Images of contractive projections on operator algebras

Leslie J. Bunce ${ }^{\mathrm{a}, *}$ and Antonio M. Peralta ${ }^{\text {b, }}$
${ }^{\text {a }}$ University of Reading, Reading RG6 2AX, UK
${ }^{\text {b }}$ Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

Received 2 October 2001
Submitted by J.D.M. Wright

Abstract

It is shown that if P is a weak*-continuous contractive projection on a JBW*-triple M, then $P(M)$ is of type I or semifinite, respectively, if M is of the corresponding type. We also show that $P(M)$ has no infinite spin part if M is a type I von Neumann algebra. © 2002 Elsevier Science (USA). All rights reserved.

0. Introduction

JW*-triples, that is, weak*-closed subspaces of $B(H)$ that are also closed under $x \mapsto x x^{*} x$, arise as images of contractive (i.e., norm one) projections on von Neumann algebras. Their generalisations, JBW*-triples, are those complex Banach dual spaces whose open unit ball is a bounded symmetric domain. The holomorphy of such spaces induces a ternary Jordan algebraic structure determined by a certain "triple product" $\{a, b, c\}$ [18]. If $P: M \rightarrow M$ is a weak*continuous contractive projection on a JBW*-triple M, then $P(M)$ is a JBW*-

[^0]triple with a triple product given by $\{a, b, c\}_{P}:=P\{a, b, c\}$ by [19,21], and by $[9,11]$ if M is a JW^{*}-triple. The interesting special cases that occur when P is positive unital acting on von Neumann algebra or a JBW*-algebra were studied earlier in $[4,7,20]$.

Suppose $P: M \rightarrow M$ is a weak*-continuous contractive projection on a JBW*triple M. In this paper we study the stability of $P(M)$ with respect to the type theory of [15-17]. We show that if M is of type I or semifinite, respectively, then $P(M)$ is of the corresponding type. This extends the classical results of [27] when M is a von Neumann algebra and $P(M)$ is a subalgebra. We remark that in general $P(M)$ is not a subtriple of M. Using recent results on properties of the predual of a type I von Neumann algebra we deduce that $P(M)$ cannot be isometric to an infinite-dimensional spin factor whenever M is a type I von Neumann algebra.

Section 1 of this paper contains preliminary results on JBW*-algebras. This is continued in Section 2 where we study the fixed point JW*-algebra, W^{α}, of an involution α on a von Neumann algebra W. A principal aim here is to show that a faithful weak*-continuous contractive projection from W^{α} onto a continuous JW*-subalgebra induces a weak*-continuous contractive projection from W onto a continuous von Neumann subalgebra. This allows us to apply [27] to obtain our main results in Section 4. The formulation of type theory of JBW*-triples contained in Section 3 is extracted from [15-17] and is included for completeness.

For later reference we shall recall some of the fundamentals of JBW*-triples used in this paper. A JBW*-triple can be realised [18] as a complex Banach space M with predual M_{*} and continuous ternary triple product $(a, b, c) \mapsto\{a, b, c\}$ that is conjugate linear in b and symmetric bilinear in a, c such that $\|\{a, a, a\}\|=\|a\|^{3}$ and such that the operator $x \mapsto\{a, a, x\}$, denoted by $D(a, a)$, is Hermitian with non-negative spectrum and satisfies

$$
\begin{aligned}
D(a, a)(\{x, y, z\})= & \{D(a, a) x, y, z\}-\{x, D(a, a) y, z\} \\
& +\{x, y, D(a, a) z\} .
\end{aligned}
$$

The predual is unique and the triple product is separately weak*-continuous [2, 15]. The surjective linear isometries between JBW^{*}-triples are the triple product preserving bijections (triple isomorphisms) [18]. A von Neumann algebra is a JBW*-triple with triple product $\{a, b, c\}=(1 / 2)\left(a b^{*} c+c b^{*} a\right)$. The weak*closed subtriples of von Neumann algebras are the JW*-triples. By $[16,17]$ most JBW*-triples are of this form. See Section 3 for further details.

An element u in a JBW*-triple M satisfying $\{u, u, u\}=u$ is called a tripotent, when M is a JW^{*}-triple these are precisely the partial isometries of M. Associated with a tripotent u are the mutually orthogonal Peirce projections $P_{2}(u), P_{1}(u)$, and $P_{0}(u)$. We have

$$
\begin{aligned}
& P_{2}(u)(x)=\{u,\{u, x, u\}, u\} \quad \text { for all } x, \\
& P_{1}(u)=2\left(D(u, u)-P_{2}(u)\right) \quad \text { and } \quad P_{2}(u)+P_{1}(u)+P_{0}(u)=i
\end{aligned}
$$

(where i is the identity map). A tripotent u of M is said to be complete (or maximal) if $P_{0}(u)=0$, to be unitary if $P_{2}(u)=i$ and to be minimal if $P_{2}(u)(M)=\mathbb{C} u$. We recall (see [5, Corollary 4.8], for example) that the complete tripotents of M are the extreme points of the closed unit ball of M. A crucial simplifying property of JBW*-triples is that for a tripotent u of M the Peirce-2 subspace $P_{2}(u)(M)$ is a JBW*-algebra with product $a \circ b=\{a, u, b\}$ and involution $a^{*}=\{u, a, u\}$. For further properties of JBW^{*}-triples we refer to the papers [5,6,9,15-18] and the book [29]. Since JBW*-algebras are just the complexifications of JW-algebras we refer to [14] for their theory.

1. Positive unital projections on JBW^{*}-algebras

Let M be a JBW* ${ }^{*}$-algebra. Writing

$$
[a, b, c]:=(a \circ b) \circ c+(c \circ b) \circ a-(a \circ c) \circ b
$$

M is a JBW^{*}-triple with triple product given by $\{a, b, c\}:=\left[a, b^{*}, c\right]$. The Peirce-2 projection, $P_{2}(e)$, associated with a projection e of M satisfies $P_{2}(e)(x)$ $=[e, x, e]$ for all x in M.

Elements a and b of M are said to operator commute in M if $(a \circ x) \circ b=$ $a \circ(x \circ b)$ for all x in M. Self-adjoint elements a and b in M generate a JBW*subalgebra that can be realised as a JW^{*}-subalgebra of some $B(H)$ [30] and, in this realisation, a and b commute in the usual sense if they operator commute in M [28, Proposition 1]. By the same references, self-adjoint elements a and b of M operator commute if and only if $a^{2} \circ b=[a, b, a](=\{a, b, a\})$. If N is a JBW*subalgebra of M we use $M \cap N^{\prime}$ to denote the set of elements in M that operator commute with every element of N. (This corresponds to the usual notation when M is a von Neumann algebra.) The centre of M is $M \cap M^{\prime}$ which we also denote by $Z(M)$.

Let P be a unital (i.e., $P(1)=1$) weak*-continuous contractive projection on a JBW* ${ }^{*}$-algebra M. Then P is positive and therefore is invariant on the selfadjoint part. Such projections were studied in [7,20]. Suppose now that $P(M)$ is a JBW*-subalgebra N of M. Then, by [7, Lemma 1.5] or [20, Lemma 1.5] we have $P(a \circ x)=a \circ P(x)$ for all $a \in N$ and $x \in M$. Further, if e denotes the support projection of P in M (i.e., the least projection in M sent to 1 by P) then $P=P P_{2}(e)$ and, by a slight extension of [7, Lemma 1.2(2)], $e \in M \cap N^{\prime}$. Moreover, if $x \geqslant 0$ and $P(x)=0$ then $P_{2}(e)(x)=0$. If $e=1, P$ is said to be faithful.

Lemma 1.1. Let $P: M \rightarrow M$ be a weak*-continuous unital contractive projection from a $J B W^{*}$-algebra M onto a $J B W^{*}$-subalgebra N. Let e be the support projection of P. Then $P_{2}(e) P$ is a faithful weak*-continuous unital projection from $P_{2}(e)(M)$ onto $N \circ e$. Moreover, N is isomorphic to $N \circ e$.

Proof. Suppose $x \in P_{2}(e)(M)$ such that $x \geqslant 0$ and $P_{2}(e) P(x)=0$. Then $P(x)=$ $P P_{2}(e) P(x)=0$ so that $x=P_{2}(e)(x)=0$. Together with the above remarks this proves the first statement.

Since $e \in M \cap N^{\prime}$ multiplication by e induces a (Jordan) homomorphism, π, from N onto $N \circ e$. Let a in N such that $a \geqslant 0$ and $a \circ e=0$; then $a=P(a \circ e)=0$. It follows that π is injective.

Lemma 1.2. Let $P: M \rightarrow M$ be a weak*-continuous unital contractive projection from a $J B W^{*}$-algebra onto a $J B W^{*}$-subalgebra N. Let e be any non-zero projection in $M \cap N^{\prime}$. Suppose that P is faithful. Then there exists a faithful weak*continuous unital contractive projection from $P_{2}(e)(M)$ onto $N \circ e$.

Proof. For each self-adjoint $a \in N$ we have

$$
a^{2} \circ P(e)=P\left(a^{2} \circ e\right)=P(\{a, e, a\})=\{a, P(e), a\}
$$

and so, by the previous remark, $P(e) \in Z(N)$. Therefore the range projection $r(P(e)) \in Z(N)$. Denote $r(P(e))$ by h. The ideal of $N, N \circ P(e)=P(N \circ e)$, is weak*-closed and so equals $N \circ h$. It follows that $P(e)$ is invertible in $N \circ h$ with inverse b, say, in $Z(N) \circ h$. Define $Q: P_{2}(e)(M) \rightarrow P_{2}(e)(M)$ by $Q(x)=(P(x) \circ b) \circ e$. Let $a \in N$ where $a \geqslant 0$. By operator commutivity we have $(a \circ(1-h)) \circ e \geqslant 0$ and

$$
P((a \circ(1-h)) \circ e)=(a \circ(1-h)) \circ P(e)=a \circ((1-h) \circ P(e))=0
$$

Since P is faithful, $a \circ e=(a \circ h) \circ e$, and so

$$
Q(a \circ e)=(P(a \circ e) \circ b) \circ e=((a \circ P(e)) \circ b) \circ e=(a \circ h) \circ e=a \circ e
$$

implying that Q is a unital projection onto $N \circ e$. To see that Q is faithful let $x \in P_{2}(e)(M)$ such that $x \geqslant 0$ and $(P(x) \circ b) \circ e=0$. By the above,

$$
P(x) \circ e=(P(x) \circ h) \circ e=((P(x) \circ b) \circ e) \circ P(e)=0 .
$$

Therefore, $P(x) \circ P(e)=P(P(x) \circ e)=0$. But $P(x) \leqslant\|x\| P(e)$. Hence, $P(x)=0$ and so $x=0$ because P is faithful.

2. Involutory * antiautomorphisms

Following [24] by an involution α on a von Neumann algebra we shall mean an involutory * antiautomorphism on the algebra. Let α be an involution on a von Neumann algebra W. We shall write $R(W):=\left\{x \in W: \alpha(x)=x^{*}\right\}$ and $W^{\alpha}:=\{x \in W: \alpha(x)=x\}$. (The latter notation is different from that used in [24], where it stands for the Hermitian part.) Then $R(W)$ is a weak*-closed real *-subalgebra of W with $R(W) \cap i R(W)=\{0\}$ and $W=R(W)+i R(W)$. We have $W^{\alpha}=R(W)_{s a}+i R(W)_{s a}$ and, for $a, b \in R(W)$, we have $\alpha(a+i b)=a^{*}+i b^{*}$.

Lemma 2.1. Let α be an involution on a von Neumann algebra W and suppose e is a central projection in W such that $e+\alpha(e)=1$. Then $e W^{\alpha}=e W$ and W^{α} is (Jordan) isomorphic to $e W$ via $x \mapsto e x$.

Proof. For each x in $W, e x+(1-e) \alpha(x) \in W^{\alpha}$ and every element of W^{α} is of this form. Thus $e W^{\alpha}=e W$ and W^{α} is isomorphic to $e W$ in the way stated.

Lemma 2.2. Let α be an involution on a von Neumann algebra W and suppose that e is a projection in W with $e+\alpha(e)=1$. Then we have the following:
(i) There is a faithful weak*-continuous unital contractive projection, $P: W^{\alpha} \rightarrow$ W^{α}, such that $P\left(W^{\alpha}\right)$ is a $J W^{*}$-subalgebra isomorphic to $e W e$ (and to $(1-e) W(1-e))$.
(ii) If W^{α} generates W as a von Neumann algebra and $e W^{\alpha} \alpha(e)=0$, then $e \in Z(W)$.

Proof. (i) Let V denote the von Neumann algebra $e W e+(1-e) W(1-e)$. Define $P: W \rightarrow W$ by $P(x):=e x e+(1-e) x(1-e)$. Then $P(W)=V=\alpha(V)$. If s denotes the symmetry $2 e-1$ we see that $P(x)=(1 / 2)(x+s x s)$. Since $\alpha(s)=-s$, we have $\alpha P=P \alpha$ from which we deduce that $P\left(W^{\alpha}\right)=V^{\alpha}$. Since e lies in the centre of V, Lemma 2.1 implies that V^{α} is isomorphic to $e V=e W e$. It is clear that P satisfies (i).
(ii) Suppose $e W^{\alpha} \alpha(e)=0$. Then for $x \in W^{\alpha}$ we have

$$
x=e x e+(1-e) x(1-e)
$$

so that $e x=e x e$. Passing to the self-adjoint part we see that e commutes with all elements of W^{α} and so lies in the centre of W if W is the von Neumann algebra generated by W^{α}.

Lemma 2.3. Let α be an involution in a non-Abelian von Neumann algebra W. Then there is a non-zero projection e in W with e $\alpha(e)=0$.

Proof. We have $R(W)_{s a} \neq R(W)$; otherwise α is the identity map on W and therefore W is Abelian. Choose a in $R(W)$ such that $a \neq a^{*}$ and let $a-a^{*}=b$. Let V denote the von Neumann subalgebra of W generated by b. We have that V is Abelian, that $\alpha(b)=-b$ and $\alpha(V)=V$. Since α is not the identity map on V, by $[14,7.3 .4]$ there is a non-zero projection $e \in V$ such that $e \alpha(e)=0$.

Proposition 2.4. Let α be an involution on a von Neumann algebra W and suppose that W^{α} has no type I part. Then there is a projection e in W and a faithful weak*-continuous unital contractive projection from W^{α} onto a JW^{*}-subalgebra M such that $e \in W \cap M^{\prime}$ and Me is a W^{*}-algebra isomorphic to M.

Moreover, if W^{α} is of type $I_{1}, I I_{\infty}$ or III, respectively, then M is of the corresponding type.

Proof. Let $\left(e_{i}\right)$ be a family of projections in W maximal subject to the condition that $\left(e_{i}+\alpha\left(e_{i}\right)\right)$ is a mutually orthogonal family of projections. Put $e=\sum_{i} e_{i}$. Then $e \alpha(e)=0$. Let $f=1-e-\alpha(e)$. Then $\alpha(f W f)=f W f$ and it follows from Lemma 2.3, and maximality, that $f W f$ is Abelian and hence that $f W^{\alpha} f$ is Abelian. By assumption, we must have $f=0$. Lemma 2.2(i) now gives the first statement. Since W^{α} generates W, by [13, Theorem 2.8], the second statement follows from [1, Theorem 8] together with Lemma 2.2(i).

Proposition 2.5. Let α be an involution on a von Neumann algebra W, and let M denote W^{α}. Suppose there is a faithful weak*-continuous unital contractive projection, P, from M onto a $J W^{*}$-subalgebra N. If N is continuous (respectively, of type III) then there is a weak*-continuous contractive projection from W onto a continuous (respectively, type III) W^{*}-subalgebra.

Proof. Let V be the von Neumann subalgebra of W generated by N and let R be the weak*-closed real *-subalgebra of W generated by $V_{s a}$. We have $\alpha(V)=V$ since α fixes each element of N, and $R \cap i R=\{0\}$ since $R \subset R(W)$. Suppose N is continuous (respectively, of type III). Then $N_{s a}=R_{s a}$, using [14, 7.3.3], so that $V=R+i R$, by [22, Theorem 2.4]. Hence, $V^{\alpha}=R_{s a}+i R_{s a}=N$. By Proposition 2.4 there exists a faithful weak*-continuous unital contractive projection, $Q: N \rightarrow N$, onto a continuous (respectively, type III) JW^{*}-subalgebra K together with a projection $e \in W \cap K^{\prime}$ such that $K e$ is a W^{*}-algebra isomorphic to K. If E denotes the (faithful) canonical projection $(1 / 2)(i+\alpha): W \rightarrow M$, then the proof is completed by application of Lemma 1.2 to the projection $Q P E: W \rightarrow K$.

We recall [24] that an involution α is said to be a central involution if it fixes every element in $Z(W)$.

Lemma 2.6. Let α be a central involution on a continuous von Neumann algebra W. Let u be a partial isometry of W^{α} such that $\left(1-u u^{*}\right) W^{\alpha}\left(1-u^{*} u\right)=0$. Then $u^{*} u=u u^{*}=1$.

Proof. Let e denote $1-u u^{*}$. Then $\alpha(e)=1-u^{*} u$. Put $p=e+\alpha(e)$. Then α is a central involution on $p W p$. By [13, Theorem 2.8] or [24, Proposition 3.2] $(p W p)^{\alpha}\left(=p W^{\alpha} p\right)$ generates $p W p$. Hence by Lemma 2.2(ii), $e \in Z(p W p)=$ $Z(W) p$ so that $\alpha(e)=e$, whence the result.

3. Types of JBW**triples

The aim of this short section, which contains no new results, is to collate existing theory into a form easy to use subsequently.

Cartan factors. Of the six kinds of Cartan factors (up to linear isometry), three are of the form $p B(H),\left\{x \in B(H): x=j x^{*} j\right\}$ and $\left\{x \in B(H): x=-j x^{*} j\right\}$, where H is a complex Hilbert space, p is a projection in $B(H)$ and $j: H \rightarrow H$ is a conjugation. These are referred to as rectangular, Hermitian and symplectic Cartan factors, respectively. Hermitian factors are type I JW*-algebra factors and, if H is even or infinite-dimensional, symplectic factors are linearly isometric to type I JW*-algebra factors. Spin factors (complexifications of real spin factors) comprise a fourth kind. The remaining two exceptional Cartan factors can be realised as the 3×3 Hermitian matrices and the 1×2 matrices, respectively, over the complex Cayley numbers.

Type I JBW ${ }^{*}$-triples. In view of $[15,4.14]$ a JBW*-triple M is said to be of type I if there is a complete tripotent u of M such that $P_{2}(u)(M)$ is a type I JBW*algebra. By the type I classification theorem [16, 1.7] the type I JBW*-triples are precisely the ℓ_{∞}-sums of JBW*-triples of the form:
(i) $A \bar{\otimes} C$, where A is an Abelian von Neumann algebra and C is a Cartan factor realised as a JW^{*}-subtriple of some $B(H)$, the bar denoting the weak*-closure in the usual von Neumann tensor product $A \bar{\otimes} B(H)$, and
(ii) $A \otimes C$ (algebraic tensor product), where A is as before and C is an exceptional Cartan factor.
(Of course, $A \bar{\otimes} C=A \otimes C$ whenever C is a finite-dimensional non-exceptional Cartan factor.)

Let e be a tripotent in a type I JBW*-triple M. A known consequence of the type I classification theorem is that $P_{2}(e)(M)$ is of type I. We include an argument for completeness and want of a precise reference.

We may suppose that M is of the form (i) or (ii) above. In the latter case it is clear that $P_{2}(e)(M)$ is of type I since every subfactor of it must have rank less than 4 . Thus we may assume that we are in the case (i) and, consequently, that we are working in $A \bar{\otimes} B(H)$.

Let u be a non-zero (we assume $e \neq 0$) in a weak*-closed ideal J of $P_{2}(e)(M)$.
Since $\{u,(A \otimes B(H)), u\}=(A \otimes 1)\{u,(1 \otimes B(H)), u\}$ and $B(H)$ is the weak*closed linear span of its minimal tripotents, $\{u,(1 \otimes v), u\} \neq 0$ for some minimal tripotent v. We have $\{(1 \otimes v), M,(1 \otimes v)\}=A \otimes v$ so that with $x=\{u,(1 \otimes v), u\}$ $\left(\in P_{2}(u)(M)\right)$ we have $\{x, M, x\} \subset(A \otimes 1) x$. Since $A \otimes 1$ commutes elementwise with $x,(A \otimes 1) x$ generates an Abelian subtriple in the sense of $[15,1.4]$. But, as follows from [5, Lemma 3.1], the weak*-closure of $\{x, M, x\}$ equals $P_{2}(w)(M)$,
for some tripotent w, and so is Abelian. Since $w \in J, P_{2}(e)(M)$ is of type I, by $[15,4.14(2) \Rightarrow(1)]$.

Continuous JBW^{*}-triples. A JBW*-triple M is said to be continuous if it has no type $\mathrm{I} \ell_{\infty}$-summand. In that case, up to isometry, M is a JW^{*}-triple with unique decomposition, $M=W^{\alpha} \oplus p V$, where W and V are continuous von Neumann algebras, p is a projection in V and α is a central involution on W [17, 2.1 and 4.8]. It is implicit in [17] that every complete tripotent of W^{α} is a unitary tripotent. An alternative proof of this fact is provided by Lemma 2.6. Thus, by [17, 5.1-5.7], for every complete tripotent u in $M, P_{2}(u)(M)$ is isometric to $W^{\alpha} \oplus p W p$. We define M to be of type $\mathrm{II}_{1}, \mathrm{II}_{\infty}$ or III, respectively, if both W and $p W p$ are of the corresponding type. M is said to be semifinite if it has no type III ℓ_{∞}-summand.

Lemma 3.1 below summarizes the above. The second statement is a consequence of the fact that every tripotent in a JBW^{*}-triple M is a projection in $P_{2}(u)(M)$ for some complete tripotent $u[15,3.12]$.

Lemma 3.1. A $J B W^{*}$-triple M is of type $I, I I_{1}, I I_{\infty}, I I I$ or is semifinite, respectively, if and only if $P_{2}(u)(M)$ is of the corresponding type for some, and hence every, complete tripotent u of M. If M is of type $I, I I_{1}$, III or is semifinite, respectively, then so is $P_{2}(u)(M)$ for every tripotent u of M.

We shall say that a JBW*-triple has no infinite spin part if it has no $\ell_{\infty^{-}}$summands of the form $A \bar{\otimes} C$, where A is an Abelian von Neumann algebra and C is an infinite-dimensional spin factor.

4. Contractive projections on JBW*-triples

By [19] and [21] the image of a weak*-continuous contractive projection, $P: M \rightarrow M$, on a JBW*-triple M is again a JBW*-triple with triple product $\{x, y, z\}_{P}:=P(\{x, y, z\})$ for x, y, z in $P(M)$ and

$$
P\{P(x), y, P(z)\}=P\{P(x), P(y), P(z)\}
$$

for all x, y, z in M. The image, $P(M)$, need not be a JBW* ${ }^{*}$-subtriple of M. However, as is made explicit in [6, Lemma 5.3] and its proof, we do have the following:

Lemma 4.1 [6, Lemma 5.3]. If $P: M \rightarrow M$ is a weak*-continuous contractive projection on a JBW*-triple M, there exists a JBW**-subtriple C of M such that C is linearly isometric to $P(M)$ and such that C is the image of a weak*-continuous projection on M.

We are now in a position to prove our first main result. We freely use Lemma 3.1 throughout.

Theorem 4.2. Let $P: M \rightarrow M$ be a weak*-continuous contractive projection on a $J B W^{*}$-triple M. If M is of type I (respectively, semifinite) then $P(M)$ is of type I (respectively, semifinite).

Proof. Let M be of type I (respectively, semifinite). By Lemma 4.1 we may suppose $P(M)$ to be a JBW*-subtriple, N, of M. Let u be a complete tripotent of N. By the above formula, P restricts to a unital projection from $P_{2}(u)(M)$ to $P_{2}(u)(N)$.

By this fact, together with Lemma 1.1, we may suppose P to be faithful, M to be a JBW*-algebra and N to be a JBW*-subalgebra.

Let $M \circ z$ be the type I finite part of M, where z is a central projection of M. Then $N \circ z$ is type I finite, being a subalgebra of $M \circ z$, and it remains only to show that $N \circ(1-z)$ is of type I (respectively, semifinite). Since, by Lemma 1.2, $N \circ(1-z)$ is the image of some faithful weak*-continuous unital contractive projection on $M \circ(1-z)$, it can be supposed that $z=0$. In that case, by [14, 7.2.7 and 7.3.3], we may suppose that $M=W^{\alpha}$, where α is an involution on a von Neumann algebra W. Since W^{α} generates W [13, Theorem 2.8], W is of type I (respectively, semifinite) by [14, 7.4.2] and [1, Theorem 8].

In order to obtain a contradiction, suppose now that N has a non-zero continuous (respectively, type III) part, $N \circ e$, where e is a central projection of N. Now, α is an involution on $e W e$ with $(e W e)^{\alpha}=e M e$. Applying Proposition 2.5 to $P: e M e \rightarrow N \circ e$, which is surjective, we obtain a weak*-continuous projection from the type I (respectively, semifinite) W^{*}-algebra $e W e$ onto a continuous (respectively, type III) W^{*}-subalgebra. This contradicts [27, Theorem 3 (respectively, Theorem 4)] and so completes the proof.

In order to prove a refinement of part of Theorem 4.2, we first recall a Banach space property introduced in [8].

Definition. A Banach space E is said to have the DP1 if whenever a sequence $x_{n} \rightarrow x$ weakly in E with $\left\|x_{n}\right\|=\|x\|=1$ for all n, and $\left(\rho_{n}\right)$ is a weakly null sequence in E^{*}, then $\rho_{n}\left(x_{n}\right) \rightarrow 0$.

We write M_{*} for the predual of a JBW* - triple M and we note that if $P: M \rightarrow$ M is a weak*-continuous contractive projection then the dual projection restricts to a contractive projection on M_{*} and that $P(M)_{*}$ is linearly isometric to $P^{*}\left(M_{*}\right)$ via $\tau \mapsto \tau \circ P$. It follows that if M_{*} has the DP1 then so does $P(M)_{*}$.

Recently, the authors characterised the von Neumann algebras whose predual has the DP1.

Lemma 4.3 [3, Theorem 6]. A von Neumann algebra is of type I if and only if its predual has the DP1.

For properties of (real) spin factors used in the next proof, see [14, Section 6].

Lemma 4.4. Let C be an infinite-dimensional spin factor. Then C_{*} does not have the DP1.

Proof. The argument is similar to that in [3, Proposition 5]. Let τ denote the tracial state of C and let R be the real Banach space generated by the non-trivial symmetries in C. Then R is isometric to an infinite-dimensional real Hilbert space and $\tau(R)=\{0\}$. Let $\left(s_{n}\right)$ be an infinite orthogonal sequence in the Hilbert space R. Then $\left(s_{n}\right) \rightarrow 0$ weakly in R and hence in C. Moreover, each s_{n} is a non-trivial symmetry. For each n, let e_{n} denote the projection $(1 / 2)\left(1+s_{n}\right)$ and let τ_{n} denote the normal state $2 \tau\left(e_{n} \cdot e_{n}\right)$. For all $n, e_{n} s_{n} e_{n}=e_{n}$ so that $\tau\left(s_{n}\right)=1$. However, $\tau_{n} \rightarrow \tau$ weakly in C_{*}, since $\tau_{n}(x)=2 \tau_{n}\left(e_{n} \circ x\right)$, for all x and n. Therefore, C_{*} does not have the DP1.

One immediate consequence of Lemma 4.4 is that if A is an Abelian von Neumann algebra and C is an infinite-dimensional spin factor then (in the notation of Section 3) $(A \bar{\otimes} C)_{*}$ cannot have the DP1 because of the canonical (weak*continuous) contractive projection $A \bar{\otimes} C \rightarrow C$.

Theorem 4.5. Let M be a $J B W^{*}$-triple. Then M_{*} has the DP1 if and only if M is of type I without infinite spin part.

Proof. Suppose M_{*} has the DP1. Then the predual of every ℓ_{∞}-summand of M has the DP1. Thus by Proposition 2.4 and Lemma 4.3, M cannot have a nonzero ℓ_{∞}-summand of the form W^{α} where α is an involution on a continuous von Neumann algebra W, nor of the form $p V$ where p is a non-zero projection in a continuous von Neumann algebra V. (In the latter case because of the natural projection $p V \rightarrow p V p$.) Therefore, M is of type I and, by the remark prior to the statement of the theorem, has no infinite spin part.

On the other hand, consider an Abelian von Neumann algebra A and a Cartan factor C. If C is finite-dimensional then $A \otimes C$ has the Dunford-Pettis property because A does, and so $(A \otimes C)_{*}$ has the Dunford-Pettis property and therefore it has the DP1. Suppose C is infinite-dimensional. If C is (rectangular) of the form $p B(H)$ for a projection $p \in B(H)$, then $A \bar{\otimes} C=(1 \otimes p) A \bar{\otimes} C$ and is clearly the image of a weak*-continuous projection on $A \bar{\otimes} B(H)$, implying that $(A \bar{\otimes} C)_{*}$ has the DP1, by Lemma 4.3. If C is Hermitian or symplectic then $A \bar{\otimes} C$ can be realised as W^{α} where α is an involution on a type I von Neumann algebra W, by [14, 7.3.3]. Since W^{α} is the image of the weak*-continuous contractive projection $(1 / 2)(i+\alpha)$ on W, Lemma 4.3 again gives that $(A \bar{\otimes} C)_{*}$ has the DP1. Thus, if M is of type I with no infinite spin part, M_{*} has the DP1 by [8, 1.10] together with [16, 1.7].

This leads to the following refinement of Theorem 4.2. the proof is immediate from Theorem 4.5.

Theorem 4.6. Let $P: M \rightarrow M$ be a weak*-continuous contractive projection on a JBW*-triple M where M is of type I with no infinite spin part. Then $P(M)$ is of type I with no infinite spin part.

For every spin factor C acting on a complex Hilbert space H there is a positive unital projection from $B(H)$ onto C [7, Lemma 2.3]. Since a von Neumann algebra never has infinite spin part, Theorem 4.6 gives:

Corollary 4.7. There is no weak*-continuous contractive projection from a type I von Neumann algebra onto an infinite-dimensional spin factor.

References

[1] L. Ajupov, Extensions of traces and type criterions for Jordan algebras of self adjoint operators, Math. Z. 181 (1982) 253-268.
[2] J.T. Barton, R. Timoney, Weak* continuity of Jordan triple product and its applications, Math. Scand. 59 (1986) 177-191.
[3] L.J. Bunce, A.M. Peralta, The alternative Dunford-Pettis property in C^{*}-algebras and von Neumann preduals, preprint (2001).
[4] M. Choi, E. Effros, Injectivity in operator spaces, J. Funct. Anal. 24 (1977) 156-209.
[5] C.M. Edwards, G.T. Rüttimann, On the facial structure of the unit balls in a JBW*-triple and its predual, J. London Math. Soc. 38 (1988) 317-332.
[6] C.M. Edwards, G.T. Rüttimann, Structural projections on JBW*-triples, J. London Math. Soc. 53 (1996) 354-368.
[7] E. Effros, E. Størmer, Positive projections and Jordan structure in operator algebras, Math. Scand. (1983) 279-311.
[8] W. Freedman, An alternative Dunford-Pettis property, Studia Math. 125 (1997) 143-159.
[9] Y. Friedman, B. Russo, Conditional expectations without order, Pacific J. Math. 115 (1984) 351360.
[10] Y. Friedman, B. Russo, Structure of the predual of a JBW*-triple, J. Reine Angew. Math. 356 (1985) 67-89.
[11] Y. Friedman, B. Russo, Solution of the contractive projection problem, J. Funct. Anal. 60 (1986) 56-79.
[12] Y. Friedman, B. Russo, Conditional expectations and bicontractive projections on Jordan C*algebras and their generalizations, Math. Z. 194 (1987) 227-236.
[13] J. Gasemyr, Involutory * antiautomorphisms of von Neumann algebras and C*-algebras, Math. Scand. 67 (1990) 87-96.
[14] H. Hanche-Olsen, E. Størmer, Jordan Operator Algebras, Pitman, London, 1984.
[15] G. Horn, Characterization of the predual and ideal structure of a JBW*-triple, Math. Scand. 61 (1987) 117-133.
[16] G. Horn, Classification of JBW*-triples of type I, Math. Z. 196 (1987) 271-291.
[17] G. Horn, E. Neher, Classification of continuous JBW*-triples, Trans. Amer. Math. Soc. 306 (1988) 553-578.
[18] W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183 (1983) 503-529.
[19] W. Kaup, Contractive projections on Jordan C*-algebras and generalizations, Math. Scand. 54 (1984) 95-100.
[20] A.G. Robertson, M.A. Youngson, Positive projections with contractive complements on Jordan algebras, J. London Math. Soc. 26 (1982) 132-142.
[21] L.L. Stacho, A projection principle concerning biholomorphic automorphisms, Acta Sci. Math. 44 (1982) 99-124.
[22] E. Størmer, Irreducible Jordan algebras of self-adjoint operators, Trans. Amer. Math. Soc. 130 (1966) 153-166.
[23] E. Størmer, Decomposition of positive projections on C*-algebras, Math. Ann. 247 (1980) 2141.
[24] E. Størmer, Conjugacy of involutive antiautomorphisms of von Neumann algebras, J. Funct. Anal. 66 (1986) 54-66.
[25] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, New York, 1979.
[26] J. Tomiyama, On the projection of norm one in W^{*}-algebras, Proc. Japan Acad. 33 (1957) 608612.
[27] J. Tomiyama, On the projection of norm one in W^{*}-algebras III, Tohoku Math. J. 11 (1959) 125-129.
[28] D. Topping, Jordan algebras of self-adjoint operators, Mem. Amer. Math. Soc. 53 (1965).
[29] H. Upmeier, Symmetric Banach Manifolds and Jordan C*-Algebras, Math. Studies, Vol. 104, North-Holland, 1985.
[30] J.D.M. Wright, Jordan C*-algebras, Michigan Math. J. 24 (1977) 291-302.

[^0]: * Corresponding author.

 E-mail addresses: 1.j.bunce@reading.ac.uk (L.J. Bunce), aperalta@ goliat.ugr.es (A.M. Peralta).
 ${ }^{1}$ Partially supported by DGICYT project No. PB 98-1371 and Junta de Andalucía grant FQM 0199.

