
Math. Z. 234, 191–208 (2000)

c© Springer-Verlag 2000

Classification of sequentially weakly continuous
JB∗-triples

L.J. Bunce1, C.-H. Chu2, B. Zalar3

1 The University of Reading, Department of Mathematics, Whiteknights,
Reading RG6 6AX, UK (e-mail: l.j.bunce@reading.ac.uk)

2 University of London, Goldsmiths College, New Cross, London SE14 6NW, UK
(e-mail: maa01chc@gold.ac.uk)

3 University of Maribor, Faculty of Civil Engineering, Department of Basic Sciences,
Smetanova 17, 62000 Maribor, Slovenija
(e-mail: Borut.Zalar@uni-mb.si or borut.zalar@uni-lj.si)

Received August 27, 1998; in final form February 10, 1999

Abstract. Let D be the open unit ball of aJB∗-triple A and letAut(D)
be the group of all biholomorphic automorphisms ofD. It is shown that
every element ofAut(D) is sequentially weakly continuous if and only if
every primitive ideal of A is a maximal closed ideal andA∗∗ is a type I
JBW ∗-triple without infinite-spin part. Implications for general structure
theory are explored. In particular, it is deduced that everyJB∗-triple A
contains a smallest idealJ for which the sequentially weakly continuous
biholomorphic automorphisms of the open unit ball ofA/J are all linear.
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1 Introduction

Kaup and Upmeier [31] (see also [39]) analysed complete holomorphic
vector fields on the open unit ballD of a complex Banach spaceA to uncover
a closed subspace V ofA and partial Jordan triple product{ } : A×V ×A →
A which, via the groupAut(D) of all biholomorphic automorphisms ofD,
they use to show thatA is completely determined as a Banach space by the
holomorphic structure ofD. WhenA = V , A is said to be aJB∗-triple and,
by a deep result of Kaup [27] is characterised by a certain normed ternary
Jordan algebraic structure (see Sect. 2). A Gelfand-Naimark type theorem
due to Friedman and Russo [15] proves that mostJB∗-triples are theJ∗-
algebras (hereafter referred to asJC∗-triples) of Harris [20] which are, for
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arbitrary Hilbert spacesH andK, the norm closed subspaces ofB(H, K)
algebraically closed under the triple product

{a b c} = 1
2(ab∗c + cb∗a) .

The class ofJC∗-triples is stable under the action of contractive projections
[14] (as is the category of allJB∗-triples by a result of Kaup [28] and
Stach́o [36]) and contains all Hilbert spaces, spin factors,C∗-algebras and
most JordanC∗-algebras.

Weak continuity and sequential weak continuity of elements inAut(D)
and of certain natural maps onA, whereA is aJB∗-triple, have been consid-
ered in a number of recent papers [37, 24, 30, 25, 10] variously to investigate
weakly continuous 1-parameter subgroups ofAut(D) and to explore struc-
ture inA. TheJB∗-triple A is said to beweakly continuousif all elements
in Aut(D) are weakly continuous and is said to besequentially weakly
continuousaccordingly.

Kaup and Stach́o [30], in equivalent terms, prove thatA is weakly con-
tinuous if and only if all primitive ideals ofA are maximal closed ideals and
A∗∗ is an`∞-sum of Cartan factors none of which are infinite dimensional
spin factors. In particular, for a locally compact Hausdorff spaceX, C0(X)
is weakly continuous precisely whenX is scattered.

On the other hand results of Isidro and Kaup [24] show that every abelian
JB∗-triple is sequentially weakly continuous.

Our purpose in this paper is to classify sequentially weakly continuous
JB∗-triples and to consider implications for general structure theory. We
show that the sequentially weakly continuousJB∗-triplesA are precisely
those for which primitive ideals are maximal closed ideals andA∗∗ is a type
I JBW ∗-triple without infinite spin part. We further show that everyJB∗-
triple A contains a smallest closed ideal J such that the sequentially weakly
continuous biholomorphic automorphisms of the open unit ball ofA/J are
all linear. It follows that the sequentially weakly continuousC∗-algebras are
precisely the liminalC∗-algebras.

We make use of recent results in representation theory [9] and we intro-
duce and exploit as a useful device the class ofJB∗-triples whose second
dual is a type IJBW ∗-triple.

2 Notations and preliminaries

A JB∗-triple is a complex Banach space with a continuous ternary product
(a, b, c) 7→ {a b c} symmetric and bilinear ina andc and conjugate linear
in b, for which ‖{a a a }‖ = ‖a‖3 andx 7→ {a a x} is positive hermitian
operator on A, satisfying

{a b{x y z}} = {{a b x}y z} + {x y{a b z}} − {x{b a y}z} .
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A subspaceI of A is said to be an ideal ofA if {A IA} + {A A I} ⊂ I
and to be aninner idealof A if {IA I} ⊂ I. The norm closed ideals of A
are its M-ideals [4]. AJBW ∗-triple is aJB∗-triple with a (unique) predual
in case of which the triple product is separately weak∗ continuous [4], [11],
[21].

Recall [40] thatJB∗-algebras are the complexifications ofJB-algebras.
We use [19] as our standard reference forJB-algebras andJB∗-algebras.

A tripotent e of A is an element satisfyinge = {e e e} the inner ideal of
A generated by which,A(e) = {eA e} ( = {e{eA e}e}), is aJB∗-algebra
with producta ◦ b = {a e b} and involutiona# = {e a e}; it is a JBW ∗-
algebra ifA is aJBW ∗-triple. A tripotente of A is said to becompleteif
{e e x} = 0 impliesx = 0, to be unitary ifA(e) = A and to beminimal
if non-zero andA(e) = Ce. Givenρ ∈ ∂e(A∗

1) (the extreme boundary of
A∗

1) there is a unique minimal tripotente of A∗∗ with ρ(e) = 1, called the
supports(ρ) of ρ [13].

TheJBW ∗-triples of premier importance and which are fundamental to
representation theory ([9]) are the Cartan factors. LetH andK be Hilbert
spaces, letj : H → H be a conjugation and let©| denote the complex
octonians. The six kinds of Cartan factors are described as follows.

(1) Rectangular:B(H, K)
(2) Hermitian:{x ∈ B(H) | x = j x∗j}
(3) Symplectic:{x ∈ B(H) | x = −j x∗j}
(4) Spin factor:H with dim(H) ≥ 3 with product{x y z} = 1

2 [〈x, y〉z
+〈z, y〉x − 〈x, j z〉j y] and norm given by‖x‖2 = 〈x, x〉 + (〈x, x〉2
−|〈x, j x〉|2)1/2

(5) B1,2: The1 × 2 matrices over©|
(6) M8

3 : The hermitian3 × 3 matrices over©| .

A JB∗-triple is said to beelementaryif it is isometric (hence isomorphic
[27]) to the norm closed ideal,K(M), generated by the minimal tripotents
in a Cartan factorM . We haveK(M)∗∗ = M and thatA is elementary
if and only if A∗∗ is a Cartan factor [7]. By a Cartan factor representation,
π : A → M , we mean a (triple) homomorphism from aJB∗-triple A into
a Cartan factor M such thatπA = M , where the bar denotes weak∗ closure.
The weak∗ closed idealA∗∗

ρ of A∗∗ generated bys(ρ) whenρ ∈ ∂ e(A∗
1)

is a Cartan factor and the restriction to A of the natural projection (cf [21])
A∗∗ → A∗∗

ρ is a Cartan factor representation,πρ : A → A∗∗
ρ . The primitive

ideals ofA (i.e. primitive M -ideals) ofA are the kernels of the Cartan
factor representations ofA. The set of all primitive ideals ofA, Prim(A), is
regarded as a topological space in the usual way via the hull-kernel topology.
See [9] for further details.Max(A) denotes the set of all maximalM -ideals
of A.
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As indicated above we habitually regard aJB∗-triple A as being con-
tained inA∗∗ and we identify the weak∗ closure, inA∗∗, of aJB∗-subtriple
B of A with B∗∗. In this wayB = A ∩ B∗∗ by the Hahn Banach Theorem.

(2.1) Lemma.Let A be a weak∗ denseJB∗-triple in a Cartan factorM
such thatA ∩ K(M) 6= {0} and letI be a norm closed inner ideal ofA.
ThenK(M) ⊂ A and Ī is a Cartan factor withK(Ī) = K(M) ∩ I.

Proof.We haveK(M)∗∗ = M . So, withJ = K(M)∩A, we haveJ̄ = J∗∗
which, being a non-zero weak∗ closed ideal ofĀ = M , equalsK(M)∗∗.
Hence,J = K(M).

As Ī is a weak∗ closed inner ideal ofM , it is a Cartan factor. Further,
E = K(M) ∩ I is an inner ideal ofK(M) and hence ofM [9, 2.3] and
therefore is an inner ideal of̄I. Moreover,E = {I K(M)I}, so thatE∗∗ =
Ē = Ī. Thus,E is an inner ideal ofE∗∗. Hence,E = K(E∗∗) [8, 3.4] as
required. ut
(2.2) Lemma[9, 3.2, 3.3].LetA be aJB∗-triple with a norm closed inner
ideal I.

(a) For each Cartan factor representationπ : A → M there existsρ ∈
∂ e (A∗

1) and a surjective isometryϕ : M
∼→ A∗∗

ρ with πρ = ϕ π.
(b) For eachρ ∈ ∂ e (I∗

1 ), with extension̄ρ ∈ ∂ e (A∗
1), I∗∗

ρ is a weak∗
closed inner ideal ofA∗∗̄

ρ andπρ = πρ̄|I. ut
If X is a compact Hausdorff space andD is a finite dimensional Car-

tan factor, theJB∗-triple of all continuous functions fromX to D, A =
C(X, D) = C(X) ⊗ D, has only Cartan factor representations ontoD as
is easily seen, and all Cartan factor representations of eachJB∗-subtriple
of A are onto Cartan subfactors ofD.

(2.3) Lemma. Let A be a JB∗-triple and let D be a finite dimensional
Cartan factor. All Cartan factor representations of A are ontoD if and only
if A∗∗ = C(X) ⊗ D for some compact hyperstonean spaceX.

Proof. Let all Cartan factor representations ofA be ontoD. ThenA is
isometric to a subtriple of̀∞(I)⊗D for some setI, by [15, Proposition 1],
so that asD is finite dimensionalA∗∗ is realised as aJBW ∗-subtriple of
(`∞(I) ⊗ D)∗∗ = `∞(I)∗∗ ⊗D. Therefore, by [22, (1.7)] together with the
above remarks, ifA∗∗ is not of the form stated it contains a weak∗ closed
idealJ = C(Z) ⊗ E whereZ is compact hyperstonean andE is a proper
subfactor ofD. But then, lettingP : A∗∗ → J be the natural projection,
the non-zero quotientP (A) of A has no Cartan factor representations onto
D, a contradiction.

Conversely, ifA∗∗ is of the form stated, the atomic part ofA∗∗ is of the
form `∞(I) ⊗ D and the result follows. ut
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For a locally compact Hausdorff spaceX with positive Radon measureµ
and aJBW ∗-triple M we shall denote byL∞(X, µ, M) theJB∗-triple of
all essentially bounded weak∗ measurable (with respect toM∗) M -valued
functions onX.

3 JB∗-triples with type I second dual

A JBW ∗-tripleM is defined to be type I ifM(e) is a type IJBW ∗-algebra
for a complete tripotente of M . The type IJBW ∗-triples are characterised
(cf. [22]) as thè ∞-sums of the form

∑ ⊕L∞(Xα, µα, Cα) where each
Cα is a Cartan factor. A general classification ofJBW ∗-triples is given in
[23]. We are interested inJB∗-triplesA for whichA∗∗ is a type IJBW ∗-
triple and, as a helpful medium for subsequent investigation of sequential
weak continuity we are led to introduce the analogues of postliminalC∗-
andJB∗-algebras ([12, Sect. 4], [30, Sect. 6], [5,6]).

Let A be aJB∗-triple. We defineA to be

(a) liminal if π(A) = K(M), for each Cartan factor representationπ :
A → M ;

(b) postliminal if K(M) ⊂ π(A), for each Cartan factor representation
π : A → M .

By (2.1) the conditionK(M) ⊂ π(A) in (b) is the same asπ(A)∩K(M) 6=
{0}. Equivalent formulations of (a) and (b) are thatA is liminal or postlim-
inal, respectively, ifA/P is elementary or contains a non-zero elementary
ideal (forA 6= {0}) for eachP ∈ Prim(A). We note that conditions (a) and
(b) are inherited byJB∗-triple quotients and that aJB∗-algebra is liminal
or postliminal, respectively, if and only if it is liminal or postliminal as a
JB∗-triple.

Given an elementx in aJB∗-tripleA we letA(x) denote the norm closed
inner ideal ofA generated byx. If A is aJB∗-subtriple ofJBW ∗-tripleM ,
the weak∗ closureA(x) = Ā(e) ⊂ M(e) for some tripotente of Ā such that
A(x) is a JB∗-subalgebra of theJBW ∗-algebraM(e) with x ∈ A(x)+
(details of this and the following statement can be found in [9]). Moreover,
the JB∗-algebra structure ofA(x) is independent of M in the following
sense. LetB be aJB∗-subtriple of aJBW ∗-triple N and letπ : A → B
be a triple homomorphism withy = π(x). Thenπ : A(x) → B(y)
is a ∗ homomorphism ofJB∗-algebras and is a surjective∗ isomorphism
if π : A → B is a surjective isometry (the respective weak∗ closures
A(x) , B(y) need not be isomorphic).

Recall thatA isabelianif and only ifAsatisfies{xy{abc}} = {{xya}bc}
and that this is the same asA being isometric to a subtriple of an abelian
C∗-algebra [29, (6.2)].
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An elementx in a JB∗-triple A is defined to beabelian if A(x) is
abelian. When realised as aJB∗-algebra this is equivalent toA(x) being an
abelianC∗-algebra. AJB∗-triple A is said to beantiliminal if it contains
no non-zero abelian elements.

(3.1) Lemma.LetA be aJB∗-triple. Then

(a) A is postliminal if and only ifA(x) is postliminal for eachx in A.
(b) A is liminal if and only ifA(x) is liminal for eachx in A.

Proof.(a) LetA be postliminal,x ∈ A and letρ ∈ ∂ e(I∗
1 ) whereI = A(x),

and letτ ∈ ∂ e(A∗
1) extendρ. By (2.2), the Cartan factor representation

πτ : A → A∗∗
τ = M extends the Cartan factor representationπρ : I →

I∗∗
ρ = N andN is a weak∗ closed inner ideal ofM . By (2.1) we have

πρ(I) ∩ K(M) = K(N), whenceI is postliminal.
Conversely, letπ : A → M be a Cartan factor representation and let

x ∈ A with π(x) 6= 0. Thenπ : A(x) → M (π(x)) = N is a Cartan
factor representation. So ifA(x) is postliminal,K(N) ⊂ π (A(x)) so that
π(A) ∩ K(M) 6= {0}.
(b) This is similar. ut
(3.2) Proposition.LetA be aJB∗-subtriple of aJB∗-triple B.
(a) If B is postliminal thenA is postliminal.
(b) If B is liminal thenA is liminal.

Proof. (a) Givenx in A there is a tripotente of A∗∗ ⊂ B∗∗ such that
A(x)∗∗ = A∗∗(e) is aJBW ∗-subalgebra of theJBW ∗-algebraB(x)∗∗ =
B∗∗(e). In particular,A(x) is aJB∗-subalgebra ofB(x). Hence, as (a) is
true forJB∗-algebras [5], it follows from (3.1) that it holds forJB∗-triples
too.
(b) This is similar. ut
(3.3) Theorem.The following are equivalent for aJB∗-triple A.

(a) A is postliminal
(b) Each non-zero quotient ofA contains a non-zero abelian element.
(c) A∗∗ is a type IJBW ∗-triple.

Proof.
(a)⇒ (b): LetA be postliminal with a non-zero elementx. By (3.1)A(x) is
a postliminalJB∗-algebra and therefore by [5] contains a non-zero abelian
elementy ∈ A(x). The norm closed inner ideal ofA(x) generated byy
is A(y) and soy is an abelian element ofA. As condition (a) passes to
quotients (b) follows.
(b) ⇒ (c): Assume (b) and letJ be a non-zero weak∗ closed ideal ofA∗∗.
The restriction,ϕ : A → J of the natural projectionP : A∗∗ → J
is a triple homomorphism withϕ(A) = J . By assumptionϕ(A) contains
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a non-zero abelian elementx. Therefore,ϕ(A)(x) = J(e) wheree is an
abelian tripotent ofJ . Hence,A∗∗ is a type IJBW ∗-triple by [21, (4.13)].
(c) ⇒ (a): LetA∗∗ be a type IJBW ∗-triple and letx be inA. The weak
∗ closed inner idealA(x)∗∗ of A∗∗ is type I as aJBW ∗-triple and hence
as aJBW ∗-algebra. Therefore, by [5, Theorem 5.6],A(x) is a postliminal
JB∗- algebra and we have thatA is postliminal by (3.1). ut
(3.4) Lemma. Let x be an abelian element in aJB∗-triple A. The norm
closed idealJ of A generated byx is liminal.

Proof. We may suppose thatx 6= 0. Let π : J → M be a Cartan factor
representation. Lete be the tripotent ofM with M (π(x)) = M(e). Then
M(e) is an abelianJBW ∗-algebra factor and soM(e) = Ce ⊂ K(M).
As K(M) is the norm closed ideal ofM generated bye, π(J) is contained
in K(M) and so must be equal to it by (2.1). ut

It is easy to see that the largest liminal ideal of aJB∗-triple A is the
set of all elementsx in A for whichπ(x) ∈ K(M) for every Cartan factor
representationπ : A → M . By (3.4), the largest liminal ideal is zero if
and only ifA is antiliminal.

A composition series in aJB∗-triple A is an increasing family{Iλ| 0 ≤
λ ≤ α} of norm closed ideals indexed by a segment[0, α] of the ordinals
such thatI0 = {0} , Iα = A and for each limit ordinalλ Iλ is the norm
closure of

⋃{Jµ |µ < λ}. Using the above a standard argument (cf. [12,
4.3.3–4.3.6]) gives the following.

(3.5) Proposition.LetA be aJB∗-triple. ThenA
(a) is postliminal if and only ifA has a composition series{Iλ | 0 ≤ λ ≤ α}
such thatIλ+1/Iλ is liminal for eachλ < α;
(b) has a largest postliminal idealJ , andJ is the smallest norm closed ideal
I of A for whichA/I is antiliminal. ut

4 Spin structure

By [24, (3.8)] infinite dimensional spin factors form an obstruction to the
sequential weak continuity of biholomorphic automorphisms on the open
unit ball. Knowledge of spin structure inJB∗-triples is therefore desirable.
Below in (4.4) we show that spin factors intrude into antiliminalJB∗-triples,
an observation that follows from a real version, (4.3), of [33, (6.7.4)]. We
remark that if the latter is a little more than is strictly needed, the exposition
benefits from transparency of transfer from the complex realm (as elucidated
in [33, Sect. 6.6, Sect. 6.7]) to the real. By a realC∗- algebra we understand
a norm closed real∗ subalgebra of a (complex)C∗-algebra.

Given a realC∗-algebra direct limit, G, of a unital system of * homomor-
phismsπn : Rn → Rn+1, where eachRn is isomorphic toMkn(R) where
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kn ≥ 2 there is, by [16, Proposition 17.2] a sequence(m(n)) in N\{1} such
that, withm(n)! = m(1) . . . m(n), G is isomorphic (as a realC∗-algebra)
to the direct limit of the unital systemϕn : Mm(n)!(R) → Mm(n+1)!(R)
of standard maps. By analogy with the complex case let the latter be called
a real Glimm algebraof rank(m(n)). The notion of aquasi-matrix system
of rank(m(n)) is defined in [33, p.215].

(4.1) Proposition.If R is a realC∗-algebra containing a quasi-matrix sys-
tem of rank(m(n)), R contains a realC∗-subalgebra with a quotient iso-
morphic to a real Glimm algebra of rank(m(n)).

Proof. Using the fact thatRsa is a JC-algebra, this is obtained as in [33,
6.6.5]. ut
(4.2) Proposition.LetR be a realC∗-subalgebra ofB(H), let e be a finite
dimensional projection in̄R (weak∗ closure) and letx be in e R̄ e. Then
there existsy in R with‖y‖ = ‖x‖ and ye =x. If x is self-adjoint or positive
y can be chosen self-adjoint or positive accordingly.

Proof. The complexificationR̄ ⊕ iR̄ = W is a von Neumann algebra and
R ⊕ iR = A is weak∗ dense in W. Hence, by [33, 2.7.5],‖a‖ = ‖x‖ with
ae = x for somea in A. We havea = y + iz wherey, z ∈ R, giving
x = ae = ye + ize so thatx = ye and‖ x ‖ ≤ ‖ y ‖ ≤ ‖ a ‖ = ‖ x ‖. The
final part of the statement also follows from [33, 2.7.5] becausey = y∗ if
a = a∗ andy ≥ 0 if a ≥ 0. ut

Let R be a realC∗-algebra,A = R ⊕ iR and letπ : A → B(H) be an
irreducible∗ representation. By the proof of [1, Theorem 3.1]πR is realised
asB(H0) whereH0 is a real, complex or quaternionic Hilbert space derived
from H. Forx in R, π(x) is a compact operator onH0 in this realisation if
and only ifπ(x) is compact onH.

Suppose thatx ∈ R+ with ‖x‖ = 1 such thatπ(x) is not compact and
thaty ∈ R+ with ‖y‖ = 1 andxy = x. For eachm ∈ N the eigen 1-space
of π(x) in H0 contains an orthonormal sequenceh1, . . . , hm. Therefore,
by (4.2), there existsa in R+ andu1, . . . , um of norm 1 inR such that

π(a)hn = nhn , n = 1, . . . , m ; π(un)h1 = hn , n = 2, . . . , m .

By these remarks together with (4.1), just as in (6.7.1) and the opening
seven lines of (6.7.2) of [33], we have the following real analogue of [33,
(6.7.4)].

(4.3) Proposition. If G is a real Glimm algebra (of any prescribed rank)
andR is a realC∗-algebra such thatR ⊕ iR is an antiliminalC∗-algebra
thenR contains a realC∗-subalgebra with a quotient isomorphic toG. ut

Identify aJC-algebraA with its image in it universal envelopingC∗-
algebraC∗(A) and letϕ be the canonical involutory∗ antiautomorphism of
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C∗(A) (pointwise fixingA) [19, Sect. 7]. ThenR∗(A) = {a ∈ C∗(A) |ϕ(a)
= a∗} is the universal enveloping realC∗-algebra ofA. We haveR∗(A) ∩
iR∗(A) = {0}, R∗(A) ⊕ iR∗(A) = C∗(A) and each self adjoint Jordan
homomorphism ofA into a realC∗-algebra extends to a real∗ homomor-
phism onR∗(A). Further, just asC∗(·) is, R∗(·) is a functor preserving
direct limits.

For2 ≤ n < ∞, let Un = R1 ⊕ Hn be the real spin factor whereHn is
the real Hilbert space of dimensionn and let Cliff(Hn) be the real Clifford
algebra ofHn, with respect to the Hilbert form onHn, considered as a real∗
algebra with respect to its main involution (cf. [26, p. 75]). By the universal
property of the (self-adjoint) Clifford representationHn ↪→ Cliff (Hn) we
obtain thatR∗(Un) is isomorphic to Cliff(Hn). In particular, by the middle
column of the table in [2, p. 11], we see thatR∗(U2+8n) ' M24n+1(R) for all
n ≥ 0. As the infinite dimensional separable real spin factorU∞ is the norm
closure of unital inclusionsUn ↪→ Un+1, R∗(U∞) is the realC∗-algebra
direct limit of the induced unital systemπn : R∗(Un) → R∗(Un+1).
Telescoping modulo eight we see thatR∗(U∞) is a real Glimm algebra. We
have the following consequence.

(4.4) Theorem.LetA be an antiliminalJB∗-triple. ThenA contains aJB∗-
subtriple with aJB∗-triple quotient containing an infinite dimensional spin
factor as aJB∗-subtriple.

Proof.Let x be a non-zero element inA. ThenA(x) is an antiliminalJC∗-
algebra and so contains a non-zero norm closed idealJ with no spin factor
representations so that withB = Jsa we haveB = {b ∈ C∗(B)sa |ϕ(b) = b}
whereϕ is the canonical∗ antiautomorphism ofC∗(B). (cf [5, Lemma 4.3],
[18, Theorem 2.2, Lemma 4.2]). IfI is the largest liminal ideal ofC∗(B) we
haveB ∩ I = {0} [6] so thatI = {0} by [18, Lemma 4.3] because we must
haveϕ(I) = I. Therefore,C∗(B) = R∗(B) ⊕ iR∗(B) is antiliminal and
by (4.3) together with above remarks there is a realC∗-algebraR ⊂ R∗(B)
with a quotient isomorphic toR∗(U∞). NowRsa ⊕ iRsa is aJC∗- subalge-
bra ofA(x) with a quotient containing the complex spin factorU∞ ⊕ i U∞
as aJC∗-subalgebra. ut

We next investigate spin structure in the second dual. LetVα, where
α ≥ 2, denote the complex spin factor of dimensionα + 1 if α is finite and
of dimensionα if α is an infinite cardinal. By [21, 22], aJBW ∗-tripleM =
Msp⊕N whereMsp is an`∞-sum

∑⊕ Mα whereMα = L∞(Xα, µα, Vα)
and whereN has no weak∗ closed ideals of this form. We refer toMsp as
thespin partof M . By the infinite spin partof M we understand thè∞-
sum of thoseMα’s whereα is infinite. We note thatMsp is aJW ∗-algebra
and that all of its Cartan factor representations are onto spin factors. It is
easy to see that if aJB∗-triple A has an infinite dimensional spin factor
representation thenA∗∗ has non-zero infinite spin part. The converse seems
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to require delicate arguments. (It is not immediately clear thatA∗∗ hasweak
∗ continuoushomomorphisms onto an infinite dimensional spin factor when
A∗∗ has non-zero infinite spin part). We shall need:

(4.5) Proposition.LetA be aJB∗-triple. ThenPrim(A) is a Baire space.

Proof. In order to obtain a contradiction assume thatPrim(A) contains a
non-empty meagre open subsetU . Choose

P ∈ U and x ∈ A \ P .

By [9, Proposition 3.3]

V = {P ∈ Prim (A) | A(x) 6⊂ P}
is an open neighbourhood ofP and is homeomorphic toPrim (A(x)). As
A(x) is aJB∗-algebra Prim(A(x)) and hence,V , is a Baire space by [17,
Corollary 4.2]. Therefore, being meagre and open inV , U ∩ V must be
empty. ButP lies inU ∩ V and we have the required contradiction. ut
(4.6) Lemma.LetAbe aJB∗-triple. ThenAhas a spin factor representation
if and only ifA∗∗ has non-zero spin part.

Proof.A spin factor representationπ : A → V extends to a weak∗ contin-
uous homomorphism fromA∗∗ ontoV so thatV is isomorphic to a weak∗
closed ideal ofA∗∗.

Conversely, letP : A∗∗ → M be the projection onto the non-zero
spin partM of A∗∗ and consider the weak∗ denseJB∗-subtriple ofM ,
B = P (A). Suppose thatB has no spin factor representations and let
x ∈ B. Then for each spin factor representationπ : M → V we have
π(B) = C ⊕ C or a Hilbert space so thatπ (B(x)) is abelian. AsM has a
faithful family of spin factor representations we have thatB(x) is abelian,
as therefore isM(x). Choose, as we may, a unitary tripotente of M . Now
choose a net(xλ) in the unit ball ofB suchxλ → e in the strong∗ topology
on M (see [3, Definition 3.1, Corollary 3.3]). Giveny = u, v, a, b or c in
M put yλ = {xλ y xλ} andy1 = {e y e}. Since eachxλ is abelian inM
and the triple product is jointly strong * continuous on bounded nets [35,
Theorem] upon taking limits we see that

{u1 v1{a1 b1 c1}} = {{u1 v1 a1}b1 c1} .

It follows that M(e) is abelian, a contradiction. SoA has a spin factor
representation becauseB does. ut
(4.7) Theorem. LetA be a JB*-triple. ThenA has an infinite dimensional
spin factor representation if and only ifA∗∗ has non-zero infinite spin part.

Proof.Necessity being clear we prove sufficiency. Assume that all spin factor
representations ofA are finite dimensional. It follows from [9, Theorem 5.2]
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that there are norm closed idealsI ⊂ J of A such thatI andA/J have no
spin factor representations and all Cartan factor representations ofJ/I (if
any) are of rank 2. AsA∗∗ = I∗∗ ⊕ (J/I)∗∗ ⊕ (A/J)∗∗, via (4.6) we may
suppose thatA = J/I. In which case, by [9, Theorem 5.9], we have norm
closed idealsJ1 ⊂ J2 ⊂ J3 ⊂ J4 ⊂ J5 in A such that all Cartan factor
representations ofJ1, J3/J2, J4/J3 andA/J5 are, respectively, ontoVα’s
whereα > 5, V5, V4 andV2; J2/J1 has no spin factor representations and,
using [9, Lemma 5.6],B = J5/J4 contains a norm closed ideal J with no
spin factor representations such that all Cartan factor representations ofB/J
are ontoV3. By (2.3) together with (4.6), it follows that the infinite spin part
of A∗∗ resides inJ∗∗

1 so that we may assumeA = J1. But then [9, Theorem
5.9] gives that

F : Prim(A) → N , where f(P ) = n if A/P = Vn ,

is lower semicontinuous. AsPrim(A) is a Baire space, by (4.5),f is con-
tinuous at some pointQ ∈ Prim(A). Hence, withm = f(Q), f−1 ({m})
contains an open neighbourhood ofQ, which gives a norm closed idealJ
of A for which all Cartan factor representations are ontoVm. Passing to
A/J and proceeding, by transfinite induction we obtain a composition se-
ries{Jλ| 0 ≤ λ ≤ α} of A such that for eachλ < α , Jλ+1/Jλ has only
Cartan factor representations onto a fixed spin factorVnλ

, wherenλ < ∞.
Now,

A∗∗ =
⊕∑

λ<α

(Jλ+1/Jλ)∗∗ (`∞ − sum) ,

which by (2.3) implies thatA∗∗ has zero infinite spin part. ut
We conclude this section with remarks onJBW ∗-triples. A spin system

(si)i∈I of orderα in aJC∗-algebra is a family of anticommuting symmetries
(that iss2

i = 1 for all i andsisj +sjsi = 0 whereveri 6= j) with card (I) =
α. The Banach space generated by such and 1 isVα.

(4.8) Remarks

(a) If A =
⊕∑

α∈S

Aα, whereAα = L∞(Xα, µα, Vα) 6= {0} andS is a set

of distinct cardinals with least memberα0 eachAα contains a spin system
of orderα0 and hence, summing overS, so doesA. Therefore, for any spin
factor representationπ : A → Vβ we haveβ ≥ α0. It follows that if S is
infinite andπ(Aα) = {0} for all α ∈ S, thenβ is infinite and hence that,
with J = (Σ Aα)0 (c0 − sum), all Cartan factor representations ofA/J
are onto infinite dimensional spin factors.
(b) Let A be aJBW ∗-triple without spin part and lete be a complete
tripotent ofA. TheJBW ∗-algebraA(e) has no spin part by the results of
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[22] and therefore has no spin factor representation by the structure theory
in [19, Sect. 5.3], for example. By (4.9) (for which we shall have further
use) below it follows thatA has no spin factor representations.

(4.9) Lemma. Letπ : A → B be a surjective triple homomorphism where
A is a JBW ∗-triple andB is a JB∗-triple containing a tripotentf . Then
π(e) = f for some tripotente in A. If f is complete thene can be chosen to
be complete.

Proof. Choosex in A with π(x) = f , let p be the tripotent ofA with
A(x) = A(p) and consider the∗ Jordan homomorphismπ : A(p) → B(q)
whereq = π(p). We have thatx ∈ A(p)+, f is a projection inB(q) and
that if W is the abelian von Neumann subalgebra ofA(p) generated byx
we have a∗ homomorphismπ : W → C onto an abelianC∗-subalgebra
of B(q). Now the usual Borel functional calculus gives a projectione of W
with π(e) = f .

If f is complete, choose a complete tripotente1 of A such thate is a pro-
jection in theJBW ∗-algebraA(e1) [21, (3.12)]. We have{e e(e1 − e)} = 0
so that{f f (π(e1) − f)} = 0 and henceπ(e1) = f . ut

5 Sequential weak continuity

Given a subsetS of a JB*-triple A a functionf : S → A is said to be
sequentially weakly continuousif whenever a sequencexn → x weakly in
S we havef(xn) → f(x) weakly.

Let D denote the open unit ball ofA. The class of bijectionsf : D →
D for which f andf−1 are Frechet differentiable is the real Banach Lie
group [39],Aut(D), of biholomorphic automorphisms ofD. As shown in
[37] (see also [10]) givena ∈ A, the one-parameter subgroup ofAut(D),
exp t Xa, where the vector fieldXa ≡ (a − {xax}) ∂

∂ x , consists of weakly
(sequentially weakly) continuous automorphisms if and only if the quadratic
map onA, x 7→ {xax}, is weakly (sequentially weakly) continuous. The
structure ofA when everyg ∈ Aut(D) is weakly continuous is completely
solved in [30].

LetAutσ(D) denote the sequentially weakly continuous members of the
groupAut(D) of biholomorphic automorphisms of the open unit unit ball
D of A. Denote byσ(A) the set of elements a ofA for which the quadratic
mapx 7→ {x a x} is sequentially weakly continuous. By [24, (2.6)]σ(A) is
a norm closed ideal ofA and by [10, page 517]Autσ(D) is a subgroup of
Aut(D) with Autσ(D) = Aut(D) if and only if σ(A) = A and, moreover,
Autσ(D) is the group of restrictions toD of the linear isometries ofA if
and only ifσ(A) = {0}.

A is defined to besequentially weakly continuousif Autσ(D) = Aut(D)
or, equivalently, ifσ(A) = A.
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(5.1) Lemma(Isidro-Kaup [24]).LetM be a Cartan factor.
(a)σ(M) = K(M) if M is not an infinite dimensional spin factor
(b) σ(M) = {0} if M is an infinite dimensional spin factor. ut
(5.2) Lemma.LetA be aJB∗-algebra,J a norm closed ideal ofA and let
(an) be a sequence inA such thatan + J → 0 weakly (inA/J). There is a
sequence(bn) in A such thatbn → 0 weakly andbn − an ∈ J for all n.

Proof.Passing to theJB∗-subalgebra ofA generated by thean we may sup-
pose thatA is separable in which caseJ has a sequential increasing approx-
imate identity so thatxn → e strongly wheree is the central projection in
A∗∗ with J∗∗ = A∗∗◦ e [19, 4.4.15]. Putbn = an◦(1−xn) for eachn. Then
bn −an ∈ J for eachn and for any positive linear functionalρ of J we have,
via the Cauchy-Schwarz inequality,ρ(bn) = ρ (an ◦ ((1 − xn) ◦ e)) → 0.
Hence,bn → 0 weakly. ut
(5.3) Lemma.LetA be aJB∗-algebra such thatx2

n → 0 weakly whenever
(xn) is a sequence inA such thatxn → 0 weakly. Then all Cartan factor
representations ofA are finite dimensional.

Proof. The condition is inherited byJB∗-subalgebras and, by (5.2), by all
quotients too. Hence, ifAhas an antiliminal quotient the condition is satisfied
by the infinite separable spin factorV∞ by (4.4) implying thatσ(V∞) = V∞
in contradiction to (5.1). Therefore,A is postliminal. Via (5.2), passing to a
primitive quotient ofA we may suppose that

K(M) ⊂ A ⊂ M ,

whereM is a type IJBW ∗-algebra factor, but not an infinite dimensional
spin factor. IfM is infinite dimensional there is an infinite dimensional
real Hilbert spaceH0 such thatK(H0)sa embeds inK(M)sa as aJC-
subalgebra so that if(hn) is an infinite orthonormal sequence inH0, xn =
h1⊗hn+hn⊗h1 → 0 weakly but, forn ≥ 2, x2

n = h1⊗h1+hn⊗hn does
not converge weakly to zero. ThereforeM is finite dimensional whence the
result. ut

For aJB∗-tripleA letJσ(A) denote the norm closed ideal of all elements
x of A for which π(x) ∈ σ(M) for all Cartan factor representationsπ :
A → M . Let Max(A) denote the set of all maximal norm closed ideals of
A.

(5.4) Lemma.LetA be aJB∗-triple. ThenJσ(A) ⊂ σ(A).

Proof. Let a ∈ Jσ(A) and let(xn) be a sequence inA such thatxn → 0
weakly. Givenρ ∈ ∂ e(A∗

1) we haveπρ ({xn an xn}) = {πρ(xn) πρ(a)
πρ(xn)} → 0 weakly. Butρ = ρ πρ and soπ ({xn a xn}) → 0 weakly. As
({xn a xn}) is bounded, it follows that{xn a xn} → 0 weakly by Rainwa-
ter’s Theorem [34]. Hence, a lies inσ(A). ut
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We can now give our classification of sequentially weakly continuous
JB∗-triples.

(5.5) Theorem.The following are equivalent for aJB∗-triple A.
(a)A is sequentially weakly continuous.
(b) Prim(A) = Max(A) andA∗∗ is type I with no infinite spin part.
(c) A is liminal with no infinite dimensional spin factor representations.

Proof.The equivalence of (b) and (c) follows from (3.3) and (4.7) together
with the fact that elementaryJB∗-triples have no proper norm closed ideals.

(a) ⇒ (c): Assume (a). A spin factor representationπ : A → V induces a
spin factor representation ofJB∗-algebrasπ : A(x) → V (e) = V , where
e is a unitary tripotent inV andx is in A with π(x) = e. By assumption
and (5.2) we must haveσ(V ) = V so thatV is finite dimensional by (5.1).

Via (3.1) (b), in order to show thatA is liminal we may suppose that it is
aJC∗-algebra and, by a further invocation of (5.2), thatA is weak * dense
in a typeI JW ∗-factorM ⊂ B(H), for some complex Hilbert spaceH.
We must show thatA = K(M).

Suppose that there existsa ≥ 0 in A lying outsideK(M). TheJB∗-
subalgebra ofA generated bya is a commutativeC∗-algebra isomorphic
to C0 (sp(a) \ {0}). By functional calculus this contains a sequential in-
creasing approximate identity(an) such thatan an+1 = an for all n. As
‖ a − a an‖ → 0, for somen an andan+1 are not inK(M). In particular,
there existx ≥ 0 andy ≥ 0 in A lying outsideK(M) such that in the
operator product onB(H) we havexy = yx andxy = y. It follows that
xz = z for all z ∈ A(y). Let e be the projection inM for which the weak∗

closureA(y) = M(e).
Let (zn) be a sequence inA(y) such thatzn → 0 weakly. AsA and

hence,A(y), is sequentially weakly continuous the above implies that

z2
n = (zn x)zn = {zn x zn} → 0 weakly.

SoA(y) satisfies the condition of (5.3). This implies thatM(e) (= eMe) is
finite dimensional and so must be contained inK(M). Hence,x ∈ K(M)
and we have arrived at a contradiction, proving (c).

(c)⇒ (a): By (5.1) the condition (c) implies thatJσ(A) = A so thatσ(A) =
A, by (5.4). ut
(5.6) Corollary. LetA be aJB∗-triple.
(a) If A is sequentially weakly continuous then so is everyJB∗-triple quo-
tient ofA.
(b) A is sequentially weakly continuous if and only ifA(x) is sequentially
weakly continuous for allx in A. ut
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(5.7) Theorem.Let A be aJB∗-triple, let I and J be, respectively, the
largest liminal and largest postliminal ideal ofA and let

V (A) =
⋂

{P ∈ Prim(A) | A/P is an infinite dimensional spin factor} .

Thenσ(A) = I ∩ V (A) = Jσ(A).
Further J ∩ V (A) is the smallest norm closed idealL of A for which

σ(A/L) = {0}.

Proof. By constructionI ∩ V (A) is the largest liminal ideal ofA without
infinite dimensional spin factor representations and equalsJσ(A) by (5.1).
Therefore, asσ(A) is sequentially weakly continuous, (5.5) (a)⇔ (c) implies
thatσ(A) ⊂ Jσ(A). Hence,σ(A) = Jσ(A) by (5.4).

We note thatJ/(J ∩ V (A)) is the largest postliminal ideal ofA/(J ∩
V (A)) and thatV (A/J ∩ V (A)) = V (A)/(J ∩ V (A)). Hence, by the first
part, we have thatσ(A/(J ∩ V (A))) = {0}. Now letL be a norm closed
ideal ofA with σ(A/L) = {0}. If J ∩V (A) is not contained inL there is a
norm closed idealM of A with J ∩ V (A) ∩ L ⊂ M ⊂ J ∩ V (A) such that
M/(J ∩V (A)∩L) is a non-zero liminal ideal without infinite dimensional
spin factor representations, in(J ∩V (A))/(J ∩V (A)∩L), giving rise to a
non-zero ideal of A/L with the same properties. In which case the first part
givesσ(A/L) 6= {0} and so the required contradiction. ut
(5.8) Corollary. A C∗-algebraA is sequentially weakly continuous if and
only if it is liminal. Further,σ(A) is the largest liminal ideal ofA, and
σ(A) = {0} if and only ifA is antiliminal. ut

For n ∈ N we say that aJBW ∗-triple A is of rank typen if A is an
`∞-sum ofL∞(Xα, µα, Cα)’s where eachCα is a Cartan factor of rankn.
Given a complete tripotente in a rank typen JBW -triple, A, A(e) is a
type In JBW ∗-algebra: in the case whenn = 2 but A has no spin part,
A(e) ' L∞(Xa, µa, V3) ⊕ L∞(Xb, µb, V5). We note that a rank typen
JBW ∗-triple is generated as a Banach space by its abelian tripotents and
if it is without spin part it is sequentially weakly continuous (by (4.8) and
(5.6)). We say thatM is homogeneous of finite rank typeif it is of rank type
n for somen ∈ N.

A JBW ∗-triple is said to becontinuousif it has no type I part. By (5.6)
or (5.7),σ(A) = {0} for continuousJBW ∗-triplesA. Therefore, questions
of sequential weak continuity forJBW ∗-triples devolve to the type I case.

LetA be a type IJBW ∗-triple. We haveA = Asp ⊕B = Sf ⊕S∞ ⊕B,
whereB is type I and without spin part,S∞ is the infinite spin part ofA and
Sf = Σ⊕Ani where eachAni = L∞(Xni , µni , Vni) and(ni) is a strictly
increasing sequence (possibly finite) inN.

This notation is retained for the next two results.
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(5.9) Theorem.For the type IJBW ∗-triple A = Asp ⊕ B we have
(a) σ(A) = (Σ⊕Ani)0 ⊕ Bab, where( )0 denotesc0-sum and whereBab

is the norm closed ideal ofB generated by its abelian tripotents;
(b) σ(A/σ(A)) = {0}.

Proof. The idealJ on the right hand side of the equation in (a) has no
infinite dimensional spin factor representations and is clearly liminal so that
J ⊂ σ(A) by (5.7). Also by (5.7) we haveσ(A)/J ⊂ σ(A/J). Therefore
parts (a) and (b) will follow ifσ(A/J) = {0}. If A = Asp this is immediate
from (4.8) (a) and (5.7). Suppose that A = B and thatπ : A → M is
a Cartan factor representation withπ(J) = {0}. If K(M) ⊂ π(A) (4.9)
implies that there is a tripotente of A such thatπ(e) = f 6= 0 is a minimal
tripotent ofM . This gives a Jordan∗ homomorphismπ : A(e) → Cf .
Thus, ifA(e) = I ⊕ K where I is the type I1 part ofA(e) [19, (5.3.5)], we
haveπ(K) = {0}. But I ⊂ J by construction so thatπ(I) = {0} also.
This is a contradiction and it proves thatA/J is antiliminal in this case so
thatσ(A/J) = {0} as before. The result follows. ut
(5.10) Corollary. The type IJBW ∗-triple A = Asp ⊕ B is sequentially
weakly continuous if and only ifAsp is a direct sum of finitely manyL∞(Xα,
µα, Vα)′s whereα < ∞ andB is a direct sum of finitely many JBW-triples
that are homogeneous of finite rank type. ut

We close with an example of aJB∗-tripleA with only linear sequentially
weakly continuous biholomorphic automorphisms on its open unit ball but
which has a faithful family of finite dimensional spin factor representations.

(5.11) Example.Consider the finite dimensional spin factorsVn, 2 ≤ n <
∞, realised asJC∗-algebras with a common identity so thatVn ⊂ Vn+1

andV∞ is the norm closure of
∞⋃
1

Vn. Let B = C ([0, 1], V∞) be theJC∗-

algebra, with supremum norm, of all continuous functionsf : [0, 1] → V∞.
Now let (rn) be an enumeration of the rationals in [0,1] and define

A = {f ∈ B | f(rn) ∈ Vn+1, for all n } .

ThenA is aJC∗-subalgebra ofB and the evaluations,f 7→ f(t), t ∈ [0, 1],
are∗ Jordan homomorphismsπt : A → V∞, with πrn(A) ⊂ Vn+1 for
eachn. Givenn ∈ N, chooseg ∈ C[0, 1] with g(r1) = . . . = g(rn) =
0 , g(rn+1) = 1. For eachx in Vn+2 defineGx in B by Gx(t) = f(t)x.
Then Gx ∈ A and πrn+1(Gx) = x. Hence,πrn+1(A) = Vn+2. Since
for f in A, f(rn) = 0 for all n ≥ 2 implies f = 0, {πrn | n ≥ 2} is a
faithful family of finite dimensional spin factor representations ofA. On
the other hand for irrationals in [0,1] we have, forn ∈ N , h ∈ C [0, 1]
with h(r1) = . . . = h(rn) = 0 , h(s) = 1. As before, for eachx in
Vn+2, Hx ∈ A whereHx(t) = f(t)x for all t, andπs(Hx) = x. Therefore,
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Vn+2 ⊂ πs(A), for all n. Hence,V∞ = πs(A) for all irrational s in [0,1],
giving a faithful family of representations ofA ontoV∞. By (5.7) we have
σ(A) = {0}, as required.
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