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Abstract

It is shown that ifP is a weaK-continuous contractive projection on a JBWiple M,
then P(M) is of type | or semifinite, respectively, ¥ is of the corresponding type. We
also show thaP (M) has no infinite spin part iM/ is a type | von Neumann algebra.

0 2002 Elsevier Science (USA). All rights reserved.

0. Introduction

JWx-triples, that is, weakclosed subspaces d(H) that are also closed
underx — xx*x, arise as images of contractive (i.e., norm one) projections on
von Neumann algebras. Their generalisations, JBkples, are those complex
Banach dual spaces whose open unit ball is a bounded symmetric domain.
The holomorphy of such spaces induces a ternary Jordan algebraic structure
determined by a certain “triple produdit, b, ¢} [18]. If P: M — M is a weaK-
continuous contractive projection on a JBWiple M, then P(M) is a JBW -
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triple with a triple product given bya, b, ¢}p := P{a, b, ¢} by [19,21], and by
[9,11] if M is a JW*-triple. The interesting special cases that occur wieis
positive unital acting on von Neumann algebra or a JBAjebra were studied
earlier in [4,7,20].

SupposeP : M — M is a weaK-continuous contractive projection on a JBW
triple M. In this paper we study the stability @¢f(M) with respect to the type
theory of [15—-17]. We show that i/ is of type | or semifinite, respectively, then
P (M) is of the corresponding type. This extends the classical results of [27] when
M is avon Neumann algebra a®dM) is a subalgebra. We remark that in general
P(M) is not a subtriple of\f. Using recent results on properties of the predual
of atype | von Neumann algebra we deduce that) cannot be isometric to an
infinite-dimensional spin factor whenevéf is a type | von Neumann algebra.

Section 1 of this paper contains preliminary results on JBAlgebras. This is
continued in Section 2 where we study the fixed point‘BMebra,Ww*, of an
involution« on a von Neumann algeb##. A principal aim here is to show that
a faithful weaK-continuous contractive projection frof® onto a continuous
JW+-subalgebra induces a weakontinuous contractive projection fro onto
a continuous von Neumann subalgebra. This allows us to apply [27] to obtain
our main results in Section 4. The formulation of type theory of JBWples
contained in Section 3 is extracted from [15—-17] and is included for completeness.

For later reference we shall recall some of the fundamentals of*J@\les
used in this paper. A JBWiriple can be realised [18] as a complex Banach space
M with predualM,, and continuous ternary triple produet b, ¢) — {a, b, ¢} that
is conjugate linear i and symmetric bilinear in, ¢ such that|{a, a, a}| = ||a||®
and such that the operator— {a, a, x}, denoted byD(a, a), is Hermitian with
non-negative spectrum and satisfies

D(a, a)({x, v, z}) = {D(a, a)x,y, z} — {x, D(a,a)y, z}
+ {x, v, D(a, a)z}.

The predual is unique and the triple product is separately fveaftinuous [2,
15]. The surjective linear isometries between JBifNples are the triple product
preserving bijections (triple isomorphisms) [18]. A von Neumann algebra is
a JBW+-triple with triple product{a, b, ¢} = (1/2)(ab*c + cb*a). The weak-
closed subtriples of von Neumann algebras are th&-tiiples. By [16,17] most
JBW*-triples are of this form. See Section 3 for further details.

An elements in a JIBW:-triple M satisfying{u, u, u} = u is called atripotent,
whenM is a JW -triple these are precisely the partial isometrieafofAssociated
with a tripotenty are the mutually orthogon&eirce projectionsPa(u), P1(u),
and Po(u). We have

P(u)(x) = {u, {u, x,u}, u} for all x,
P1(u) =2(D(u,u) — P2(u)) and Pa(u) + P1(u) + Po(u) =i
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(wherei is the identity map). A tripotent of M is said to becompletgor maxi-
mal) if Po(u) = 0, to be unitary ifP>(u) = i and to be minimal ifP2(u) (M) = Cu.

We recall (see [5, Corollary 4.8], for example) that the complete tripotent$ of
are the extreme points of the closed unit balMf A crucial simplifying property

of IBW*-triples is that for a tripotent of M the Peirce-2 subspad®(u)(M) is

a JBWr-algebra with product o b = {a, u, b} and involutiona™ = {u, a, u}. For
further properties of JBWtriples we refer to the papers [5,6,9,15-18] and the
book [29]. Since JBW-algebras are just the complexifications of JW-algebras we
refer to [14] for their theory.

1. Positive unital projectionson JBW*-algebras

Let M be a JBW-algebra. Writing
l[a,b,c]:=(@ob)oc+ (cob)oa—(aoc)ob,

M is a JBW-triple with triple product given by{a, b, ¢} := [a, b*, c]. The
Peirce-2 projectionP2(¢), associated with a projectienof M satisfiesPa(e)(x)
=[e, x,e] forall x in M.

Elementsa andb of M are said tooperator commutén M if (aox)ob =
ao (x ob) forall x in M. Self-adjoint elements andb in M generate a JBW
subalgebra that can be realised as & -Btbalgebra of som8(H) [30] and, in
this realisationg andb commute in the usual sense if they operator commute in
M [28, Proposition 1]. By the same references, self-adjoint elenaesntsl of M
operator commute if and only if? o b = [a, b, a] (= {a, b,a}). If N is a JBW-
subalgebra oM we useM N N’ to denote the set of elementsin that operator
commute with every element &f. (This corresponds to the usual notation when
M is a von Neumann algebra.) Thentreof M is M N M’ which we also denote
by Z(M).

Let P be a unital (i.e.P (1) = 1) weaK-continuous contractive projection on
a JBWr-algebraM. Then P is positive and therefore is invariant on the self-
adjoint part. Such projections were studied in [7,20]. Suppose nowRht)
is a JBW-subalgebrav of M. Then, by [7, Lemma 1.5] or [20, Lemma 1.5]
we haveP(a ox) =a o P(x) for all a € N andx € M. Further, ife denotes
the support projection of in M (i.e., the least projection iM sent to 1 byP)
then P = P P,(e) and, by a slight extension of [7, Lemma 1.2(2k M N N'.
Moreover, ifx > 0 and P(x) = 0 thenPy(e)(x) =0. If e =1, P is said to be
faithful.

Lemmal.l LetP: M — M be a weak-continuous unital contractive projection
from a JBW-algebraM onto a JBW-subalgebraN. Lete be the support pro-
jection of P. ThenPz(e) P is a faithful weak-continuous unital projection from
P2(e)(M) ontoN o e. Moreover,N is isomorphic toV o e.
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Proof. Suppose € P2(e)(M) such thatr > 0 andP2(e) P(x) =0. ThenP(x) =
P Py(e) P(x) =0 so thatt = P2(e)(x) = 0. Together with the above remarks this
proves the first statement.

Sincee € M N N’ multiplication bye induces a (Jordan) homomorphism,
from N ontoN oe. Leta in N suchthat: > 0 andaoe = 0; thena = P(aoce) =0.
It follows thatr is injective. O

Lemmal.2. LetP: M — M be aweak-continuous unital contractive projection
from a JBW-algebra onto a JBW-subalgebraN. Let e be any non-zero pro-
jection in M N N’. Suppose thap is faithful. Then there exists a faithful weak

continuous unital contractive projection frofy(e) (M) ontoN o e.

Proof. For each self-adjoini € N we have
ao P(e) = P(azo e) = P({a, e, a}) = {a, P(e), a}

and so, by the previous remarR(e) € Z(N). Therefore the range projection
r(P(e)) € Z(N). Denoter(P(e)) by h. The ideal of N, N o P(e) = P(N o ¢),

is weak-closed and so equal®y’ o 4. It follows that P(e) is invertible in
N o h with inverseb, say, iNZ(N) o h. Define Q: P2(e)(M) — Pa(e)(M) by
Q(x) = (P(x)ob)oe.Leta € N wherea > 0. By operator commutivity we have
(ao(1—h))oe>0and

P((ao(1—h))oe):(ao(1—h))oP(e):ao((l—h)oP(e)):0.
SinceP is faithful,a coe = (a o h) o e, and so
Q(aoe)=(P(ace)ob)oe=((ao P(e))ob)oe=(aoh)oe=aoe,

implying that Q is a unital projection ontaV o e. To see thatQ is faithful let
x € Pa(e)(M) such thatt > 0 and(P (x) o b) o e = 0. By the above,

P(x)oe= (P(x) oh) oe= ((P(x) o b) oe) o P(e) =0.

Therefore, P(x) o P(e) = P(P(x) o e) = 0. But P(x) < ||x||P(e). Hence,
P(x) =0 and sax = 0 becauseP is faithful. 0O

2. Involutory * antiautomor phisms

Following [24] by an involutior on a von Neumann algebra we shall mean
an involutory* antiautomorphism on the algebra. Letbe an involution on a
von Neumann algebr®. We shall writeR(W) := {x € W: a(x) = x*} and
W* :={x € W: a(x) = x}. (The latter notation is different from that used in
[24], where it stands for the Hermitian part.) Th&gW) is a weaK-closed real
*-subalgebra o with R(W)Ni R(W) = {0} andW = R(W)+i R(W). We have
W% =R(W)sq +iR(W),, and, fora, b € R(W), we havex(a +ib) = a* + ib*.
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Lemma 2.1. Leta be an involution on a von Neumann algel¥aand suppose
is a central projection inW such thate + «(e) = 1. TheneW® =eW and W is
(Jordan isomorphic toeW via x + ex.

Proof. For eachx in W, ex + (1 — e)a(x) € W¢ and every element dV* is of
this form. Thuse W% = eW andW* is isomorphic teeW in the way stated. O

Lemma 2.2. Let« be an involution on a von Neumann algel#aand suppose
thate is a projection inW with ¢ 4+ a(e) = 1. Then we have the following

(i) There is a faithful weakcontinuous unital contractive projectio®,: W% —
W%, such thatP(W?) is a JW-subalgebra isomorphic teWe (and to
A—e)W(ld—e)).

(i) If W« generatesW as a von Neumann algebra ardvV®«a(e) = 0, then
ecZ(W).

Proof. (i) Let V denote the von Neumann algebt@e + (1 — e)W (1 — e).
DefineP:W — Wby P(x) :=exe+ (1—e)x(1—e). ThenP(W) =V =a(V).
If s denotes the symmetrye2- 1 we see thatP(x) = (1/2)(x + sxs). Since
a(s) = —s, we havex P = Pa from which we deduce tha® (W%) = V¢, Since
e lies in the centre of/, Lemma 2.1 implies that'* is isomorphic taeeV = eWe.
Itis clear thatP satisfies (i).

(ii) SupposeW<ux(e) = 0. Then forx € W* we have

x=exe+(1—e)x(1—e)

so thatex = exe. Passing to the self-adjoint part we see thabmmutes with all
elements of#“ and so lies in the centre &¥ if W is the von Neumann algebra
generated byw*. O

Lemma 2.3. Leta be an involution in a non-Abelian von Neumann algelfa
Then there is a non-zero projectienn W with ea(e) = 0.

Proof. We haveR(W),, # R(W); otherwisexa is the identity map orv and
thereforeW is Abelian. Choose in R(W) such thatz # a* and leta — a™ = b.
Let V denote the von Neumann subalgebrdofyenerated by. We have thav’
is Abelian, thatx(b) = —b anda (V) = V. Sincec is not the identity map of,
by [14, 7.3.4] there is a non-zero projectior V such thaka(e) =0. O

Proposition 2.4. Let ¢ be an involution on a von Neumann algeb#aand sup-
pose thatW® has no type | part. Then there is a projectietin W and a faithful
weak-continuous unital contractive projection fro#* onto a JW-subalgebra
M suchthate € W N M’ and Me is a Wr-algebra isomorphic ta.
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Moreover, if W* is of type Ik, Il or Ill, respectively, thenV is of the cor-
responding type.

Proof. Let (¢;) be a family of projections itW maximal subject to the condition
that (e; + a(e;)) is a mutually orthogonal family of projections. Put= ), ¢;.
Thenea(e) =0. Let f =1 — e — a(e). Thena(fWf) = fWf and it follows
from Lemma 2.3, and maximality, thgtW f is Abelian and hence thgtw® f is
Abelian. By assumption, we must haye= 0. Lemma 2.2(i) now gives the first
statement. Sinc&'* generatedV, by [13, Theorem 2.8], the second statement
follows from [1, Theorem 8] together with Lemma 2.2(i)0

Proposition 2.5. Let ¢ be an involution on a von Neumann algeld#g and let
M denoteW®*. Suppose there is a faithful weakontinuous unital contractive
projection, P, from M onto a JW-subalgebraV. If N is continuougrespectively,
of type Ill) then there is a wedkcontinuous contractive projection frofy onto
a continuougrespectively, type )IW*-subalgebra.

Proof. Let V be the von Neumann subalgebraibfgenerated by and letR be
the weaK-closed real-subalgebra o#¥ generated by,. We havex(V) =V
sinceqa fixes each element a¥, andR N iR = {0} sinceR C R(W). Suppose
N is continuous (respectively, of type Ill). The¥, = Ry,, using [14, 7.3.3],
so thatV = R + iR, by [22, Theorem 2.4]. Henc&/* = Ry, + iRys = N.
By Proposition 2.4 there exists a faithful wé&atontinuous unital contractive
projection,Q : N — N, onto a continuous (respectively, type IIl) 3Wubalgebra
K together with a projectiomc W N K’ such thatk e is a Wr-algebra isomorphic
to K. If E denotes the (faithful) canonical projectiéh/2)(i + a): W — M,
then the proof is completed by application of Lemma 1.2 to the projection
QPE:W—> K. O

We recall [24] that an involutior is said to be aentralinvolution if it fixes
every elementirZ (W).

Lemma 2.6. Let @ be a central involution on a continuous von Neumann alge-
bra W. Letu be a partial isometry of¥* such that(1 — uu™)W*(1 — u*u) = 0.
Thenu*u = uu™* = 1.

Proof. Let e denote 1— uu*. Thena(e) =1 — u*u. Putp = e + a(e). Thena

is a central involution orpWp. By [13, Theorem 2.8] or [24, Proposition 3.2]
(pWp)¥ (= pW%p) generatepWp. Hence by Lemma 2.2(iix € Z(pWp) =
Z(W)p so thatx(e) = e, whence the result. O
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3. Typesof IBW*-triples

The aim of this short section, which contains no new results, is to collate
existing theory into a form easy to use subsequently.

Cartan factors. Of the six kinds of Cartan factors (up to linear isometry), three
are of the formpB(H), {x € B(H): x = jx*j} and{x € B(H): x = —jx*j},
whereH is a complex Hilbert space; is a projection inB(H) andj: H — H

is a conjugation. These are referred ta@stangular Hermitian andsymplectic
Cartan factors, respectively. Hermitian factors are type t-#lgebra factors and,

if H is even or infinite-dimensional, symplectic factors are linearly isometric to
type | JWr-algebra factorsSpinfactors (complexifications of real spin factors)
comprise a fourth kind. The remaining tvexceptionalCartan factors can be
realised as the % 3 Hermitian matrices and the X1 2 matrices, respectively,
over the complex Cayley numbers.

Type | JBW-triples. In view of [15, 4.14] a JBW-triple M is said to be of
type lif there is a complete tripotentof M such thatP>(u) (M) is a type | IBW -
algebra. By the type | classification theorem [16, 1.7] the type | IBkYles are
precisely thel .o-sums of JIBW-triples of the form:

(i) A® C,whereA is an Abelian von Neumann algebra afids a Cartan factor
realised as a J¥Wsubtriple of someB(H), the bar denoting the we&lclosure
in the usual von Neumann tensor prodda® B(H), and

(i) A ® C (algebraic tensor product), whereis as before and” is an excep-
tional Cartan factor.
(Of course,A ® C = A ® C wheneverC is a finite-dimensional non-excep-
tional Cartan factor.)

Let e be a tripotent in a type | JBWitriple M. A known consequence of the
type I classification theorem is th&%(e) (M) is of type |. We include an argument
for completeness and want of a precise reference.

We may suppose that is of the form (i) or (ii) above. In the latter case it is
clear thatPy(e)(M) is of type | since every subfactor of it must have rank less
than 4. Thus we may assume that we are in the case (i) and, consequently, that we
are working inA ® B(H).

Letu be a non-zero (we assurae 0) in a weaK-closed ideall of P2(e)(M).

Since{u, (AQB(H)),u} = (A {u, (19 B(H)),u}andB(H) is the weak-
closed linear span of its minimal tripotents, (1 ® v), u} # 0 for some minimal
tripotentv. We have[(1®v), M, (1Qv)} = A®v so that withx = {u, (1Qv), u}

(€ Po(u)(M))we havelx, M, x} C (A®1)x. SinceA ® 1 commutes elementwise
with x, (A ® 1)x generates an Abelian subtriple in the sense of [15, 1.4]. But, as
follows from [5, Lemma 3.1], the wedkclosure of{x, M, x} equalsPa(w) (M),
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for some tripotentw, and so is Abelian. Since € J, P2(e)(M) is of type I, by
[15,4.14(2) = (D)].

Continuous JBW-triples. A JBW*-triple M is said to becontinuousf it has no
type | £-summand. In that case, up to isomety,is a JW-triple with unique
decompositionM = W* @ pV, whereW andV are continuous von Neumann
algebras,p is a projection inV and « is a central involution on W [17, 2.1
and 4.8]. It is implicit in [17] that every complete tripotent Bf* is a unitary
tripotent. An alternative proof of this fact is provided by Lemma 2.6. Thus, by
[17, 5.1-5.7], for every complete tripotentin M, P>(u)(M) is isometric to
wW* @ pWp. We defineM to be of type 11, Il or I, respectively, if bothi and
pWp are of the corresponding typ#f is said to besemifinitef it has no type Ill
£so-SUMmMand.

Lemma 3.1 below summarizes the above. The second statement is a conse-
guence of the fact that every tripotent in a JBWiple M is a projection in
P>(u)(M) for some complete tripotemt[15, 3.12].

Lemma 3.1. A IBW*-triple M is of type I, Ik, I, Il or is semifinite, respec-
tively, if and only if P2(u) (M) is of the corresponding type for some, and hence
every, complete tripotemtof M. If M is of type I, Ik, Ill or is semifinite, respec-
tively, then so isP2(u) (M) for every tripotent: of M.

We shall say that a JBWtriple has noinfinite spin partif it has no -
summands of the form ® C, whereA is an Abelian von Neumann algebra and
C is an infinite-dimensional spin factor.

4. Contractive projectionson JBW*-triples

By [19] and [21] the image of a weélcontinuous contractive projection,
P:M — M, on a JBW-triple M is again a JBW-triple with triple product
{x,y,z}p:=P({x,y,z}) forx,y,zin P(M) and

P{P(x),y, P(2)} = P{P(x), P(y), P(2)}
forall x, y, zin M. The image P (M), need not be a JBWsubtriple ofM. How-
ever, as is made explicitin [6, Lemma 5.3] and its proof, we do have the following:

Lemma 4.1 [6, Lemma 5.3]If P: M — M is a weaK-continuous contractive
projection on a JBW-triple M, there exists a JIBWsubtripleC of M such thaiC
is linearly isometric toP (M) and such that is the image of a wedkcontinuous
projection onM.

We are now in a position to prove our first main result. We freely use Lem-
ma 3.1 throughout.
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Theorem 4.2. Let P : M — M be a weak-continuous contractive projection on a
JBWH-triple M. If M is of type I(respectively, semifinifeghen P (M) is of type |
(respectively, semifinite

Proof. Let M be of type | (respectively, semifinite). By Lemma 4.1 we may
supposeP (M) to be a JBW-subtriple,N, of M. Let u be a complete tripotent
of N. By the above formulaP restricts to a unital projection froma(u) (M) to
Po(u)(N).

By this fact, together with Lemma 1.1, we may supp@se be faithful, M to
be a JBW-algebra andv to be a JBW-subalgebra.

Let M o z be the type | finite part oM, wherez is a central projection o#/.
ThenN o z is type | finite, being a subalgebra #f o z, and it remains only to
show thatV o (1 — z) is of type | (respectively, semifinite). Since, by Lemma 1.2,
N o (1 — z) is the image of some faithful we&lcontinuous unital contractive
projection onM o (1 — z), it can be supposed that= 0. In that case, by [14, 7.2.7
and 7.3.3], we may suppose thit = W%, wherea is an involution on a von
Neumann algebrdV’. SinceW® generatesV [13, Theorem 2.8]W is of type |
(respectively, semifinite) by [14, 7.4.2] and [1, Theorem 8].

In order to obtain a contradiction, suppose now tNahas a non-zero con-
tinuous (respectively, type lll) parly o ¢, wheree is a central projection oi.
Now, « is an involution oreWe with (eWe)* = eMe. Applying Proposition 2.5
to P:eMe — N o e, Which is surjective, we obtain a weakontinuous projec-
tion from the type | (respectively, semifinite)\AalgebraeWe onto a continuous
(respectively, type III) W-subalgebra. This contradicts [27, Theorem 3 (respec-
tively, Theorem 4)] and so completes the proof:

In order to prove a refinement of part of Theorem 4.2, we first recall a Banach
space property introduced in [8].

Definition. A Banach spacé is said to have the DPL1 if whenever a sequence
xp — x weakly in E with ||x,|| = ||x]| = 1 for all n, and (p,) is a weakly null
sequence irE*, thenp, (x,) — 0.

We write M, for the predual of a IBWtriple M and we note that i : M —
M is a weaK-continuous contractive projection then the dual projection restricts
to a contractive projection oM, and thatP (M), is linearly isometric taP* (M)
viat — 1 o P. It follows that if M, has the DP1 then so do®&gM).,.
Recently, the authors characterised the von Neumann algebras whose predual
has the DP1.

Lemma 4.3 [3, Theorem 6]A von Neumann algebra is of type | if and only if its
predual has the DP1.
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For properties of (real) spin factors used in the next proof, see [14, Section 6].

Lemma 4.4. Let C be an infinite-dimensional spin factor. Thép does not have
the DP1.

Proof. The argument is similar to that in [3, Proposition 5]. lletdenote the
tracial state ofC and letR be the real Banach space generated by the non-trivial
symmetriesirC. ThenR is isometric to an infinite-dimensional real Hilbert space
andz (R) = {0}. Let (s,) be aninfinite orthogonal sequence in the Hilbert spce
Then(s,) — 0 weakly in R and hence irC. Moreover, each, is a non-trivial
symmetry. For each, lete, denote the projectio(l/2)(1+ s,) and letr, denote

the normal state Ae,, - ¢,). For alln, e,s,e, = e, so thatr(s,) = 1. However,

1, — 7 weakly in C,, sincet,(x) = 2t,(e, o x), for all x andn. ThereforeC,
does not have the DP1.0

One immediate consequence of Lemma 4.4 is that i6 an Abelian von
Neumann algebra ardis an infinite-dimensional spin factor then (in the notation
of Section 3)(A ® C), cannot have the DP1 because of the canonical (fveak
continuous) contractive projectioh® C — C.

Theorem 4.5. Let M be a JBW-triple. ThenM, has the DP1 if and only iM is
of type | without infinite spin part.

Proof. SupposeV, has the DP1. Then the predual of evégy-summand of\f
has the DP1. Thus by Proposition 2.4 and Lemma M3¢annot have a non-
zerols-summand of the fornW® wherex is an involution on a continuous von
Neumann algebrd, nor of the formpV where p is a non-zero projection in

a continuous von Neumann algebra (In the latter case because of the natural
projectionpV — pVp.) Therefore M is of type | and, by the remark prior to the
statement of the theorem, has no infinite spin part.

On the other hand, consider an Abelian von Neumann algélaiad a Cartan
factorC. If C is finite-dimensional thed ® C has the Dunford—Pettis property
becauset does, and s¢A ® C). has the Dunford—Pettis property and therefore it
has the DP1. Suppogegis infinite-dimensional. I{C is (rectangular) of the form
pB(H) for a projectionp € B(H), thenA® C = (1® p)A® C and is clearly the
image of a weak-continuous projection om ® B(H), implying that(A ® C).
has the DP1, by Lemma 4.3.(f is Hermitian or symplectic thed ® C can be
realised adv® whereq is an involution on a type | von Neumann algebva by
[14, 7.3.3]. SinceV? is the image of the wedkcontinuous contractive projection
(1/2)(i + o) on W, Lemma 4.3 again gives that ® C), has the DP1. Thus, if
M is of type | with no infinite spin partM, has the DP1 by [8, 1.10] together
with [16, 1.7]. O
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This leads to the following refinement of Theorem 4.2. the proof is immediate
from Theorem 4.5.

Theorem 4.6. Let P: M — M be a weak-continuous contractive projection on
a JBW-triple M whereM is of type | with no infinite spin part. The(M) is of
type | with no infinite spin part.

For every spin facto€ acting on a complex Hilbert spaéé there is a positive
unital projection fromB(H) onto C [7, Lemma 2.3]. Since a von Neumann
algebra never has infinite spin part, Theorem 4.6 gives:

Corollary 4.7. There is no weakcontinuous contractive projection from a type |
von Neumann algebra onto an infinite-dimensional spin factor.
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