banach predual is said to be a JBW*–triple, and in that case the
triple product is separately weak* continuous [2]. The second dual E∗∗ of a JB*–triple
E is a JBW*–triple containing E as a subtriple in the natural embedding [13].

A norm closed subspace E of B(H,K), where H and K are complex Hilbert spaces,
for which xx∗x belongs to E whenever x does is a JB*–triple with triple product
{xyz} = 1

2(xy∗z + zy∗x). If closed in the weak operator topology E is a JBW*–
triple. Examples of this kind are four of the six types of Cartan factors. Namely,
spin factors (see Section 4) and the rectangular, hermitian and symplectic Cartan
factors which are, respectively, of the form B(H,K), {x ∈ B(H) : x = jx∗j} and
{x ∈ B(H) : x = −jx∗j} where j : H → H is a conjugation. The remaining two
exceptional factors, both finite dimensional, are representable as certain spaces of
3 × 3 matrices with complex Cayley number entries.

A tripotent u (i. e. u = {uuu}) in a JB*–triple E gives rise to the mutually orthog-
onal Peirce projections

P2(u) = Q2
u , P1(u) = 2

(
D(u, u) −Q2

u

)
, P0(u) = I − 2D(u, u) +Q2

u .

A non–zero tripotent u in E is said to be minimal if P2(u)(E) = Cu. Each ρ
in ∂e

(
E∗

1

)
is supported by a unique minimal tripotent, u(ρ), in E∗∗ and the as-

signment ρ �→ u(ρ) is a bijection from ∂e

(
E∗

1

)
onto the set of minimal tripotents

of E∗∗ [16, Proposition 4].
Combining Propositions 2 and 4 of [16] we have the following.

Lemma 3.1. If u is a tripotent in E∗∗ where E is a JB*–triple and ρ ∈ ∂e

(
E∗

1

)

such that ρ(u) = 1 then u(ρ) ∈ P2(u)
(
E∗∗).

A subspace I of a JB*–triple E is said to be an ideal if {EEI}+{EIE} is contained
in I and to be an inner ideal if {IEI} is contained in I. The norm closed ideals of
E are its M–ideals [2]. The norm closed inner ideals of E are characterised in [14] as
those JB*–subtriples B of E for which each element in B∗ has unique norm preserving
extension in E∗.

Proposition 3.2. Let I be a norm closed inner ideal of a JB*–triple E. Let ρ be
in ∂e

(
E∗

1

)
and let σ denote its restriction to I. If σ �= 0, then ‖σ‖−1σ lies in ∂e

(
I∗1

)
.

Proof . By Propositions 2 and 7 of [16] there is a tripotent u in I∗∗ with σ(u) = ‖σ‖
and ρP2(u) = λτ , where τ ∈ ∂e

(
E∗

1

)
and 0 < λ ≤ 1. We have

λτ (u) = σ(u) = ‖ρ|I∗∗‖ ≥ ‖ρP2(u)‖ = λ ,

so that τ (u) = 1. Hence, u(τ ) ∈ I∗∗, as follows from 3.1, giving

‖σ‖−1σ = τ |I ∈ ∂e

(
I∗1

)
. �

Let E be a JB*–triple and let ρ ∈ ∂e

(
E∗

1

)
. The weak* closed ideal E∗∗

ρ generated
by u(ρ) in E∗∗ is a Cartan factor [12]. Let

Pρ : E∗∗ −→ E∗∗
ρ
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denote the induced M–projection (and homomorphism) onto E∗∗
ρ . In the notation of

2.3, the primitive ideal ψ(ρ) equals E ∩ kerPρ [2, 3.6]. We shall write

[ρ] =
{
τ ∈ ∂e

(
E∗

1

)
: Pτ = Pρ

}
.

Via τ �→ τPρ, [ρ] identifies with the extreme points of the predual ball of A∗∗
ρ .

We shall show that the continuous surjection

ψ : ∂e(E∗
1 ) −→ Prim(E)

is an open mapping. For each ρ in ∂e

(
E∗

1

)
we note that

[ρ] ⊂ ψ−1(ψ(ρ)) ⊂ ∂e

(
E∗

1

) ∩ ψ(ρ)0 .

Lemma 3.3. Let (Ji) be a family of norm closed ideals of a JB*–triple E. For
each i let Si be a subset of J0

i norming E/Ji. Then ∪Si norms E/J where J = ∩Ji.
Further, J0 ∩ ∂e

(
E∗

1

)
is contained in the weak* closure of

(∪J0
i

) ∩ ∂e

(
E∗

1

)
.

Proof . The first statement follows from the usual isometric embedding of E/J into
the l∞–sum of the E/Ji. Together with 2.5 this implies the second statement. �

Lemma 3.4. Let E be a JB*–triple, let ρ be in ∂e

(
E∗

1

)
and let V be an open subset

of ∂e

(
E∗

1

)
that has non–empty intersection with ψ(ρ)0. Then

(a) [ρ] is weak* dense in ψ(ρ)0 ∩ ∂e

(
E∗

1

)
;

(b) V has non–empty intersection with ψ−1(ψ(ρ)).

Proof . (a) Identify [ρ] with ∂e(M∗,1) where M = E∗∗
ρ . By [16, 2.11] for τ in M∗

with ‖τ‖ = 1 we may write

τ =
∞∑

n=1

λnρn ,

where the ρn are in [ρ] and the λn ≥ 0 with
∑∞

n=1 λn = 1, giving

|τ (x)| ≤ sup |ρn(x)| , for each x ∈M .

Therefore, [ρ] norms M and hence norms Pρ(E). Now, by the canonical isometries

Pρ(E) � E/ψ(ρ) and ψ(ρ)0 � (E/ψ(ρ))∗

together with 2.5, we have that ψ(ρ)0 ∩ ∂e

(
E∗

1

)
is the weak* closure of [ρ] in ∂e

(
E∗

1

)
.

(b) Since [ρ] is contained in ψ−1(ψ(ρ)) this follows from (a). �

Theorem 3.5. Let E be a JB*–triple. Then ψ : ∂e

(
E∗

1

) → Prim(E) is open.

Proof . Let V be open in ∂e

(
E∗

1

)
and let T =

{
Q ∈ Prim(E) : Q0 ∩ V = ∅}. Let S

be the union of the sets ∂e

(
E∗

1

) ∩Q0 as Q ranges over T . Then

∂e

(
E∗

1

) ∩ k(T )0 ⊂ S ,
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by 3.3. Since V is disjoint from S, it follows that V and k(T )0 are disjoint. Hence,
ψ(V ) is contained in Prim(E)\h(k(T )).

Conversely, let ρ ∈ ∂e

(
E∗

1

)
such that ψ(ρ) does not contain k(T ). Then ψ(ρ) does not

belong to T so that, by construction, V ∩ψ(ρ)0 is non–empty. Therefore, V ∩ψ−1(ψ(ρ))
is non–empty, by 3.4 (b), implying that ψ(ρ) ∈ ψ(V ). Together with the first part of
the proof this gives

ψ(V ) = Prim(E)\h(k(T )) ,

proving that ψ is open. �

Remark 3.6. The socle, K(E), of a JB*–triple E is the norm closed ideal of E
generated by its minimal tripotents. We note that if E is prime such that Pρ(E) has
non–zero socle for all ρ in ∂e

(
E∗

1

)
, then E has non–zero socle. This follows from the

fact (cf. [9, §3]) that there is in E a (necessarily prime) non–zero norm closed inner
ideal I isometric to C0(X) for some locally compact Hausdorff space X, so that I
must be one dimensional and hence generated by a minimal tripotent of E. In which
case, by [5, Theorem 16], we have K(M) ⊂ E ⊂M (giving K(M) = K(E)) for some
Cartan factor M .

We remark that for a Cartan factor M of rectangular, hermitian or symplectic type
K(M) is the ideal of compact operators in M ; all other Cartan factors are reflexive
with K(M) = M .

Lemma 3.7. Let M be a Cartan factor. Then K(M)0 ∩ S(
M∗

1

)
is contained in the

σ(M∗,M) closure of ∂e(M∗,1).

Proof . We may suppose K(M) �= M . Let M be rectangular and let τ ∈ M∗ such
that τ vanishes onK(M) and ‖τ‖ = 1. By the Bishop–Phelps theorem we may suppose
that τ (x) = ‖x‖ = 1 for some x inM . Since the weak* closed subtriple of M generated
by x can be realised as a commutative W*–algebra in which x is positive [20, 23] we
have τ (u) = 1 for some tripotent u of M . With N = P2(u)M , τ vanishes on K(N)
and there is a surjective isometry φ : N → B(H) with φ(u) = 1, where H is a complex
Hilbert space. It follows from [19, Theorem 2] that τφ−1 is the weak* limit of extreme
points of the predual ball of B(H). Therefore τ |N is the σ(N∗, N) limit of a net (ρα)
in ∂e(N∗,1) with ρα(u) = 1 for all α. Hence, (ραP2(u)) lies in ∂e(M∗,1) with τ as its
σ(M∗,M) limit. The other cases are handled similarly. �

Given ρ in ∂e

(
E∗

1

)
where E is a JB*–triple we write

E(ρ) =
(
K

(
E∗∗

ρ

) ⊕ kerPρ

) ∩ E
and

γ
(
E∗

1

)
= ∪{E(ρ)0 : ρ ∈ ∂e

(
E∗

1

)} ∩ S(
E∗

1

)
.

We continue to identify [ρ] with ∂e(M∗,1) where M = A∗∗
ρ .

Corollary 3.8. Let E be a JB*–triple with ρ in ∂e

(
E∗

1

)
. Then E(ρ)0 ∩ S(

E∗
1

)
is

contained in the weak* closure of [ρ]. If E is prime with zero socle, then γ
(
E∗

1

)
and

∂e

(
E∗

1

)
have the same weak* closure.
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Proof . We may suppose that E(ρ) �= E. With K = K(M) where M = A∗∗
ρ we have

E/E(ρ) � (Pρ(E) +K)/K via the isometry a+E(ρ) �→ Pρ(a) +K .

Thus a norm one functional τ on E vanishing on E(ρ) induces a norm one functional
τ on Pρ(E) + K vanishing on K such that τ (a) = τPρ(a), for all a in E. In turn, τ
extends to τ ′ in S

(
M∗

1

)
vanishing on K. By 3.7 there is a net (ρα) in [ρ] with τ ′ as

σ(M∗,M) limit. Thus, for a in E,

ρα(a) = ραPρ(a) −→ τPρ(a) = τ (a)

proving the first statement.
Let E be prime with zero socle. We have γ

(
E∗

1

) ⊂ ∂e

(
E∗

1

)
(weak* closure) by above.

To show the opposite inclusion it is enough by 3.3 to show that

J = ∩{
E(ρ) : ρ ∈ ∂e

(
E∗

1

)}
= 0 .

By construction if J is non–zero Pρ(J) has non–zero socle for each ρ in ∂e

(
J∗

1

)
so that

(see 3.6) J has non–zero socle as therefore does E, a contradiction. �

4. Spin factors and Hilbert spaces

Lemma 4.1. Let I be a norm closed inner ideal in a JB*–triple E. If ∂e

(
E∗

1

)
is

weak* dense in S
(
E∗

1

)
then ∂e

(
I∗1

)
is weak* dense in S

(
I∗1

)
.

Proof . Let ∂e

(
E∗

1

)
be weak* dense in S

(
E∗

1

)
. Let ρ ∈ S

(
I∗1

)
with extension τ in

S
(
E∗

1

)
and let (τα) be a net in ∂e

(
E∗

1

)
with weak* limit τ . The corresponding net

(ρα) of restrictions to I has weak* limit ρ. We may suppose all ρα are non–zero. Since
‖ρα‖ ≤ 1 for all α and ‖ρ‖ = 1 we have ‖ρα‖ → 1 so that ρ is the weak* limit of
the net

(‖ρα‖−1ρα

)
which, by 3.2 is contained in ∂e

(
I∗1

)
. The proof of the remaining

statement is similar. �

A complex Hilbert space H of dimension at least two with conjugation x �→ x̄ induces
the spin factor, V = C1 ⊕H , which is a JB*–algebra via

(α1 + h) ◦ (β1 + k) =
(
αβ − 〈h, k̄〉)1 + βh + αk ,

(α1 + h)∗ = ᾱ1 − h̄

and

‖x‖2 = 〈x, x〉+
(〈x, x〉2 − |〈x, x̄〉|2)1/2

,

where 〈 · , · 〉 denotes the inner product on V when considered as the orthogonal sum
of the Hilbert spaces C and H , and x̄ = ᾱ1 + h̄ for α in C and h in H .

The triple product is given by

{xyz} = 〈x, y〉z + 〈z, y〉x − 〈x, z̄〉ȳ
and we have ‖ · ‖2 ≤ ‖ · ‖ ≤ √

2 ‖ · ‖2.
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If u is a minimal tripotent of V then 〈u, ū〉 = 0 giving 2〈u, u〉 = 1 and 2 |〈u, x〉|2 ≤
〈x, x〉 for all x in V . If u is a non–zero and non–minimal tripotent in V then u is
unitary, that is, P2(u)V = V .

The real spin factor, Vsa = IR1⊕K, where K = Hsa = {h ∈ H : h = h∗}, has norm
given by

‖α1 + k‖ = |α|+ ‖k‖2 , for all α ∈ IR and k ∈ K .

Via the Riesz theorem the weak* compact set of states of V

B =
{
ρ ∈ S

(
V ∗

1

)
: ρ(1) = 1

}
=

{
ρk : k ∈ K, ‖k‖ ≤ 1

}

where for k in K with ‖k‖ ≤ 1 and all α in C and h in H we have

ρk(α1 + h) = α+ 〈h, k〉 (= 〈α1 + h, 1 + k〉) .
The minimal projections of V are the elements 1

2 (1+k) where k is in K with ‖k‖ = 1
and

∂e(B) =
{
ρk : k ∈ K, ‖k‖ = 1

} ⊂ ∂e

(
V ∗

1

)
.

Proposition 4.2. Let V be an infinite dimensional spin factor. Then ∂e

(
V ∗

1

)
is

weak* dense in V ∗
1 .

Proof . Let V be infinite dimensional and let τ ∈ S
(
V ∗

1

)
. By [16, Proposition 4] and

[22, 4.2] there is a unitary tripotent v in V with τ (v) = 1. Passing to the homotope
P2(v)V we may suppose that τ (v) = 1 so that, in the above notation, τ = ρk for some
k in K = Hsa with ‖k‖ ≤ 1. Choose an infinite orthonormal sequence (kn) in the real
Hilbert space K with 〈kn, k〉 = 0, for all n. The norm one elements of K

yn =
(
1 − ‖k‖2

)1/2
kn + k

converge weakly to k in K and hence in H = K + iK. Now each ρyn is in ∂e

(
V ∗

1

)
and

for α in C and h in H we have

ρyn(α1 + h) = α+ 〈h, yn〉 −→ α+ 〈h, k〉 = τ (α1 + h) .

Therefore, ∂e

(
V ∗

1

)
is weak* dense in S

(
V ∗

1

)
and hence is weak* dense in V ∗

1 by 2.4. �

We note that ∂e

(
E∗

1

)
is weak* closed if E is a finite dimensional JB*–triple. For

suppose, in this case, that ρ in S
(
E∗

1

)
is the weak* limit of a sequence (ρn) in ∂e

(
E∗

1

)
.

By compactness, passing to a subsequence we may suppose that un → u uniformly,
where un = u(ρn) and u is a tripotent in E. It follows that P2(un) → P2(u) uniformly.
Therefore, for each x in E,

ρ(x)u = limρn(x)un = limP2(un)(x) = P2(u)x .

Hence, u is a minimal tripotent and, since ρ(u) = 1, we have ρ ∈ ∂
(
E∗

1

)
.

Corollary 4.3. Let E be a JB*–triple with non–zero socle. Then ∂e

(
E∗

1

)
is weak*

dense in E∗
1 if and only if E is an infinite dimensional Hilbert space or an infinite

dimensional spin factor.
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Proof . Let ∂e

(
E∗

1

)
be weak* dense in E∗

1 . Then E is infinite dimensional and by
2.1 is prime so that K(M) ⊂ E ⊂ M for some Cartan factor M , by [5, Theorem 16].
If I is a finite dimensional inner ideal of M then ∂e

(
I∗1

)
= S

(
I∗1

)
, by 4.1 and the above

remark, implying that I is a Hilbert space. It follows that M is a Hilbert space or a
spin factor so that E = M , as required. �

5. Characterisations of extreme dual density

A JB*–triple E is said to be primitive if the zero ideal of E is a primitive M–ideal,
and to be simple if E has no non–trivial norm closed ideals. We continue to employ
notation introduced in Section 3.

Theorem 5.1. Let E be a non–zero JB*–triple. Then [ρ] is weak* dense in E∗
1 for

some ρ in ∂e

(
E∗

1

)
if and only if E satisfies one of the following conditions.

(a) E is primitive with zero socle.
(b) E is an infinite dimensional Hilbert space.
(c) E is an infinite dimensional spin factor.

Proof . If E satisfies (b) or (c) then for every ρ in ∂e

(
E∗

1

)
we have [ρ] = ∂e

(
E∗

1

)
,

which is weak* dense in E∗
1 by 4.3. Let E satisfy condition (a). Then, since for

some ρ in ∂e

(
E∗

1

)
Pρ is isometric on E and since (in the notation given prior to 3.8)

Pρ(E(ρ)) ⊂ K
(
E∗∗

ρ

)
, we have E(ρ) = 0.

It follows from 3.8 that S
(
E∗

1

)
is contained in the weak* closure of [ρ]. Thus [ρ] is

weak* dense in E∗
1 by 2.4.

Conversely let [ρ] be weak* dense in E∗
1 for some ρ in ∂e

(
E∗

1

)
. Since ψ(ρ)0 ∩ ∂e

(
E∗

1

)

is weak* closed in ∂e

(
E∗

1

)
and contains [ρ] we have ψ(ρ) = 0, by 3.4 (a), so that E is

primitive. The desired conclusion follows from this and 4.3. �

Since a JB*–triple E is simple if and only if the zero ideal is the only primitive ideal
of E, which is equivalent to the property that Pρ is isometric on E for all ρ in ∂e

(
E∗

1

)
,

the above arguments verify the following statement.

Corollary 5.2. Let E be a non–zero JB*–triple. Then [ρ] is weak* dense in E∗
1 for

all ρ in ∂e

(
E∗

1

)
if and only if E satisfies one of the following conditions.

(a) E is simple with zero socle.
(b) E is an infinite dimensional Hilbert space.
(c) E is an infinite dimensional spin factor.

If u is a tripotent in a JB*–triple E, the operator on E

S(u) = I − 2P1(u) = I − 4D(u, u) + 4Q2
u

is an automorphism of E. For any x in E we write

S(x) = I − 4D(x, x) + 4Q2
x .

Lemma 5.3. Let E be a JB*–triple and let x ∈ E with ‖x‖ ≤ 1. Then ‖S(x)‖ ≤ 1.
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Proof . Since each primitive quotient of E is isometric to a JB*–subtriple of some
B(H) or of the finite dimensional exceptional JB*–algebra factor M8

3 , it is enough to
validate the statement for these two special cases. In the first case we have

‖1 − 2xx∗‖ ≤ 1 , ‖1− 2x∗x‖ ≤ 1 and S(x)(y) = (1 − 2xx∗)y(1 − 2x∗x) ,

for each y in E, giving the required result.
Next, let E be M8

3 . Upon passing to an appropriate unitary homotope of E we
may suppose that x ≥ 0. Since E is finite dimensional S(x) attains its norm at an
extreme point of the unit ball of E and hence at a unitary v of E. By [34], the
JB*–subalgebra, A, of E generated by x and v is isometric to a JB*–subalgebra of
some B(H). Therefore, since S(x) is invariant on A, we have that ‖S(x)‖ ≤ 1 by the
first case, above. �

For a JB*–triple E and ρ in ∂e

(
E∗

1

)
we make the definition

Sρ

(
E∗

1

)
= {λρS(x) : |λ| = 1, x ∈ E, ‖x‖ ≤ 1} ,

and we note that Sρ

(
E∗

1

)
is contained in ψ(ρ)0 ∩ E∗

1 .

Lemma 5.4. ( [16, Corollary 2.5].) Let v and w be minimal tripotents in a Cartan
factor M . Then λS(u)v = w for some |λ| = 1 and tripotent u of M .

Proof . This is [16, Corollary 2.5] for non–orthogonal v and w. If v and w are
orthogonal then, being minimal projections in the spin factor P2(e)M , where e = v+w,
v and w are exchanged by a symmetry y in P2(e)M and we find that S(u)v = w where
u is given by 2u = e− y. �

Lemma 5.5. Let E be a JB*–triple with ρ in ∂e

(
E∗

1

)
. Then ψ(ρ)0 ∩ ∂e

(
E∗

1

)
is

contained in the weak* closure Sρ

(
E∗

1

)
.

Proof . By 3.4 (a) it is enough to show that the weak* closure of Sρ

(
E∗

1

)
contains

[ρ]. Given τ in [ρ] we have u(τ ) and u(ρ) are in E∗∗
ρ so that

λS(u)u(τ ) = u(ρ)

for some tripotent u in E∗∗
ρ and |λ| = 1. Since

(λρS(u))u(τ ) = 1

we have τ = λρS(u), by [16, Proposition 4]. By [3, Corollary 3.3] there is a net (xα)
in E with ‖xα‖ ≤ 1 for all α such that xα → u in the strong* topology (see [3]) on
E∗∗. By [29] (see also [27, 28]) it follows that S(xα) converges to S(u) in the pointwise
strong* topology. In particular,

λρS(xα)(x) −→ λρS(u)(x) = τ (x)

for all x in E, as required. �

We can now classify the JB*–triples E for which ∂e

(
E∗

1

)
is weak* dense in E∗

1 .
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Theorem 5.6. Let E be a non–zero JB*–triple. Then ∂e

(
E∗

1

)
is weak* dense in

E∗
1 if and only if E is an infinite dimensional Hilbert space, an infinite dimensional

spin factor or E is prime with zero socle.

Proof . In view of 4.3 and 3.5 it remains only to show that if E is prime with zero
socle then E satisfies the condition (b) of 2.3 since it will then follow from 2.4 that
∂e

(
E∗

1

)
is weak* dense in E∗

1 .
Let E be prime with zero socle and let ρ ∈ ∂e

(
E∗

1

)
. We show that ψ(ρ)0 ∩ S(

E∗
1

)
is

contained in the weak* closure of ∂e

(
E∗

1

)
.

Let τ (ψ(ρ)) = {0} where τ ∈ S
(
E∗

1

)
. By 5.5 together with the Krein–Milman

theorem there is a net (τα) in the convex hull of Sρ

(
E∗

1

)
such that τα → τ (in the

weak* topology). We note that ‖τα‖ → 1.
Let 0 < ε < 1. Choose α0 such that for all α ≥ α0

2 ‖τα‖ > 2 − ε .

Now fix α ≥ α0. We have

τα = µ1λ1ρS(x1) + . . .+ µnλnρS(xn)

for some |λi| = 1, ‖xi‖ ≤ 1 and µi ≥ 0 with µ1 + . . .+ µn = 1.
By 3.8 there is a net (φβ) in γ

(
E∗

1

)
with φβ → ρ. This gives

ψβ = µ1λ1φβS(x1) + . . .+ µnλnφβS(xn) −→ τα .

By the lower semicontinuity of the norm on E∗ there exists β0 such that

2 ‖ψβ‖ ≥ 2 ‖τα‖ − ε , for all β ≥ β0 .

Since the S(xi) are invariant on ideals it follows from 3.8 that, for all β ≥ β0,
σβ = ‖ψβ‖−1ψβ is contained in ∂e

(
E∗

1

)
(weak* closure) and

1+ε > 2(2−ε)−1 ≥ ‖τα‖−1 ≥ λβ ≥ ‖ψβ‖ > 1−ε , where λβ = ‖ψβ‖ ‖τα‖−1 .

Since

‖τα‖−1τα = weak∗ lim
(‖τα‖−1 ψβ

)
= weak∗ lim(λβψβ) ,

upon passing to a convergent subnet of (σβ) it now follows that ‖τα‖−1τα lies in
[1 − ε, 1 + ε] · ∂e

(
E∗

1

)
, for every α ≥ α0.

Since ‖τα‖−1τα → τ we have in the same way that τ belongs to [1 − ε, 1 + ε] · ∂e

(
E∗

1

)

and in turn to ∂e

(
E∗

1

)
by arbitrariness of ε, as required. �
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