

J. Math. Anal. Appl. 272 (2002) 55-66

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

www.academicpress.com

Images of contractive projections on operator algebras

Leslie J. Bunce ^{a,*} and Antonio M. Peralta^{b,1}

^a University of Reading, Reading RG6 2AX, UK ^b Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

Received 2 October 2001

Submitted by J.D.M. Wright

Abstract

It is shown that if *P* is a weak*-continuous contractive projection on a JBW*-triple *M*, then P(M) is of type I or semifinite, respectively, if *M* is of the corresponding type. We also show that P(M) has no infinite spin part if *M* is a type I von Neumann algebra. © 2002 Elsevier Science (USA). All rights reserved.

0. Introduction

JW*-triples, that is, weak*-closed subspaces of B(H) that are also closed under $x \mapsto xx^*x$, arise as images of contractive (i.e., norm one) projections on von Neumann algebras. Their generalisations, JBW*-triples, are those complex Banach dual spaces whose open unit ball is a bounded symmetric domain. The holomorphy of such spaces induces a ternary Jordan algebraic structure determined by a certain "triple product" {a, b, c} [18]. If $P: M \to M$ is a weak*continuous contractive projection on a JBW*-triple M, then P(M) is a JBW*-

^{*} Corresponding author.

E-mail addresses: 1.j.bunce@reading.ac.uk (L.J. Bunce), aperalta@goliat.ugr.es (A.M. Peralta).

¹ Partially supported by DGICYT project No. PB 98-1371 and Junta de Andalucía grant FQM 0199.

triple with a triple product given by $\{a, b, c\}_P := P\{a, b, c\}$ by [19,21], and by [9,11] if *M* is a JW*-triple. The interesting special cases that occur when *P* is positive unital acting on von Neumann algebra or a JBW*-algebra were studied earlier in [4,7,20].

Suppose $P: M \to M$ is a weak*-continuous contractive projection on a JBW*triple *M*. In this paper we study the stability of P(M) with respect to the type theory of [15–17]. We show that if *M* is of type I or semifinite, respectively, then P(M) is of the corresponding type. This extends the classical results of [27] when *M* is a von Neumann algebra and P(M) is a subalgebra. We remark that in general P(M) is not a subtriple of *M*. Using recent results on properties of the predual of a type I von Neumann algebra we deduce that P(M) cannot be isometric to an infinite-dimensional spin factor whenever *M* is a type I von Neumann algebra.

Section 1 of this paper contains preliminary results on JBW*-algebras. This is continued in Section 2 where we study the fixed point JW*-algebra, W^{α} , of an involution α on a von Neumann algebra W. A principal aim here is to show that a faithful weak*-continuous contractive projection from W^{α} onto a continuous JW*-subalgebra induces a weak*-continuous contractive projection from W onto a continuous von Neumann subalgebra. This allows us to apply [27] to obtain our main results in Section 4. The formulation of type theory of JBW*-triples contained in Section 3 is extracted from [15–17] and is included for completeness.

For later reference we shall recall some of the fundamentals of JBW*-triples used in this paper. A JBW*-triple can be realised [18] as a complex Banach space M with predual M_* and continuous ternary triple product $(a, b, c) \mapsto \{a, b, c\}$ that is conjugate linear in b and symmetric bilinear in a, c such that $||\{a, a, a\}|| = ||a||^3$ and such that the operator $x \mapsto \{a, a, x\}$, denoted by D(a, a), is Hermitian with non-negative spectrum and satisfies

$$D(a, a)(\{x, y, z\}) = \{D(a, a)x, y, z\} - \{x, D(a, a)y, z\} + \{x, y, D(a, a)z\}.$$

The predual is unique and the triple product is separately weak*-continuous [2, 15]. The surjective linear isometries between JBW*-triples are the triple product preserving bijections (triple isomorphisms) [18]. A von Neumann algebra is a JBW*-triple with triple product $\{a, b, c\} = (1/2)(ab^*c + cb^*a)$. The weak*-closed subtriples of von Neumann algebras are the JW*-triples. By [16,17] most JBW*-triples are of this form. See Section 3 for further details.

An element *u* in a JBW*-triple *M* satisfying $\{u, u, u\} = u$ is called a *tripotent*, when *M* is a JW*-triple these are precisely the partial isometries of *M*. Associated with a tripotent *u* are the mutually orthogonal *Peirce* projections $P_2(u)$, $P_1(u)$, and $P_0(u)$. We have

$$P_2(u)(x) = \{u, \{u, x, u\}, u\} \text{ for all } x,$$

$$P_1(u) = 2(D(u, u) - P_2(u)) \text{ and } P_2(u) + P_1(u) + P_0(u) = i$$

(where *i* is the identity map). A tripotent *u* of *M* is said to be *complete* (or maximal) if $P_0(u) = 0$, to be unitary if $P_2(u) = i$ and to be minimal if $P_2(u)(M) = \mathbb{C}u$. We recall (see [5, Corollary 4.8], for example) that the complete tripotents of *M* are the extreme points of the closed unit ball of *M*. A crucial simplifying property of JBW*-triples is that for a tripotent *u* of *M* the Peirce-2 subspace $P_2(u)(M)$ is a JBW*-algebra with product $a \circ b = \{a, u, b\}$ and involution $a^* = \{u, a, u\}$. For further properties of JBW*-triples we refer to the papers [5,6,9,15–18] and the book [29]. Since JBW*-algebras are just the complexifications of JW-algebras we refer to [14] for their theory.

1. Positive unital projections on JBW*-algebras

Let M be a JBW^{*}-algebra. Writing

$$[a, b, c] := (a \circ b) \circ c + (c \circ b) \circ a - (a \circ c) \circ b,$$

M is a JBW*-triple with triple product given by $\{a, b, c\} := [a, b^*, c]$. The Peirce-2 projection, $P_2(e)$, associated with a projection *e* of *M* satisfies $P_2(e)(x) = [e, x, e]$ for all *x* in *M*.

Elements *a* and *b* of *M* are said to *operator commute* in *M* if $(a \circ x) \circ b = a \circ (x \circ b)$ for all *x* in *M*. Self-adjoint elements *a* and *b* in *M* generate a JBW*-subalgebra that can be realised as a JW*-subalgebra of some B(H) [30] and, in this realisation, *a* and *b* commute in the usual sense if they operator commute in *M* [28, Proposition 1]. By the same references, self-adjoint elements *a* and *b* of *M* operator commute if and only if $a^2 \circ b = [a, b, a]$ (= {*a*, *b*, *a*}). If *N* is a JBW*-subalgebra of *M* we use $M \cap N'$ to denote the set of elements in *M* that operator commute with every element of *N*. (This corresponds to the usual notation when *M* is a von Neumann algebra.) The *centre* of *M* is $M \cap M'$ which we also denote by Z(M).

Let *P* be a unital (i.e., P(1) = 1) weak*-continuous contractive projection on a JBW*-algebra *M*. Then *P* is positive and therefore is invariant on the selfadjoint part. Such projections were studied in [7,20]. Suppose now that P(M)is a JBW*-subalgebra *N* of *M*. Then, by [7, Lemma 1.5] or [20, Lemma 1.5] we have $P(a \circ x) = a \circ P(x)$ for all $a \in N$ and $x \in M$. Further, if *e* denotes the support projection of *P* in *M* (i.e., the least projection in *M* sent to 1 by *P*) then $P = PP_2(e)$ and, by a slight extension of [7, Lemma 1.2(2)], $e \in M \cap N'$. Moreover, if $x \ge 0$ and P(x) = 0 then $P_2(e)(x) = 0$. If e = 1, *P* is said to be faithful.

Lemma 1.1. Let $P: M \to M$ be a weak*-continuous unital contractive projection from a JBW*-algebra M onto a JBW*-subalgebra N. Let e be the support projection of P. Then $P_2(e)P$ is a faithful weak*-continuous unital projection from $P_2(e)(M)$ onto $N \circ e$. Moreover, N is isomorphic to $N \circ e$. **Proof.** Suppose $x \in P_2(e)(M)$ such that $x \ge 0$ and $P_2(e)P(x) = 0$. Then $P(x) = PP_2(e)P(x) = 0$ so that $x = P_2(e)(x) = 0$. Together with the above remarks this proves the first statement.

Since $e \in M \cap N'$ multiplication by *e* induces a (Jordan) homomorphism, π , from *N* onto $N \circ e$. Let *a* in *N* such that $a \ge 0$ and $a \circ e = 0$; then $a = P(a \circ e) = 0$. It follows that π is injective. \Box

Lemma 1.2. Let $P: M \to M$ be a weak*-continuous unital contractive projection from a JBW*-algebra onto a JBW*-subalgebra N. Let e be any non-zero projection in $M \cap N'$. Suppose that P is faithful. Then there exists a faithful weak*continuous unital contractive projection from $P_2(e)(M)$ onto $N \circ e$.

Proof. For each self-adjoint $a \in N$ we have

$$a^{2} \circ P(e) = P(a^{2} \circ e) = P(\{a, e, a\}) = \{a, P(e), a\}$$

and so, by the previous remark, $P(e) \in Z(N)$. Therefore the range projection $r(P(e)) \in Z(N)$. Denote r(P(e)) by h. The ideal of N, $N \circ P(e) = P(N \circ e)$, is weak*-closed and so equals $N \circ h$. It follows that P(e) is invertible in $N \circ h$ with inverse b, say, in $Z(N) \circ h$. Define $Q: P_2(e)(M) \to P_2(e)(M)$ by $Q(x) = (P(x) \circ b) \circ e$. Let $a \in N$ where $a \ge 0$. By operator commutivity we have $(a \circ (1 - h)) \circ e \ge 0$ and

$$P((a \circ (1-h)) \circ e) = (a \circ (1-h)) \circ P(e) = a \circ ((1-h) \circ P(e)) = 0.$$

Since *P* is faithful, $a \circ e = (a \circ h) \circ e$, and so

$$Q(a \circ e) = (P(a \circ e) \circ b) \circ e = ((a \circ P(e)) \circ b) \circ e = (a \circ h) \circ e = a \circ e,$$

implying that *Q* is a unital projection onto $N \circ e$. To see that *Q* is faithful let $x \in P_2(e)(M)$ such that $x \ge 0$ and $(P(x) \circ b) \circ e = 0$. By the above,

$$P(x) \circ e = (P(x) \circ h) \circ e = ((P(x) \circ b) \circ e) \circ P(e) = 0.$$

Therefore, $P(x) \circ P(e) = P(P(x) \circ e) = 0$. But $P(x) \leq ||x|| P(e)$. Hence, P(x) = 0 and so x = 0 because P is faithful. \Box

2. Involutory * antiautomorphisms

Following [24] by an involution α on a von Neumann algebra we shall mean an involutory * antiautomorphism on the algebra. Let α be an involution on a von Neumann algebra W. We shall write $R(W) := \{x \in W: \alpha(x) = x^*\}$ and $W^{\alpha} := \{x \in W: \alpha(x) = x\}$. (The latter notation is different from that used in [24], where it stands for the Hermitian part.) Then R(W) is a weak*-closed real *-subalgebra of W with $R(W) \cap iR(W) = \{0\}$ and W = R(W) + iR(W). We have $W^{\alpha} = R(W)_{sa} + iR(W)_{sa}$ and, for $a, b \in R(W)$, we have $\alpha(a + ib) = a^* + ib^*$. **Lemma 2.1.** Let α be an involution on a von Neumann algebra W and suppose e is a central projection in W such that $e + \alpha(e) = 1$. Then $eW^{\alpha} = eW$ and W^{α} is (Jordan) isomorphic to eW via $x \mapsto ex$.

Proof. For each x in W, $ex + (1 - e)\alpha(x) \in W^{\alpha}$ and every element of W^{α} is of this form. Thus $eW^{\alpha} = eW$ and W^{α} is isomorphic to eW in the way stated. \Box

Lemma 2.2. Let α be an involution on a von Neumann algebra W and suppose that e is a projection in W with $e + \alpha(e) = 1$. Then we have the following:

- (i) There is a faithful weak*-continuous unital contractive projection, $P: W^{\alpha} \rightarrow W^{\alpha}$, such that $P(W^{\alpha})$ is a JW*-subalgebra isomorphic to eWe (and to (1-e)W(1-e)).
- (ii) If W^{α} generates W as a von Neumann algebra and $eW^{\alpha}\alpha(e) = 0$, then $e \in Z(W)$.

Proof. (i) Let V denote the von Neumann algebra eWe + (1 - e)W(1 - e). Define $P: W \to W$ by P(x) := exe + (1 - e)x(1 - e). Then $P(W) = V = \alpha(V)$. If s denotes the symmetry 2e - 1 we see that P(x) = (1/2)(x + sxs). Since $\alpha(s) = -s$, we have $\alpha P = P\alpha$ from which we deduce that $P(W^{\alpha}) = V^{\alpha}$. Since e lies in the centre of V, Lemma 2.1 implies that V^{α} is isomorphic to eV = eWe. It is clear that P satisfies (i).

(ii) Suppose $eW^{\alpha}\alpha(e) = 0$. Then for $x \in W^{\alpha}$ we have

$$x = exe + (1 - e)x(1 - e)$$

so that ex = exe. Passing to the self-adjoint part we see that *e* commutes with all elements of W^{α} and so lies in the centre of *W* if *W* is the von Neumann algebra generated by W^{α} . \Box

Lemma 2.3. Let α be an involution in a non-Abelian von Neumann algebra W. Then there is a non-zero projection e in W with $e\alpha(e) = 0$.

Proof. We have $R(W)_{sa} \neq R(W)$; otherwise α is the identity map on W and therefore W is Abelian. Choose a in R(W) such that $a \neq a^*$ and let $a - a^* = b$. Let V denote the von Neumann subalgebra of W generated by b. We have that V is Abelian, that $\alpha(b) = -b$ and $\alpha(V) = V$. Since α is not the identity map on V, by [14, 7.3.4] there is a non-zero projection $e \in V$ such that $e\alpha(e) = 0$. \Box

Proposition 2.4. Let α be an involution on a von Neumann algebra W and suppose that W^{α} has no type I part. Then there is a projection e in W and a faithful weak*-continuous unital contractive projection from W^{α} onto a JW*-subalgebra M such that $e \in W \cap M'$ and Me is a W*-algebra isomorphic to M.

Moreover, if W^{α} is of type II_1 , II_{∞} or III, respectively, then M is of the corresponding type.

Proof. Let (e_i) be a family of projections in W maximal subject to the condition that $(e_i + \alpha(e_i))$ is a mutually orthogonal family of projections. Put $e = \sum_i e_i$. Then $e\alpha(e) = 0$. Let $f = 1 - e - \alpha(e)$. Then $\alpha(fWf) = fWf$ and it follows from Lemma 2.3, and maximality, that fWf is Abelian and hence that $fW^{\alpha}f$ is Abelian. By assumption, we must have f = 0. Lemma 2.2(i) now gives the first statement. Since W^{α} generates W, by [13, Theorem 2.8], the second statement follows from [1, Theorem 8] together with Lemma 2.2(i).

Proposition 2.5. Let α be an involution on a von Neumann algebra W, and let M denote W^{α} . Suppose there is a faithful weak*-continuous unital contractive projection, P, from M onto a JW*-subalgebra N. If N is continuous (respectively, of type III) then there is a weak*-continuous contractive projection from W onto a continuous (respectively, type III) W*-subalgebra.

Proof. Let *V* be the von Neumann subalgebra of *W* generated by *N* and let *R* be the weak*-closed real *-subalgebra of *W* generated by V_{sa} . We have $\alpha(V) = V$ since α fixes each element of *N*, and $R \cap iR = \{0\}$ since $R \subset R(W)$. Suppose *N* is continuous (respectively, of type III). Then $N_{sa} = R_{sa}$, using [14, 7.3.3], so that V = R + iR, by [22, Theorem 2.4]. Hence, $V^{\alpha} = R_{sa} + iR_{sa} = N$. By Proposition 2.4 there exists a faithful weak*-continuous unital contractive projection, $Q: N \to N$, onto a continuous (respectively, type III) JW*-subalgebra *K* together with a projection $e \in W \cap K'$ such that Ke is a W*-algebra isomorphic to *K*. If *E* denotes the (faithful) canonical projection $(1/2)(i + \alpha): W \to M$, then the proof is completed by application of Lemma 1.2 to the projection $QPE: W \to K$. \Box

We recall [24] that an involution α is said to be a *central* involution if it fixes every element in Z(W).

Lemma 2.6. Let α be a central involution on a continuous von Neumann algebra W. Let u be a partial isometry of W^{α} such that $(1 - uu^*)W^{\alpha}(1 - u^*u) = 0$. Then $u^*u = uu^* = 1$.

Proof. Let *e* denote $1 - uu^*$. Then $\alpha(e) = 1 - u^*u$. Put $p = e + \alpha(e)$. Then α is a central involution on pWp. By [13, Theorem 2.8] or [24, Proposition 3.2] $(pWp)^{\alpha} (= pW^{\alpha}p)$ generates pWp. Hence by Lemma 2.2(ii), $e \in Z(pWp) = Z(W)p$ so that $\alpha(e) = e$, whence the result. \Box

3. Types of JBW*-triples

The aim of this short section, which contains no new results, is to collate existing theory into a form easy to use subsequently.

Cartan factors. Of the six kinds of Cartan factors (up to linear isometry), three are of the form pB(H), { $x \in B(H)$: $x = jx^*j$ } and { $x \in B(H)$: $x = -jx^*j$ }, where *H* is a complex Hilbert space, *p* is a projection in B(H) and $j: H \to H$ is a conjugation. These are referred to as *rectangular*, *Hermitian* and *symplectic* Cartan factors, respectively. Hermitian factors are type I JW*-algebra factors and, if *H* is even or infinite-dimensional, symplectic factors are linearly isometric to type I JW*-algebra factors. *Spin* factors (complexifications of real spin factors) comprise a fourth kind. The remaining two *exceptional* Cartan factors can be realised as the 3 × 3 Hermitian matrices and the 1 × 2 matrices, respectively, over the complex Cayley numbers.

Type I JBW-triples.* In view of [15, 4.14] a JBW*-triple M is said to be of *type I* if there is a complete tripotent u of M such that $P_2(u)(M)$ is a type I JBW*-algebra. By the type I classification theorem [16, 1.7] the type I JBW*-triples are precisely the ℓ_{∞} -sums of JBW*-triples of the form:

- (i) $A \otimes C$, where A is an Abelian von Neumann algebra and C is a Cartan factor realised as a JW*-subtriple of some B(H), the bar denoting the weak*-closure in the usual von Neumann tensor product $A \otimes B(H)$, and
- (ii) A ⊗ C (algebraic tensor product), where A is as before and C is an exceptional Cartan factor.
 (Of course, A ⊗ C = A ⊗ C whenever C is a finite-dimensional non-exceptional Cartan factor.)

Let *e* be a tripotent in a type I JBW*-triple *M*. A known consequence of the type I classification theorem is that $P_2(e)(M)$ is of type I. We include an argument for completeness and want of a precise reference.

We may suppose that *M* is of the form (i) or (ii) above. In the latter case it is clear that $P_2(e)(M)$ is of type I since every subfactor of it must have rank less than 4. Thus we may assume that we are in the case (i) and, consequently, that we are working in $A \otimes B(H)$.

Let *u* be a non-zero (we assume $e \neq 0$) in a weak*-closed ideal *J* of $P_2(e)(M)$.

Since $\{u, (A \otimes B(H)), u\} = (A \otimes 1)\{u, (1 \otimes B(H)), u\}$ and B(H) is the weak*closed linear span of its minimal tripotents, $\{u, (1 \otimes v), u\} \neq 0$ for some minimal tripotent v. We have $\{(1 \otimes v), M, (1 \otimes v)\} = A \otimes v$ so that with $x = \{u, (1 \otimes v), u\}$ $(\in P_2(u)(M))$ we have $\{x, M, x\} \subset (A \otimes 1)x$. Since $A \otimes 1$ commutes elementwise with x, $(A \otimes 1)x$ generates an Abelian subtriple in the sense of [15, 1.4]. But, as follows from [5, Lemma 3.1], the weak*-closure of $\{x, M, x\}$ equals $P_2(w)(M)$, for some tripotent w, and so is Abelian. Since $w \in J$, $P_2(e)(M)$ is of type I, by [15, 4.14 (2) \Rightarrow (1)].

Continuous JBW*-triples. A JBW*-triple M is said to be continuous if it has no type I ℓ_{∞} -summand. In that case, up to isometry, M is a JW*-triple with unique decomposition, $M = W^{\alpha} \oplus pV$, where W and V are continuous von Neumann algebras, p is a projection in V and α is a central involution on W [17, 2.1 and 4.8]. It is implicit in [17] that every complete tripotent of W^{α} is a unitary tripotent. An alternative proof of this fact is provided by Lemma 2.6. Thus, by [17, 5.1–5.7], for every complete tripotent u in M, $P_2(u)(M)$ is isometric to $W^{\alpha} \oplus pWp$. We define M to be of type II₁, II_{∞} or III, respectively, if both W and pWp are of the corresponding type. M is said to be semifinite if it has no type III ℓ_{∞} -summand.

Lemma 3.1 below summarizes the above. The second statement is a consequence of the fact that every tripotent in a JBW*-triple M is a projection in $P_2(u)(M)$ for some complete tripotent u [15, 3.12].

Lemma 3.1. A JBW^{*}-triple M is of type I, II_1 , II_{∞} , III or is semifinite, respectively, if and only if $P_2(u)(M)$ is of the corresponding type for some, and hence every, complete tripotent u of M. If M is of type I, II_1 , III or is semifinite, respectively, then so is $P_2(u)(M)$ for every tripotent u of M.

We shall say that a JBW*-triple has no *infinite spin part* if it has no ℓ_{∞} -summands of the form $A \otimes C$, where A is an Abelian von Neumann algebra and C is an infinite-dimensional spin factor.

4. Contractive projections on JBW*-triples

By [19] and [21] the image of a weak*-continuous contractive projection, $P: M \to M$, on a JBW*-triple M is again a JBW*-triple with triple product $\{x, y, z\}_P := P(\{x, y, z\})$ for x, y, z in P(M) and

$$P\{P(x), y, P(z)\} = P\{P(x), P(y), P(z)\}$$

for all x, y, z in M. The image, P(M), need not be a JBW*-subtriple of M. However, as is made explicit in [6, Lemma 5.3] and its proof, we do have the following:

Lemma 4.1 [6, Lemma 5.3]. If $P: M \to M$ is a weak*-continuous contractive projection on a JBW*-triple M, there exists a JBW*-subtriple C of M such that C is linearly isometric to P(M) and such that C is the image of a weak*-continuous projection on M.

We are now in a position to prove our first main result. We freely use Lemma 3.1 throughout. **Theorem 4.2.** Let $P: M \to M$ be a weak*-continuous contractive projection on a JBW^* -triple M. If M is of type I (respectively, semifinite) then P(M) is of type I (respectively, semifinite).

Proof. Let *M* be of type I (respectively, semifinite). By Lemma 4.1 we may suppose P(M) to be a JBW*-subtriple, *N*, of *M*. Let *u* be a complete tripotent of *N*. By the above formula, *P* restricts to a unital projection from $P_2(u)(M)$ to $P_2(u)(N)$.

By this fact, together with Lemma 1.1, we may suppose P to be faithful, M to be a JBW*-algebra and N to be a JBW*-subalgebra.

Let $M \circ z$ be the type I finite part of M, where z is a central projection of M. Then $N \circ z$ is type I finite, being a subalgebra of $M \circ z$, and it remains only to show that $N \circ (1 - z)$ is of type I (respectively, semifinite). Since, by Lemma 1.2, $N \circ (1 - z)$ is the image of some faithful weak*-continuous unital contractive projection on $M \circ (1 - z)$, it can be supposed that z = 0. In that case, by [14, 7.2.7 and 7.3.3], we may suppose that $M = W^{\alpha}$, where α is an involution on a von Neumann algebra W. Since W^{α} generates W [13, Theorem 2.8], W is of type I (respectively, semifinite) by [14, 7.4.2] and [1, Theorem 8].

In order to obtain a contradiction, suppose now that *N* has a non-zero continuous (respectively, type III) part, $N \circ e$, where *e* is a central projection of *N*. Now, α is an involution on *eWe* with $(eWe)^{\alpha} = eMe$. Applying Proposition 2.5 to $P: eMe \rightarrow N \circ e$, which is surjective, we obtain a weak*-continuous projection from the type I (respectively, semifinite) W*-algebra *eWe* onto a continuous (respectively, type III) W*-subalgebra. This contradicts [27, Theorem 3 (respectively, Theorem 4)] and so completes the proof. \Box

In order to prove a refinement of part of Theorem 4.2, we first recall a Banach space property introduced in [8].

Definition. A Banach space *E* is said to have the DP1 if whenever a sequence $x_n \to x$ weakly in *E* with $||x_n|| = ||x|| = 1$ for all *n*, and (ρ_n) is a weakly null sequence in E^* , then $\rho_n(x_n) \to 0$.

We write M_* for the predual of a JBW*-triple M and we note that if $P: M \to M$ is a weak*-continuous contractive projection then the dual projection restricts to a contractive projection on M_* and that $P(M)_*$ is linearly isometric to $P^*(M_*)$ via $\tau \mapsto \tau \circ P$. It follows that if M_* has the DP1 then so does $P(M)_*$.

Recently, the authors characterised the von Neumann algebras whose predual has the DP1.

Lemma 4.3 [3, Theorem 6]. A von Neumann algebra is of type I if and only if its predual has the DP1.

For properties of (real) spin factors used in the next proof, see [14, Section 6].

Lemma 4.4. Let C be an infinite-dimensional spin factor. Then C_* does not have the DP1.

Proof. The argument is similar to that in [3, Proposition 5]. Let τ denote the tracial state of *C* and let *R* be the real Banach space generated by the non-trivial symmetries in *C*. Then *R* is isometric to an infinite-dimensional real Hilbert space and $\tau(R) = \{0\}$. Let (s_n) be an infinite orthogonal sequence in the Hilbert space *R*. Then $(s_n) \to 0$ weakly in *R* and hence in *C*. Moreover, each s_n is a non-trivial symmetry. For each *n*, let e_n denote the projection $(1/2)(1 + s_n)$ and let τ_n denote the normal state $2\tau(e_n \cdot e_n)$. For all n, $e_ns_ne_n = e_n$ so that $\tau(s_n) = 1$. However, $\tau_n \to \tau$ weakly in *C*_{*}, since $\tau_n(x) = 2\tau_n(e_n \circ x)$, for all *x* and *n*. Therefore, *C*_{*} does not have the DP1. \Box

One immediate consequence of Lemma 4.4 is that if A is an Abelian von Neumann algebra and C is an infinite-dimensional spin factor then (in the notation of Section 3) $(A \otimes C)_*$ cannot have the DP1 because of the canonical (weak*-continuous) contractive projection $A \otimes C \to C$.

Theorem 4.5. Let M be a JBW^{*}-triple. Then M_* has the DP1 if and only if M is of type I without infinite spin part.

Proof. Suppose M_* has the DP1. Then the predual of every ℓ_{∞} -summand of M has the DP1. Thus by Proposition 2.4 and Lemma 4.3, M cannot have a non-zero ℓ_{∞} -summand of the form W^{α} where α is an involution on a continuous von Neumann algebra W, nor of the form pV where p is a non-zero projection in a continuous von Neumann algebra V. (In the latter case because of the natural projection $pV \rightarrow pVp$.) Therefore, M is of type I and, by the remark prior to the statement of the theorem, has no infinite spin part.

On the other hand, consider an Abelian von Neumann algebra A and a Cartan factor C. If C is finite-dimensional then $A \otimes C$ has the Dunford–Pettis property because A does, and so $(A \otimes C)_*$ has the Dunford–Pettis property and therefore it has the DP1. Suppose C is infinite-dimensional. If C is (rectangular) of the form pB(H) for a projection $p \in B(H)$, then $A \otimes C = (1 \otimes p)A \otimes C$ and is clearly the image of a weak*-continuous projection on $A \otimes B(H)$, implying that $(A \otimes C)_*$ has the DP1, by Lemma 4.3. If C is Hermitian or symplectic then $A \otimes C$ can be realised as W^{α} where α is an involution on a type I von Neumann algebra W, by [14, 7.3.3]. Since W^{α} is the image of the weak*-continuous contractive projection $(1/2)(i + \alpha)$ on W, Lemma 4.3 again gives that $(A \otimes C)_*$ has the DP1. Thus, if M is of type I with no infinite spin part, M_* has the DP1 by [8, 1.10] together with [16, 1.7]. \Box

This leads to the following refinement of Theorem 4.2. the proof is immediate from Theorem 4.5.

Theorem 4.6. Let $P: M \to M$ be a weak*-continuous contractive projection on a JBW*-triple M where M is of type I with no infinite spin part. Then P(M) is of type I with no infinite spin part.

For every spin factor *C* acting on a complex Hilbert space *H* there is a positive unital projection from B(H) onto *C* [7, Lemma 2.3]. Since a von Neumann algebra never has infinite spin part, Theorem 4.6 gives:

Corollary 4.7. There is no weak*-continuous contractive projection from a type I von Neumann algebra onto an infinite-dimensional spin factor.

References

- L. Ajupov, Extensions of traces and type criterions for Jordan algebras of self adjoint operators, Math. Z. 181 (1982) 253–268.
- [2] J.T. Barton, R. Timoney, Weak* continuity of Jordan triple product and its applications, Math. Scand. 59 (1986) 177–191.
- [3] L.J. Bunce, A.M. Peralta, The alternative Dunford–Pettis property in C*-algebras and von Neumann preduals, preprint (2001).
- [4] M. Choi, E. Effros, Injectivity in operator spaces, J. Funct. Anal. 24 (1977) 156-209.
- [5] C.M. Edwards, G.T. Rüttimann, On the facial structure of the unit balls in a JBW*-triple and its predual, J. London Math. Soc. 38 (1988) 317–332.
- [6] C.M. Edwards, G.T. Rüttimann, Structural projections on JBW*-triples, J. London Math. Soc. 53 (1996) 354–368.
- [7] E. Effros, E. Størmer, Positive projections and Jordan structure in operator algebras, Math. Scand. (1983) 279–311.
- [8] W. Freedman, An alternative Dunford-Pettis property, Studia Math. 125 (1997) 143-159.
- [9] Y. Friedman, B. Russo, Conditional expectations without order, Pacific J. Math. 115 (1984) 351– 360.
- [10] Y. Friedman, B. Russo, Structure of the predual of a JBW*-triple, J. Reine Angew. Math. 356 (1985) 67–89.
- [11] Y. Friedman, B. Russo, Solution of the contractive projection problem, J. Funct. Anal. 60 (1986) 56–79.
- [12] Y. Friedman, B. Russo, Conditional expectations and bicontractive projections on Jordan C*algebras and their generalizations, Math. Z. 194 (1987) 227–236.
- [13] J. Gasemyr, Involutory * antiautomorphisms of von Neumann algebras and C*-algebras, Math. Scand. 67 (1990) 87–96.
- [14] H. Hanche-Olsen, E. Størmer, Jordan Operator Algebras, Pitman, London, 1984.
- [15] G. Horn, Characterization of the predual and ideal structure of a JBW*-triple, Math. Scand. 61 (1987) 117–133.
- [16] G. Horn, Classification of JBW*-triples of type I, Math. Z. 196 (1987) 271-291.
- [17] G. Horn, E. Neher, Classification of continuous JBW*-triples, Trans. Amer. Math. Soc. 306 (1988) 553–578.
- [18] W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183 (1983) 503–529.

- [19] W. Kaup, Contractive projections on Jordan C*-algebras and generalizations, Math. Scand. 54 (1984) 95–100.
- [20] A.G. Robertson, M.A. Youngson, Positive projections with contractive complements on Jordan algebras, J. London Math. Soc. 26 (1982) 132–142.
- [21] L.L. Stacho, A projection principle concerning biholomorphic automorphisms, Acta Sci. Math. 44 (1982) 99–124.
- [22] E. Størmer, Irreducible Jordan algebras of self-adjoint operators, Trans. Amer. Math. Soc. 130 (1966) 153–166.
- [23] E. Størmer, Decomposition of positive projections on C*-algebras, Math. Ann. 247 (1980) 21– 41.
- [24] E. Størmer, Conjugacy of involutive antiautomorphisms of von Neumann algebras, J. Funct. Anal. 66 (1986) 54–66.
- [25] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, New York, 1979.
- [26] J. Tomiyama, On the projection of norm one in W*-algebras, Proc. Japan Acad. 33 (1957) 608– 612.
- [27] J. Tomiyama, On the projection of norm one in W*-algebras III, Tohoku Math. J. 11 (1959) 125–129.
- [28] D. Topping, Jordan algebras of self-adjoint operators, Mem. Amer. Math. Soc. 53 (1965).
- [29] H. Upmeier, Symmetric Banach Manifolds and Jordan C*-Algebras, Math. Studies, Vol. 104, North-Holland, 1985.
- [30] J.D.M. Wright, Jordan C*-algebras, Michigan Math. J. 24 (1977) 291–302.