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Abstract

It is shown that ifP is a weak∗-continuous contractive projection on a JBW∗-tripleM ,
thenP(M) is of type I or semifinite, respectively, ifM is of the corresponding type. We
also show thatP(M) has no infinite spin part ifM is a type I von Neumann algebra.
 2002 Elsevier Science (USA). All rights reserved.

0. Introduction

JW∗-triples, that is, weak∗-closed subspaces ofB(H) that are also closed
underx �→ xx∗x, arise as images of contractive (i.e., norm one) projections on
von Neumann algebras. Their generalisations, JBW∗-triples, are those complex
Banach dual spaces whose open unit ball is a bounded symmetric domain.
The holomorphy of such spaces induces a ternary Jordan algebraic structure
determined by a certain “triple product”{a, b, c} [18]. If P :M →M is a weak∗-
continuous contractive projection on a JBW∗-triple M, thenP(M) is a JBW∗-
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triple with a triple product given by{a, b, c}P := P {a, b, c} by [19,21], and by
[9,11] if M is a JW∗-triple. The interesting special cases that occur whenP is
positive unital acting on von Neumann algebra or a JBW∗-algebra were studied
earlier in [4,7,20].

SupposeP :M →M is a weak∗-continuous contractive projection on a JBW∗-
triple M. In this paper we study the stability ofP(M) with respect to the type
theory of [15–17]. We show that ifM is of type I or semifinite, respectively, then
P(M) is of the corresponding type. This extends the classical results of [27] when
M is a von Neumann algebra andP(M) is a subalgebra. We remark that in general
P(M) is not a subtriple ofM. Using recent results on properties of the predual
of a type I von Neumann algebra we deduce thatP(M) cannot be isometric to an
infinite-dimensional spin factor wheneverM is a type I von Neumann algebra.

Section 1 of this paper contains preliminary results on JBW∗-algebras. This is
continued in Section 2 where we study the fixed point JW∗-algebra,Wα , of an
involutionα on a von Neumann algebraW . A principal aim here is to show that
a faithful weak∗-continuous contractive projection fromWα onto a continuous
JW∗-subalgebra induces a weak∗-continuous contractive projection fromW onto
a continuous von Neumann subalgebra. This allows us to apply [27] to obtain
our main results in Section 4. The formulation of type theory of JBW∗-triples
contained in Section 3 is extracted from [15–17] and is included for completeness.

For later reference we shall recall some of the fundamentals of JBW∗-triples
used in this paper. A JBW∗-triple can be realised [18] as a complex Banach space
M with predualM∗ and continuous ternary triple product(a, b, c) �→ {a, b, c} that
is conjugate linear inb and symmetric bilinear ina, c such that‖{a, a, a}‖ = ‖a‖3

and such that the operatorx �→ {a, a, x}, denoted byD(a,a), is Hermitian with
non-negative spectrum and satisfies

D(a,a)
({x, y, z}) = {

D(a,a)x, y, z
}− {

x,D(a, a)y, z
}

+ {
x, y,D(a, a)z

}
.

The predual is unique and the triple product is separately weak∗-continuous [2,
15]. The surjective linear isometries between JBW∗-triples are the triple product
preserving bijections (triple isomorphisms) [18]. A von Neumann algebra is
a JBW∗-triple with triple product{a, b, c} = (1/2)(ab∗c + cb∗a). The weak∗-
closed subtriples of von Neumann algebras are the JW∗-triples. By [16,17] most
JBW∗-triples are of this form. See Section 3 for further details.

An elementu in a JBW∗-tripleM satisfying{u,u,u} = u is called atripotent,
whenM is a JW∗-triple these are precisely the partial isometries ofM. Associated
with a tripotentu are the mutually orthogonalPeirceprojectionsP2(u), P1(u),
andP0(u). We have

P2(u)(x)=
{
u, {u,x,u}, u} for all x,

P1(u)= 2
(
D(u,u)− P2(u)

)
and P2(u)+ P1(u)+ P0(u)= i
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(wherei is the identity map). A tripotentu ofM is said to becomplete(or maxi-
mal) if P0(u)= 0, to be unitary ifP2(u)= i and to be minimal ifP2(u)(M)= Cu.
We recall (see [5, Corollary 4.8], for example) that the complete tripotents ofM

are the extreme points of the closed unit ball ofM. A crucial simplifying property
of JBW∗-triples is that for a tripotentu of M the Peirce-2 subspaceP2(u)(M) is
a JBW∗-algebra with producta ◦ b = {a,u, b} and involutiona∗ = {u,a,u}. For
further properties of JBW∗-triples we refer to the papers [5,6,9,15–18] and the
book [29]. Since JBW∗-algebras are just the complexifications of JW-algebras we
refer to [14] for their theory.

1. Positive unital projections on JBW∗-algebras

LetM be a JBW∗-algebra. Writing

[a, b, c] := (a ◦ b) ◦ c+ (c ◦ b) ◦ a − (a ◦ c) ◦ b,
M is a JBW∗-triple with triple product given by{a, b, c} := [a, b∗, c]. The
Peirce-2 projection,P2(e), associated with a projectione ofM satisfiesP2(e)(x)

= [e, x, e] for all x inM.
Elementsa andb of M are said tooperator commutein M if (a ◦ x) ◦ b =

a ◦ (x ◦ b) for all x in M. Self-adjoint elementsa andb in M generate a JBW∗-
subalgebra that can be realised as a JW∗-subalgebra of someB(H) [30] and, in
this realisation,a andb commute in the usual sense if they operator commute in
M [28, Proposition 1]. By the same references, self-adjoint elementsa andb ofM
operator commute if and only ifa2 ◦ b = [a, b, a] (= {a, b, a}). If N is a JBW∗-
subalgebra ofM we useM ∩N ′ to denote the set of elements inM that operator
commute with every element ofN . (This corresponds to the usual notation when
M is a von Neumann algebra.) ThecentreofM isM ∩M ′ which we also denote
byZ(M).

Let P be a unital (i.e.,P(1)= 1) weak∗-continuous contractive projection on
a JBW∗-algebraM. ThenP is positive and therefore is invariant on the self-
adjoint part. Such projections were studied in [7,20]. Suppose now thatP(M)

is a JBW∗-subalgebraN of M. Then, by [7, Lemma 1.5] or [20, Lemma 1.5]
we haveP(a ◦ x) = a ◦ P(x) for all a ∈ N and x ∈ M. Further, if e denotes
the support projection ofP in M (i.e., the least projection inM sent to 1 byP )
thenP = PP2(e) and, by a slight extension of [7, Lemma 1.2(2)],e ∈M ∩N ′.
Moreover, if x � 0 andP(x) = 0 thenP2(e)(x) = 0. If e = 1, P is said to be
faithful.

Lemma 1.1. LetP :M →M be a weak∗-continuous unital contractive projection
from a JBW∗-algebraM onto a JBW∗-subalgebraN . Let e be the support pro-
jection ofP . ThenP2(e)P is a faithful weak∗-continuous unital projection from
P2(e)(M) ontoN ◦ e. Moreover,N is isomorphic toN ◦ e.



58 L.J. Bunce, A.M. Peralta / J. Math. Anal. Appl. 272 (2002) 55–66

Proof. Supposex ∈ P2(e)(M) such thatx � 0 andP2(e)P (x)= 0. ThenP(x)=
PP2(e)P (x)= 0 so thatx = P2(e)(x)= 0. Together with the above remarks this
proves the first statement.

Sincee ∈M ∩N ′ multiplication bye induces a (Jordan) homomorphism,π ,
fromN ontoN ◦e. Leta inN such thata � 0 anda◦e= 0; thena = P(a◦e)= 0.
It follows thatπ is injective. ✷
Lemma 1.2. LetP :M→M be a weak∗-continuous unital contractive projection
from a JBW∗-algebra onto a JBW∗-subalgebraN . Let e be any non-zero pro-
jection inM ∩N ′. Suppose thatP is faithful. Then there exists a faithful weak∗-
continuous unital contractive projection fromP2(e)(M) ontoN ◦ e.

Proof. For each self-adjointa ∈N we have

a2 ◦ P(e)= P (
a2 ◦ e) = P ({a, e, a}) = {

a,P (e), a
}

and so, by the previous remark,P(e) ∈ Z(N). Therefore the range projection
r(P (e)) ∈ Z(N). Denoter(P (e)) by h. The ideal ofN , N ◦ P(e) = P(N ◦ e),
is weak∗-closed and so equalsN ◦ h. It follows that P(e) is invertible in
N ◦ h with inverseb, say, inZ(N) ◦ h. DefineQ :P2(e)(M)→ P2(e)(M) by
Q(x)= (P (x)◦ b)◦ e. Let a ∈N wherea � 0. By operator commutivity we have
(a ◦ (1− h)) ◦ e� 0 and

P
((
a ◦ (1− h)) ◦ e) = (

a ◦ (1− h)) ◦ P(e)= a ◦ (
(1− h) ◦P(e)) = 0.

SinceP is faithful, a ◦ e= (a ◦ h) ◦ e, and so

Q(a ◦ e)= (
P(a ◦ e) ◦ b) ◦ e= ((

a ◦ P(e)) ◦ b) ◦ e= (a ◦ h) ◦ e= a ◦ e,
implying thatQ is a unital projection ontoN ◦ e. To see thatQ is faithful let
x ∈ P2(e)(M) such thatx � 0 and(P (x) ◦ b) ◦ e= 0. By the above,

P(x) ◦ e= (
P(x) ◦ h) ◦ e= ((

P(x) ◦ b) ◦ e) ◦ P(e)= 0.

Therefore,P(x) ◦ P(e) = P(P(x) ◦ e) = 0. But P(x) � ‖x‖P(e). Hence,
P(x)= 0 and sox = 0 becauseP is faithful. ✷

2. Involutory ∗ antiautomorphisms

Following [24] by an involutionα on a von Neumann algebra we shall mean
an involutory∗ antiautomorphism on the algebra. Letα be an involution on a
von Neumann algebraW . We shall writeR(W) := {x ∈ W : α(x) = x∗} and
Wα := {x ∈ W : α(x) = x}. (The latter notation is different from that used in
[24], where it stands for the Hermitian part.) ThenR(W) is a weak∗-closed real
∗-subalgebra ofW with R(W)∩ iR(W) = {0} andW =R(W)+ iR(W). We have
Wα =R(W)sa + iR(W)sa and, fora, b ∈ R(W), we haveα(a + ib)= a∗ + ib∗.
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Lemma 2.1. Letα be an involution on a von Neumann algebraW and supposee
is a central projection inW such thate+ α(e)= 1. TheneWα = eW andWα is
(Jordan) isomorphic toeW via x �→ ex.

Proof. For eachx in W , ex + (1 − e)α(x) ∈Wα and every element ofWα is of
this form. ThuseWα = eW andWα is isomorphic toeW in the way stated. ✷
Lemma 2.2. Let α be an involution on a von Neumann algebraW and suppose
that e is a projection inW with e+ α(e)= 1. Then we have the following:

(i) There is a faithful weak∗-continuous unital contractive projection,P :Wα →
Wα , such thatP(Wα) is a JW∗-subalgebra isomorphic toeWe (and to
(1− e)W(1− e)).

(ii) If Wα generatesW as a von Neumann algebra andeWαα(e) = 0, then
e ∈ Z(W).

Proof. (i) Let V denote the von Neumann algebraeWe + (1 − e)W(1 − e).
DefineP :W →W byP(x) := exe+ (1− e)x(1− e). ThenP(W)= V = α(V ).
If s denotes the symmetry 2e − 1 we see thatP(x) = (1/2)(x + sxs). Since
α(s) = −s, we haveαP = Pα from which we deduce thatP(Wα)= V α . Since
e lies in the centre ofV , Lemma 2.1 implies thatV α is isomorphic toeV = eWe.
It is clear thatP satisfies (i).

(ii) SupposeeWαα(e)= 0. Then forx ∈Wα we have

x = exe+ (1− e)x(1− e)
so thatex = exe. Passing to the self-adjoint part we see thate commutes with all
elements ofWα and so lies in the centre ofW if W is the von Neumann algebra
generated byWα . ✷
Lemma 2.3. Let α be an involution in a non-Abelian von Neumann algebraW .
Then there is a non-zero projectione in W with eα(e)= 0.

Proof. We haveR(W)sa �= R(W); otherwiseα is the identity map onW and
thereforeW is Abelian. Choosea in R(W) such thata �= a∗ and leta − a∗ = b.
Let V denote the von Neumann subalgebra ofW generated byb. We have thatV
is Abelian, thatα(b)= −b andα(V )= V . Sinceα is not the identity map onV ,
by [14, 7.3.4] there is a non-zero projectione ∈ V such thateα(e)= 0. ✷
Proposition 2.4. Let α be an involution on a von Neumann algebraW and sup-
pose thatWα has no type I part. Then there is a projectione in W and a faithful
weak∗-continuous unital contractive projection fromWα onto a JW∗-subalgebra
M such thate ∈W ∩M ′ andMe is a W∗-algebra isomorphic toM.
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Moreover, ifWα is of type II1, II∞ or III, respectively, thenM is of the cor-
responding type.

Proof. Let (ei) be a family of projections inW maximal subject to the condition
that (ei + α(ei)) is a mutually orthogonal family of projections. Pute = ∑

i ei .
Theneα(e) = 0. Let f = 1 − e − α(e). Thenα(fWf ) = fWf and it follows
from Lemma 2.3, and maximality, thatfWf is Abelian and hence thatfWαf is
Abelian. By assumption, we must havef = 0. Lemma 2.2(i) now gives the first
statement. SinceWα generatesW , by [13, Theorem 2.8], the second statement
follows from [1, Theorem 8] together with Lemma 2.2(i).✷
Proposition 2.5. Let α be an involution on a von Neumann algebraW , and let
M denoteWα . Suppose there is a faithful weak∗-continuous unital contractive
projection,P , fromM onto a JW∗-subalgebraN . If N is continuous(respectively,
of type III) then there is a weak∗-continuous contractive projection fromW onto
a continuous(respectively, type III) W∗-subalgebra.

Proof. LetV be the von Neumann subalgebra ofW generated byN and letR be
the weak∗-closed real∗-subalgebra ofW generated byVsa . We haveα(V )= V
sinceα fixes each element ofN , andR ∩ iR = {0} sinceR ⊂ R(W). Suppose
N is continuous (respectively, of type III). ThenNsa = Rsa , using [14, 7.3.3],
so thatV = R + iR, by [22, Theorem 2.4]. Hence,V α = Rsa + iRsa = N .
By Proposition 2.4 there exists a faithful weak∗-continuous unital contractive
projection,Q :N →N , onto a continuous (respectively, type III) JW∗-subalgebra
K together with a projectione ∈W ∩K ′ such thatKe is a W∗-algebra isomorphic
to K. If E denotes the (faithful) canonical projection(1/2)(i + α) :W → M,
then the proof is completed by application of Lemma 1.2 to the projection
QPE :W →K. ✷

We recall [24] that an involutionα is said to be acentral involution if it fixes
every element inZ(W).

Lemma 2.6. Let α be a central involution on a continuous von Neumann alge-
braW . Letu be a partial isometry ofWα such that(1− uu∗)Wα(1− u∗u)= 0.
Thenu∗u= uu∗ = 1.

Proof. Let e denote 1− uu∗. Thenα(e) = 1 − u∗u. Putp = e + α(e). Thenα
is a central involution onpWp. By [13, Theorem 2.8] or [24, Proposition 3.2]
(pWp)α (= pWαp) generatespWp. Hence by Lemma 2.2(ii),e ∈ Z(pWp) =
Z(W)p so thatα(e)= e, whence the result. ✷
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3. Types of JBW∗-triples

The aim of this short section, which contains no new results, is to collate
existing theory into a form easy to use subsequently.

Cartan factors. Of the six kinds of Cartan factors (up to linear isometry), three
are of the formpB(H), {x ∈ B(H): x = jx∗j } and{x ∈ B(H): x = −jx∗j },
whereH is a complex Hilbert space,p is a projection inB(H) andj :H → H

is a conjugation. These are referred to asrectangular, Hermitianandsymplectic
Cartan factors, respectively. Hermitian factors are type I JW∗-algebra factors and,
if H is even or infinite-dimensional, symplectic factors are linearly isometric to
type I JW∗-algebra factors.Spin factors (complexifications of real spin factors)
comprise a fourth kind. The remaining twoexceptionalCartan factors can be
realised as the 3× 3 Hermitian matrices and the 1× 2 matrices, respectively,
over the complex Cayley numbers.

Type I JBW∗-triples. In view of [15, 4.14] a JBW∗-triple M is said to be of
type I if there is a complete tripotentu ofM such thatP2(u)(M) is a type I JBW∗-
algebra. By the type I classification theorem [16, 1.7] the type I JBW∗-triples are
precisely the$∞-sums of JBW∗-triples of the form:

(i) A⊗C, whereA is an Abelian von Neumann algebra andC is a Cartan factor
realised as a JW∗-subtriple of someB(H), the bar denoting the weak∗-closure
in the usual von Neumann tensor productA⊗B(H), and

(ii) A⊗ C (algebraic tensor product), whereA is as before andC is an excep-
tional Cartan factor.
(Of course,A⊗C = A⊗ C wheneverC is a finite-dimensional non-excep-
tional Cartan factor.)

Let e be a tripotent in a type I JBW∗-tripleM. A known consequence of the
type I classification theorem is thatP2(e)(M) is of type I. We include an argument
for completeness and want of a precise reference.

We may suppose thatM is of the form (i) or (ii) above. In the latter case it is
clear thatP2(e)(M) is of type I since every subfactor of it must have rank less
than 4. Thus we may assume that we are in the case (i) and, consequently, that we
are working inA⊗B(H).

Letu be a non-zero (we assumee �= 0) in a weak∗-closed idealJ of P2(e)(M).
Since{u, (A⊗B(H)),u} = (A⊗1){u, (1⊗B(H)),u} andB(H) is the weak∗-

closed linear span of its minimal tripotents,{u, (1⊗ v),u} �= 0 for some minimal
tripotentv. We have{(1⊗v),M, (1⊗v)} =A⊗v so that withx = {u, (1⊗v),u}
(∈ P2(u)(M))we have{x,M,x} ⊂ (A⊗1)x. SinceA⊗1 commutes elementwise
with x, (A⊗ 1)x generates an Abelian subtriple in the sense of [15, 1.4]. But, as
follows from [5, Lemma 3.1], the weak∗-closure of{x,M,x} equalsP2(w)(M),
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for some tripotentw, and so is Abelian. Sincew ∈ J , P2(e)(M) is of type I, by
[15, 4.14(2)⇒ (1)].

Continuous JBW∗-triples. A JBW∗-tripleM is said to becontinuousif it has no
type I $∞-summand. In that case, up to isometry,M is a JW∗-triple with unique
decomposition,M =Wα ⊕ pV , whereW andV are continuous von Neumann
algebras,p is a projection inV and α is a central involution onW [17, 2.1
and 4.8]. It is implicit in [17] that every complete tripotent ofWα is a unitary
tripotent. An alternative proof of this fact is provided by Lemma 2.6. Thus, by
[17, 5.1–5.7], for every complete tripotentu in M, P2(u)(M) is isometric to
Wα ⊕pWp. We defineM to be of type II1, II∞ or III, respectively, if bothW and
pWp are of the corresponding type.M is said to besemifiniteif it has no type III
$∞-summand.

Lemma 3.1 below summarizes the above. The second statement is a conse-
quence of the fact that every tripotent in a JBW∗-triple M is a projection in
P2(u)(M) for some complete tripotentu [15, 3.12].

Lemma 3.1. A JBW∗-triple M is of type I, II1, II∞, III or is semifinite, respec-
tively, if and only ifP2(u)(M) is of the corresponding type for some, and hence
every, complete tripotentu ofM. If M is of type I, II1, III or is semifinite, respec-
tively, then so isP2(u)(M) for every tripotentu ofM.

We shall say that a JBW∗-triple has noinfinite spin part if it has no $∞-
summands of the formA⊗C, whereA is an Abelian von Neumann algebra and
C is an infinite-dimensional spin factor.

4. Contractive projections on JBW∗-triples

By [19] and [21] the image of a weak∗-continuous contractive projection,
P :M → M, on a JBW∗-triple M is again a JBW∗-triple with triple product
{x, y, z}P := P({x, y, z}) for x, y, z in P(M) and

P
{
P(x), y,P (z)

} = P{
P(x),P (y),P (z)

}

for all x, y, z inM. The image,P(M), need not be a JBW∗-subtriple ofM. How-
ever, as is made explicit in [6, Lemma 5.3] and its proof, we do have the following:

Lemma 4.1 [6, Lemma 5.3].If P :M →M is a weak∗-continuous contractive
projection on a JBW∗-tripleM, there exists a JBW∗-subtripleC ofM such thatC
is linearly isometric toP(M) and such thatC is the image of a weak∗-continuous
projection onM.

We are now in a position to prove our first main result. We freely use Lem-
ma 3.1 throughout.
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Theorem 4.2. LetP :M →M be a weak∗-continuous contractive projection on a
JBW∗-triple M. If M is of type I(respectively, semifinite) thenP(M) is of type I
(respectively, semifinite).

Proof. Let M be of type I (respectively, semifinite). By Lemma 4.1 we may
supposeP(M) to be a JBW∗-subtriple,N , of M. Let u be a complete tripotent
of N . By the above formula,P restricts to a unital projection fromP2(u)(M) to
P2(u)(N).

By this fact, together with Lemma 1.1, we may supposeP to be faithful,M to
be a JBW∗-algebra andN to be a JBW∗-subalgebra.

LetM ◦ z be the type I finite part ofM, wherez is a central projection ofM.
ThenN ◦ z is type I finite, being a subalgebra ofM ◦ z, and it remains only to
show thatN ◦ (1− z) is of type I (respectively, semifinite). Since, by Lemma 1.2,
N ◦ (1 − z) is the image of some faithful weak∗-continuous unital contractive
projection onM ◦ (1− z), it can be supposed thatz= 0. In that case, by [14, 7.2.7
and 7.3.3], we may suppose thatM = Wα , whereα is an involution on a von
Neumann algebraW . SinceWα generatesW [13, Theorem 2.8],W is of type I
(respectively, semifinite) by [14, 7.4.2] and [1, Theorem 8].

In order to obtain a contradiction, suppose now thatN has a non-zero con-
tinuous (respectively, type III) part,N ◦ e, wheree is a central projection ofN .
Now, α is an involution oneWe with (eWe)α = eMe. Applying Proposition 2.5
to P : eMe→ N ◦ e, which is surjective, we obtain a weak∗-continuous projec-
tion from the type I (respectively, semifinite) W∗-algebraeWe onto a continuous
(respectively, type III) W∗-subalgebra. This contradicts [27, Theorem 3 (respec-
tively, Theorem 4)] and so completes the proof.✷

In order to prove a refinement of part of Theorem 4.2, we first recall a Banach
space property introduced in [8].

Definition. A Banach spaceE is said to have the DP1 if whenever a sequence
xn → x weakly inE with ‖xn‖ = ‖x‖ = 1 for all n, and(ρn) is a weakly null
sequence inE∗, thenρn(xn)→ 0.

We writeM∗ for the predual of a JBW∗-tripleM and we note that ifP :M →
M is a weak∗-continuous contractive projection then the dual projection restricts
to a contractive projection onM∗ and thatP(M)∗ is linearly isometric toP ∗(M∗)
via τ �→ τ ◦ P . It follows that ifM∗ has the DP1 then so doesP(M)∗.

Recently, the authors characterised the von Neumann algebras whose predual
has the DP1.

Lemma 4.3 [3, Theorem 6].A von Neumann algebra is of type I if and only if its
predual has the DP1.
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For properties of (real) spin factors used in the next proof, see [14, Section 6].

Lemma 4.4. LetC be an infinite-dimensional spin factor. ThenC∗ does not have
the DP1.

Proof. The argument is similar to that in [3, Proposition 5]. Letτ denote the
tracial state ofC and letR be the real Banach space generated by the non-trivial
symmetries inC. ThenR is isometric to an infinite-dimensional real Hilbert space
andτ (R)= {0}. Let (sn) be an infinite orthogonal sequence in the Hilbert spaceR.
Then(sn)→ 0 weakly inR and hence inC. Moreover, eachsn is a non-trivial
symmetry. For eachn, let en denote the projection(1/2)(1+ sn) and letτn denote
the normal state 2τ (en · en). For all n, ensnen = en so thatτ (sn) = 1. However,
τn → τ weakly inC∗, sinceτn(x)= 2τn(en ◦ x), for all x andn. Therefore,C∗
does not have the DP1.✷

One immediate consequence of Lemma 4.4 is that ifA is an Abelian von
Neumann algebra andC is an infinite-dimensional spin factor then (in the notation
of Section 3)(A⊗C)∗ cannot have the DP1 because of the canonical (weak∗-
continuous) contractive projectionA⊗C→C.

Theorem 4.5. LetM be a JBW∗-triple. ThenM∗ has the DP1 if and only ifM is
of type I without infinite spin part.

Proof. SupposeM∗ has the DP1. Then the predual of every$∞-summand ofM
has the DP1. Thus by Proposition 2.4 and Lemma 4.3,M cannot have a non-
zero$∞-summand of the formWα whereα is an involution on a continuous von
Neumann algebraW , nor of the formpV wherep is a non-zero projection in
a continuous von Neumann algebraV . (In the latter case because of the natural
projectionpV → pVp.) Therefore,M is of type I and, by the remark prior to the
statement of the theorem, has no infinite spin part.

On the other hand, consider an Abelian von Neumann algebraA and a Cartan
factorC. If C is finite-dimensional thenA⊗ C has the Dunford–Pettis property
becauseA does, and so(A⊗C)∗ has the Dunford–Pettis property and therefore it
has the DP1. SupposeC is infinite-dimensional. IfC is (rectangular) of the form
pB(H) for a projectionp ∈B(H), thenA⊗C = (1⊗p)A⊗C and is clearly the
image of a weak∗-continuous projection onA⊗B(H), implying that(A⊗C)∗
has the DP1, by Lemma 4.3. IfC is Hermitian or symplectic thenA⊗C can be
realised asWα whereα is an involution on a type I von Neumann algebraW , by
[14, 7.3.3]. SinceWα is the image of the weak∗-continuous contractive projection
(1/2)(i + α) onW , Lemma 4.3 again gives that(A⊗C)∗ has the DP1. Thus, if
M is of type I with no infinite spin part,M∗ has the DP1 by [8, 1.10] together
with [16, 1.7]. ✷
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This leads to the following refinement of Theorem 4.2. the proof is immediate
from Theorem 4.5.

Theorem 4.6. LetP :M →M be a weak∗-continuous contractive projection on
a JBW∗-tripleM whereM is of type I with no infinite spin part. ThenP(M) is of
type I with no infinite spin part.

For every spin factorC acting on a complex Hilbert spaceH there is a positive
unital projection fromB(H) onto C [7, Lemma 2.3]. Since a von Neumann
algebra never has infinite spin part, Theorem 4.6 gives:

Corollary 4.7. There is no weak∗-continuous contractive projection from a type I
von Neumann algebra onto an infinite-dimensional spin factor.
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