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Abstract. Let D be the open unit ball of & B*-triple A and letAut(D)

be the group of all biholomorphic automorphismsiof It is shown that
every element ofdut(D) is sequentially weakly continuous if and only if
every primitive ideal of A is a maximal closed ideal add* is a type |

J BW*-triple without infinite-spin part. Implications for general structure
theory are explored. In particular, it is deduced that eveBf-triple A
contains a smallest idedl for which the sequentially weakly continuous
biholomorphic automorphisms of the open unit ballf.J are all linear.
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1 Introduction

Kaup and Upmeier [31] (see also [39]) analysed complete holomorphic
vector fields on the open unit bdll of a complex Banach spaggto uncover
aclosed subspace V dfand partial Jordan triple produgt} : AxV x A —

A which, via the groupdut (D) of all biholomorphic automorphisms @3,

they use to show that is completely determined as a Banach space by the
holomorphic structure ab. WhenA = V', A is said to be & B*-triple and,

by a deep result of Kaup [27] is characterised by a certain normed ternary
Jordan algebraic structure (see Sect. 2). A Gelfand-Naimark type theorem
due to Friedman and Russo [15] proves that mbBt-triples are the/*-
algebras (hereafter referred to.&8™*-triples) of Harris [20] which are, for
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arbitrary Hilbert space#/ and K, the norm closed subspacesifH, K)
algebraically closed under the triple product

{abc} = 1(ab*c+ cb*a).

The class ot/ C*-triples is stable under the action of contractive projections
[14] (as is the category of alf B*-triples by a result of Kaup [28] and
Stacld [36]) and contains all Hilbert spaces, spin fact@ré;algebras and
most JordarC'*-algebras.

Weak continuity and sequential weak continuity of elementéan( D)
and of certain natural maps ah) whereA is aJ B*-triple, have been consid-
ered in a number of recent papers [37, 24, 30, 25, 10] variously to investigate
weakly continuous 1-parameter subgroupslef (D) and to explore struc-
ture in A. The JB*-triple A is said to beveakly continuoud all elements
in Aut(D) are weakly continuous and is said to equentially weakly
continuousaccordingly.

Kaup and Staal[30], in equivalent terms, prove thdtis weakly con-
tinuous if and only if all primitive ideals oft are maximal closed ideals and
A** is anf>°-sum of Cartan factors none of which are infinite dimensional
spin factors. In particular, for a locally compact Hausdorff spEc€’) (X)
is weakly continuous precisely when is scattered.

On the other hand results of Isidro and Kaup [24] show that every abelian
J B*-triple is sequentially weakly continuous.

Our purpose in this paper is to classify sequentially weakly continuous
J B*-triples and to consider implications for general structure theory. We
show that the sequentially weakly continualiB*-triples A are precisely
those for which primitive ideals are maximal closed ideals Afidis a type
| JBW*-triple without infinite spin part. We further show that evefp*-
triple A contains a smallest closed ideal J such that the sequentially weakly
continuous biholomorphic automorphisms of the open unit ball of are
all linear. It follows that the sequentially weakly continudiis-algebras are
precisely the liminal’*-algebras.

We make use of recent results in representation theory [9] and we intro-
duce and exploit as a useful device the clasd Bf-triples whose second
dual is a type U BW *-triple.

2 Notations and preliminaries

A JB*-triple is a complex Banach space with a continuous ternary product
(a,b,c) — {abc} symmetric and bilinear in andc and conjugate linear

in b, for which ||[{aaa}| = |la||®> andz — {aax} is positive hermitian
operator on A, satisfying

{ab{zyz}} = {{abaty 2} + {zylabz}} — {z{bay}z} .
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A subspacd of Aissaidtobe anideal d if {ATA}+{AAI} C1I
and to be arnner idealof Aif {IAI} C I. The norm closed ideals of A
are its M-ideals [4]. AJ BW*-triple is aJ B*-triple with a (unique) predual
in case of which the triple product is separately weakntinuous [4], [11],
[21].

Recall [40] that/ B*-algebras are the complexificationskB-algebras.
We use [19] as our standard referencef@-algebras and B*-algebras.

A tripotent e of A is an element satisfyirg= {e e e} the inner ideal of
A generated by whic(e) = {eAe} (= {e{eAe}e}), isaJB*-algebra
with producta o b = {aeb} and involutiona™ = {eae}; itis a JBW*-
algebra ifA is aJBW*-triple. A tripotente of A is said to becompleteif
{eex} = 0 impliesz = 0, to be unitary ifA(e) = A and to beminimal
if non-zero andA(e) = Ce. Givenp € 0.(A}) (the extreme boundary of
A7) there is a unique minimal tripoteatof A** with p(e) = 1, called the
supports(p) of p [13].

TheJ BW *-triples of premier importance and which are fundamental to
representation theory ([9]) are the Cartan factors.Meand K be Hilbert
spaces, lej : H — H be a conjugation and |g€b) denote the complex
octonians. The six kinds of Cartan factors are described as follows.

(1) RectangularB(H, K)

(2) Hermitian:{z € B(H) | x = jx*j}

(3) Symplectic{z € B(H) | x = —jz*j}

(4) Spin factor:H with dim(H) > 3 with product{zyz} = [(z,y)z
+(z,y)x — (x,j2)jy] and norm given bylz|? = (z,2) + ((z,z)2
—|{x, j x)[*)!/?

(5) Bi2: Thel x 2 matrices over))

(6) M$: The hermitiar x 3 matrices over)).

A J B*-triple is said to belementaryf it is isometric (hence isomorphic
[27]) to the norm closed ideak’ (M ), generated by the minimal tripotents
in a Cartan factoi\/. We haveK (M )** = M and thatA is elementary
if and only if A** is a Cartan factor [7]. By a Cartan factor representation,
m : A — M, we mean a (triple) homomorphism from/&*-triple A into
a Cartan factor M such thatd = M, where the bar denotes weaklosure.
The weak" closed ideald* of A** generated by (p) whenp € 9e(A7)
is a Cartan factor and the restriction to A of the natural projection (cf [21])
A*™ — A7* is a Cartan factor representation, : A — A7*. The primitive
ideals of A (i.e. primitive M-ideals) of A are the kernels of the Cartan
factor representations &f. The set of all primitive ideals ofl, Prim(A), is
regarded as atopological space in the usual way via the hull-kernel topology.
See [9] for further detaildVlax(A) denotes the set of all maxima{ -ideals
of A.
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As indicated above we habitually regard/&*-triple A as being con-
tained inA** and we identify the weakclosure, inA**, of a.J B*-subtriple
B of Awith B**. In thiswayB = AN B** by the Hahn Banach Theorem.

(2.1) Lemma.Let A be a weak' dense/B*-triple in a Cartan factorM
such thatA N K (M) # {0} and let! be a norm closed inner ideal of.
ThenK (M) C Aand[ is a Cartan factor withK' () = K(M) N I.

Proof.We haveK (M)** = M. So, withJ = K(M)N A, we have] = J**
which, being a non-zero weakclosed ideal ofA = M, equalsk (M )**.
HenceJ = K(M).
As I is a weak* closed inner ideal o/, it is a Cartan factor. Further,

E = K(M)nIis an inner ideal of (M) and hence of\/ [9, 2.3] and
therefore is an inner ideal df Moreover,EE = {I K (M)I}, so thatE** =
E = I. Thus,E is an inner ideal of2**. Hence,E = K(E**) [8, 3.4] as
required. O

(2.2) Lemma]|9, 3.2, 3.3].Let A be aJ B*-triple with a norm closed inner
ideal I.

(a) For each Cartan factor representation : A — M there existy €
de(A%) and a surjective isometry : M = A%* with7, = o 7.

(b) For eaghp e_ae (I7), with extensiorp € de (A7), I;* is a weak”
closed inner ideal of\}* andr, = m5|1. 0

If X is a compact Hausdorff space andis a finite dimensional Car-
tan factor, the/ B*-triple of all continuous functions fronX to D, A =
C(X,D) = C(X) ® D, has only Cartan factor representations abtas
is easily seen, and all Cartan factor representations of gathsubtriple
of A are onto Cartan subfactors bk

(2.3) Lemma. Let A be aJB*-triple and let D be a finite dimensional
Cartan factor. All Cartan factor representations of A are omaf and only
if A** = C(X)® D for some compact hyperstonean space

Proof. Let all Cartan factor representations dfbe ontoD. Then A is
isometric to a subtriple of*° (1) @ D for some sef, by [15, Proposition 1],
so that asD is finite dimensionalA** is realised as & BW*-subtriple of
(0>°(I) ® D)** = £>(I)** ® D. Therefore, by [22, (1.7)] together with the
above remarks, id** is not of the form stated it contains a weaklosed
idealJ = C(Z) ® E whereZ is compact hyperstonean aitlis a proper
subfactor ofD. But then, lettingP : A** — J be the natural projection,
the non-zero quotien?(A) of A has no Cartan factor representations onto
D, a contradiction.

Conversely, ifA** is of the form stated, the atomic part af* is of the
form ¢>°(I) ® D and the result follows. 0
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For alocally compact Hausdorff spa&ewith positive Radon measure
and aJ BW*-triple M we shall denote by.*>* (X, u, M) the J B*-triple of
all essentially bounded wedkmeasurable (with respect id,) M-valued
functions onX.

3 J B*-triples with type | second dual

A JBW*-triple M is defined to be type | i/ (e) is a type |J BW *-algebra
for a complete tripotent of M. The type |J BW*-triples are characterised
(cf. [22]) as thel>°-sums of the formd_ PL>®(X,, 1a, Co) Where each
C, is a Cartan factor. A general classificationaBW *-triples is given in
[23]. We are interested id B*-triples A for which A** is a type |JBW*-
triple and, as a helpful medium for subsequent investigation of sequential
weak continuity we are led to introduce the analogues of postlingtial
andJ B*-algebras ([12, Sect. 4], [30, Sect. 6], [5,6]).

Let A be aJ B*-triple. We defineA to be

(@) liminal if 7(A) = K (M), for each Cartan factor representation :
A— M,

(b) postliminalif K(M) C w(A), for each Cartan factor representation
T A— M.

By (2.1) the conditio\ (M) C w(A)in (b)isthe same as(A)NK (M) #
{0}. Equivalent formulations of (a) and (b) are thts liminal or postlim-
inal, respectively, ifA/ P is elementary or contains a non-zero elementary
ideal (forA # {0}) for eachP € Prim(A). We note that conditions (a) and
(b) are inherited by B*-triple quotients and that AB*-algebra is liminal
or postliminal, respectively, if and only if it is liminal or postliminal as a
J B*-triple.

Given an elementin a.JB*-triple A we letA(z) denote the norm closed
inner ideal ofA generated by. If AisaJB*-subtriple ofJ BW *-triple M,
the weak closureA(x) = A(e) C M (e) for some tripotent of A such that
A(x) is aJB*-subalgebra of thg BW*-algebral (e) with x € A(x)
(details of this and the following statement can be found in [9]). Moreover,
the J B*-algebra structure ofi(x) is independent of M in the following
sense. LeB be aJ B*-subtriple of aJBW*-triple N and letr : A — B
be a triple homomorphism with = =(x). Thent : A(x) — B(y)
is a* homomorphism of/ B*-algebras and is a surjectiveésomorphism
if = : A — B s a surjective isometry (the respective weaklosures
A(z), B(y) need not be isomorphic).

Recallthatd isabelianifand only if A satisfie zy{abc}} = {{zya}bc}
and that this is the same asbeing isometric to a subtriple of an abelian
C*-algebra [29, (6.2)].
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An elementz in a JB*-triple A is defined to beabelianif A(z) is
abelian. When realised as/&*-algebra this is equivalent té(z) being an
abelianC*-algebra. AJ B*-triple A is said to beantiliminal if it contains
no non-zero abelian elements.

(3.1) Lemma.Let A be aJ B*-triple. Then

(a) Ais postliminal if and only ifA(x) is postliminal for each: in A.
(b) Ais liminal if and only ifA(x) is liminal for eachz in A.

Proof.(a) LetA be postliminaly € Aandletp € 0e(I})wherel = A(z),
and letr € 0e(A}) extendp. By (2.2), the Cartan factor representation
. : A — A7 = M extends the Cartan factor representatign: [ —
I* = N and N is a weak® closed inner ideal ofi/. By (2.1) we have
m,(1) N K (M) = K(N), whencel is postliminal.

Conversely, letr : A — M be a Cartan factor representation and let
x € Awith w(z) # 0. Thenmt : A(x) — M (n(x)) = N is a Cartan
factor representation. Soif(z) is postliminal, K (N) C = (A(z)) so that
m(A)N K(M) # {0}.
(b) This is similar. O

(3.2) Proposition.Let A be a.J B*-subtriple of aJ B*-triple B.
() If B is postliminal themA is postliminal.
(b) If B is liminal thenA is liminal.

Proof. (a) Givenx in A there is a tripotent of A** C B** such that
A(z)*™ = A**(e) is aJ BW*-subalgebra of thd BW*-algebraB(z)** =
B**(e). In particular,A(z) is aJJB*-subalgebra oB(z). Hence, as (a) is
true for.J B*-algebras [9], it follows from (3.1) that it holds forB*-triples
too.

(b) This is similar. O

(3.3) Theorem.The following are equivalent for dB*-triple A.

(&) Ais postliminal
(b) Each non-zero quotient of contains a non-zero abelian element.
(c) A**isatype |JBW*-triple.

Proof.

(a)= (b): Let A be postliminal with a non-zero elementBy (3.1) A(x) is

a postliminal/ B*-algebra and therefore by [5] contains a non-zero abelian
elementy € A(x). The norm closed inner ideal of(x) generated by,

is A(y) and soy is an abelian element of. As condition (a) passes to
quotients (b) follows.

(b) = (c): Assume (b) and lef be a non-zero weakclosed ideal ofA**.

The restriction : A — J of the natural projectior? : A** — J

is a triple homomorphism witlp(A) = J. By assumptionp(A) contains
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a non-zero abelian element Thereforep(A)(z) = J(e) wheree is an
abelian tripotent of/. Hence A** is a type |J BW*-triple by [21, (4.13)].
(c) = (a): Let A** be a type IJBW*-triple and letz be in A. The weak
* closed inner ideal(z)** of A** is type | as aJ BW*-triple and hence
as aJ BW*-algebra. Therefore, by [5, Theorem 5.8],z) is a postliminal
J B*- algebra and we have thdtis postliminal by (3.1). O

(3.4) Lemma. Letz be an abelian element in AB*-triple A. The norm
closed idealJ of A generated by is liminal.

Proof. We may suppose that # 0. Letw : J — M be a Cartan factor
representation. Let be the tripotent of\/ with M (7 (z)) = M (e). Then
M (e) is an abelian BW*-algebra factor and s8/(e) = Ce C K(M).
As K (M) is the norm closed ideal df/ generated by, =(.J) is contained

in K(M) and so must be equal to it by (2.1). O

It is easy to see that the largest liminal ideal of B*-triple A is the
set of all elements in A for which(z) € K(M) for every Cartan factor
representatiom : A — M. By (3.4), the largest liminal ideal is zero if
and only if A is antiliminal.

A composition series in dB*-triple A is an increasing family7,| 0 <
A < a} of norm closed ideals indexed by a segmgnty| of the ordinals
such thatly = {0}, I, = A and for each limit ordinah I, is the norm
closure of J{J, | » < A}. Using the above a standard argument (cf. [12,
4.3.3-4.3.6]) gives the following.

(3.5) Proposition.Let A be aJ B*-triple. ThenA

(a)is postliminal if and only ifA has a composition serigd), |0 < A < a}
such thatl ;1 /I is liminal for each\ < «;

(b) has a largest postliminal ideal, and.J is the smallest norm closed ideal
I of A for which A/I is antiliminal. O

4 Spin structure

By [24, (3.8)] infinite dimensional spin factors form an obstruction to the
sequential weak continuity of biholomorphic automorphisms on the open
unit ball. Knowledge of spin structure ihB*-triples is therefore desirable.
Below in (4.4) we show that spin factors intrude into antilimifat*-triples,
an observation that follows from a real version, (4.3), of [33, (6.7.4)]. We
remark that if the latter is a little more than is strictly needed, the exposition
benefits from transparency of transfer from the complex realm (as elucidated
in [33, Sect. 6.6, Sect. 6.7]) to the real. By a r€4} algebra we understand
a norm closed redl subalgebra of a (complex)*-algebra.

Given areal’*-algebra direct limit, G, of a unital system of * homomor-
phismsr, : R, — R,4+1, Where eaclR,, is isomorphic taV/y, (R) where
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k, > 2thereis, by [16, Proposition 17.2] aseque(egn)) in N\ {1} such

that, withm(n)! = m(1)...m(n), G is isomorphic (as a redl*-algebra)

to the direct limit of the unital system,, : M,,,)1(R) — M, 11(R)

of standard maps. By analogy with the complex case let the latter be called
areal Glimm algebreof rank (m(n)). The notion of equasi-matrix system

of rank (m(n)) is defined in [33, p.215].

(4.1) Proposition.If R is a realC*-algebra containing a quasi-matrix sys-
tem of rank(m(n)), R contains a realC*-subalgebra with a quotient iso-
morphic to a real Glimm algebra of rankn(n)).

Proof. Using the fact thalR,, is a JC-algebra, this is obtained as in [33,
6.6.5]. 0

(4.2) Proposition.Let R be a realC*-subalgebra ofB(H), lete be a finite
dimensional projection iR (weak* closure) and let: be ine Re. Then
there existg in R with ||y|| = ||z|| and ye =z. If z is self-adjoint or positive
y can be chosen self-adjoint or positive accordingly.

Proof. The complexification? @ iR = W is a von Neumann algebra and
R @ iR = Ais weak* dense in W. Hence, by [33, 2.7.5|| = ||=| with
ae = x for somea in A. We havea = y + iz wherey, z € R, giving

x =ae =ye+izesothatr =yeand|z| < ||y| <|al =]=z]. The
final part of the statement also follows from [33, 2.7.5] because y* if
a=a"andy > 0if a > 0. O

Let R be arealC*-algebraA = R@iRandletr : A — B(H)bean
irreducible* representation. By the proof of [1, Theorem 3R is realised
asB(Hy) whereH, is a real, complex or quaternionic Hilbert space derived
from H. Forz in R, m(x) is a compact operator aH in this realisation if
and only ifr(x) is compact orH .

Suppose that € R, with ||z|| = 1 such thatr(z) is not compact and
thaty € R4 with ||y|| = 1 andzy = z. For eachn € N the eigen 1-space

of #(z) in Hy contains an orthonormal sequerice ..., h,,. Therefore,
by (4.2), there existg in Ry anduy, ..., u,, of norm 1inR such that
m(a)hy, =nh,, n=1,....m; 7w(up)h1=h,, n=2,....,m.

By these remarks together with (4.1), just as in (6.7.1) and the opening
seven lines of (6.7.2) of [33], we have the following real analogue of [33,
(6.7.4)].

(4.3) Proposition.If G is a real Glimm algebra (of any prescribed rank)
and R is a real C*-algebra such thaf? & iR is an antiliminalC*-algebra
thenR contains a real”"*-subalgebra with a quotient isomorphicta O

Identify a JC-algebraA with its image in it universal enveloping™-
algebraC*(A) and lety be the canonical involutoryyantiautomorphism of
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C*(A) (pointwise fixingA) [19, Sect. 7]. The®*(A) = {a € C*(A) | ¢(a)

= ax} is the universal enveloping re&f*-algebra ofA. We haveR*(A) N
iR*(A) = {0}, R*(A) @ iR*(A) = C*(A) and each self adjoint Jordan
homomorphism of4 into a realC*-algebra extends to a reahomomor-
phism onR*(A). Further, just as”*(-) is, R*(-) is a functor preserving
direct limits.

For2 <n < oo, letU,, = R1 & H, be the real spin factor whei&, is
the real Hilbert space of dimensianand let Cliff( H,,) be the real Clifford
algebra ofH,,, with respect to the Hilbert form of,,, considered as a real
algebra with respect to its main involution (cf. [26, p. 75]). By the universal
property of the (self-adjoint) Clifford representatiéh, — Cliff (H,,) we
obtain thatR*(U,,) is isomorphic to Cliff H,,). In particular, by the middle
column ofthetablein[2, p. 11], we see thi&it(Us g, ) ~ Moant1(R) forall
n > 0. As the infinite dimensional separable real spin fa€igris the norm
closure of unital inclusion®/,, — U, 1, R*(Ux) is the realC*-algebra
direct limit of the induced unital system, : R*(U,) — R*(Unt1).
Telescoping modulo eight we see ti#it(U,, ) is a real Glimm algebra. We
have the following consequence.

(4.4) Theorem.Let A be an antiliminal/ B*-triple. ThenA contains aJ B*-
subtriple with aJ B*-triple quotient containing an infinite dimensional spin
factor as a.J B*-subtriple.

Proof.Let = be a non-zero element id. ThenA(z) is an antiliminal/C*-
algebra and so contains a non-zero norm closed idl@ath no spin factor
representations so thatwith= J,, we haveB = {b € C*(B)s, | ¢(b) = b}
whereyp is the canonical antiautomorphism of * (B). (cf [5, Lemma 4.3],
[18, Theorem 2.2, Lemma 4.2]).Ifis the largest liminal ideal af"* (B) we
haveBN I = {0} [6] so that!l = {0} by [18, Lemma 4.3] because we must
havep(I) = I. ThereforeC*(B) = R*(B) @ iR*(B) is antiliminal and
by (4.3) together with above remarks there is a €&aklgebrakR C R*(B)
with a quotientisomorphic t&* (U, ). Now R, @ iR, is aJC*- subalge-
bra of A(x) with a quotient containing the complex spin factdg, © i Uso
as aJC*-subalgebra. O
We next investigate spin structure in the second dual.V,gtwhere
a > 2, denote the complex spin factor of dimension- 1 if « is finite and
of dimensionx if «is an infinite cardinal. By [21, 22], ABW *-triple M =
M, N whereM), is anﬁm-sumz@ M, whereM,, = L (X, ta, Va)
and whereV has no weak closed ideals of this form. We refer 14, as
the spin partof M. By theinfinite spin partof M/ we understand thé&*-
sum of thosel/,’s wherea is infinite. We note thad/,), is aJW *-algebra
and that all of its Cartan factor representations are onto spin factors. It is
easy to see that if & B*-triple A has an infinite dimensional spin factor
representation theA** has non-zero infinite spin part. The converse seems



200 L.J. Bunce et al.

to require delicate arguments. (It is notimmediately clear #ffathasweak
* continuoushomomorphisms onto an infinite dimensional spin factor when
A** has non-zero infinite spin part). We shall need:

(4.5) Proposition.Let A be a.J B*-triple. ThenPrim(A) is a Baire space.

Proof. In order to obtain a contradiction assume tRaim(A) contains a
non-empty meagre open subgetChoose

PeU and z€A\P.
By [9, Proposition 3.3]
V ={P ePrim(A) | A(z) ¢ P}

is an open neighbourhood &f and is homeomorphic tBrim (A(x)). As
A(z) is aJB*-algebra PriMiA(z)) and henceV/, is a Baire space by [17,
Corollary 4.2]. Therefore, being meagre and opeVinU N V' must be
empty. ButP lies inU NV and we have the required contradiction. O

(4.6) Lemma.Let A be aJ B*-triple. ThenA has a spin factor representation
if and only if A** has non-zero spin part.

Proof. A spin factor representation: A — V' extends to a weak contin-
uous homomorphism fro** onto V' so thatV is isomorphic to a weak
closed ideal ofA**.

Conversely, letP : A* — M be the projection onto the non-zero
spin partM of A** and consider the weakdenseJ B*-subtriple of M,
B = P(A). Suppose thaB has no spin factor representations and let
x € B. Then for each spin factor representation: M — V we have
m(B) = C & C or a Hilbert space so that(B(z)) is abelian. AsM has a
faithful family of spin factor representations we have tBdt:) is abelian,
as therefore i9/(x). Choose, as we may, a unitary tripoterdf A/. Now
choose a ngfr )y ) in the unit ball of B suchz, — e in the strond topology
on M (see [3, Definition 3.1, Corollary 3.3]). Given= u, v, a, b or ¢ in
M putyy = {zyyz,r} andy; = {eye}. Since eachr) is abelian inM
and the triple product is jointly strong * continuous on bounded nets [35,
Theorem] upon taking limits we see that

{u1 vl{al bl 01}} = {{u1 U1 al}bl 01} .

It follows that M (e) is abelian, a contradiction. S4 has a spin factor
representation becaugedoes. O

(4.7) Theorem. Let A be a JB*-triple. Them4 has an infinite dimensional
spin factor representation if and onlyAf** has non-zero infinite spin part.

Proof.Necessity being clear we prove sufficiency. Assume that all spin factor
representations of are finite dimensional. It follows from [9, Theorem 5.2]
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that there are norm closed idedls- J of A such that’ andA/.J have no
spin factor representations and all Cartan factor representatioh& d(ff
any) are of rank 2. As\™ = I** @ (J/1)** & (A/J)**, via (4.6) we may
suppose thatl = J/I. In which case, by [9, Theorem 5.9], we have norm
closed ideals/y C J, C J3 C J4 C J5in A such that all Cartan factor
representations ofy, Js3/.Jo, J4/J3 and A/ J5 are, respectively, ontd,’s
wherea > 5, Vi, V4 andVa; J/J1 has no spin factor representations and,
using [9, Lemma 5.6]B = J5/.J4 contains a norm closed ideal J with no
spin factor representations such that all Cartan factor representatiBid of
are ontolz. By (2.3) together with (4.6), it follows that the infinite spin part
of A** resides in/;* so that we may assume = J;. But then [9, Theorem
5.9] gives that

F : Prim(A) - N, where f(P)=n if A/P=V,,

is lower semicontinuous. ABrim(A) is a Baire space, by (4.5§,is con-
tinuous at some poir® € Prim(A). Hence, withm = £(Q), f~* ({m})
contains an open neighbourhood@f which gives a norm closed idedl

of A for which all Cartan factor representations are ohjp. Passing to
A/J and proceeding, by transfinite induction we obtain a composition se-
ries{Jx| 0 < XA < a} of A such that for each < «, Jy11/Jx has only
Cartan factor representations onto a fixed spin faglgr wheren) < oc.

Now,

&)
A = Z (J)\+1/J)\)** (EOO - sum) N
A<
which by (2.3) implies thatl** has zero infinite spin part. O

We conclude this section with remarks 8B W *-triples. A spin system
(s;)icr Of orderacinaJC*-algebra s a family of anticommuting symmetries
(thatiss? = 1foralli ands;s; + s;s; = 0 wherever # j) with card (I) =
«. The Banach space generated by such andZl.is

(4.8) Remarks
o
@ IfA= > A, whered, = L™®(X,, ta, Vo) # {0} andS is a set

a€esS
of distinct cardinals with least membep eachA,, contains a spin system
of orderag and hence, summing over, so doesA. Therefore, for any spin
factor representation : A — V3 we haves > ay. It follows that if S is
infinite andw(A,) = {0} for all « € S, thenf is infinite and hence that,
with J = (¥ A,), (co — sum), all Cartan factor representations 4f.J
are onto infinite dimensional spin factors.
(b) Let A be aJBW*-triple without spin part and let be a complete
tripotent of A. The JBW*-algebraA(e) has no spin part by the results of
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[22] and therefore has no spin factor representation by the structure theory
in [19, Sect.5.3], for example. By (4.9) (for which we shall have further
use) below it follows thatd has no spin factor representations.

(4.9  Lemma. Letw : A — B be a surjective triple homomorphism where
Ais aJBW*-triple and B is a J B*-triple containing a tripotentf. Then
m(e) = f for some tripotent in A. If f is complete thea can be chosen to
be complete.

Proof. Choosez in A with 7(z) = f, let p be the tripotent ofd with
A(z) = A(p) and consider theJordan homomorphism : A(p) — B(q)
whereq = w(p). We have thatt € A(p)+, f is a projection inB(q) and
that if W is the abelian von Neumann subalgebraiddp) generated by
we have & homomorphismr : W — C onto an abelia@*-subalgebra
of B(q). Now the usual Borel functional calculus gives a projectiaf 1V
with w(e) = f.

If fiscomplete, choose a complete tripotenbf A such that is a pro-
jectioninthe/ BW*-algebrad(e; ) [21, (3.12)]. We havgee(e; —e)} =0
sothat{f f (w(e1) — f)} = 0 and hencer(e;) = f. 0

5 Sequential weak continuity

Given a subseb of a JB*-triple A a functionf : S — A is said to be
sequentially weakly continuoufsvhenever a sequencg, — x weakly in
S we havef(z,) — f(x) weakly.

Let D denote the open unit ball of. The class of bijectiong : D —

D for which f and f~! are Frechet differentiable is the real Banach Lie
group [39], Aut(D), of biholomorphic automorphisms @. As shown in

[37] (see also [10]) givem € A, the one-parameter subgroup4fit(D),
exp t X,, where the vector fiel&, = (a — {zaz}) a%' consists of weakly
(sequentially weakly) continuous automorphisms if and only if the quadratic
map onA, z — {zax}, is weakly (sequentially weakly) continuous. The
structure ofA when everyy € Aut(D) is weakly continuous is completely
solved in [30].

Let Aut, (D) denote the sequentially weakly continuous members of the
group Aut(D) of biholomorphic automorphisms of the open unit unit ball
D of A. Denote byr(A) the set of elements a of for which the quadratic
mapz — {z a z} is sequentially weakly continuous. By [24, (2.6)]A) is
a norm closed ideal oft and by [10, page 5174 ut, (D) is a subgroup of
Aut(D) with Aut,(D) = Aut(D)ifand onlyifo(A) = A and, moreover,
Aut, (D) is the group of restrictions t® of the linear isometries ofl if
and only ifo(A) = {0}.

Alisdefined to bsequentially weakly continuoiisAut, (D) = Aut(D)
or, equivalently, ifo(A) = A.
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(5.1) Lemma(Isidro-Kaup [24]).Let M be a Cartan factor.
(@)o(M) = K(M)if M is not an infinite dimensional spin factor
(b) o (M) = {0} if M is an infinite dimensional spin factor. 0

(5.2) Lemma.Let A be aJ B*-algebra,.J a norm closed ideal oft and let
(an) be a sequence iA such that,, + J — 0 weakly (inA/J). There is a
sequencéb,,) in A such that,, — 0 weakly and,, — a,, € J for all n.

Proof.Passing to thg B*-subalgebra ofi generated by the,, we may sup-
pose thatd is separable in which casehas a sequential increasing approx-
imate identity so that,, — e strongly wheree is the central projection in
A with J** = A** 0 e[19, 4.4.15]. Pub,, = a,,0(1—=x,,) foreachn. Then

b, —ay, € J for eachn and for any positive linear functionalof J we have,
via the Cauchy-Schwarz inequalipy,b,,) = p (an o ((1 —x,) 0 €)) — 0.
Hence b, — 0 weakly. O

(5.3) Lemma.Let A be aJ B*-algebra such that? — 0 weakly whenever
(xy) is a sequence inl such thatz,, — 0 weakly. Then all Cartan factor
representations ofl are finite dimensional.

Proof. The condition is inherited by B*-subalgebras and, by (5.2), by all
guotientstoo. Hence, A has an antiliminal quotient the conditionis satisfied
by the infinite separable spin factdy, by (4.4) implying that (V) = Vi,

in contradiction to (5.1). Thereford is postliminal. Via (5.2), passing to a
primitive quotient ofA we may suppose that

KM)cAcCcM,

whereM is a type |J BW*-algebra factor, but not an infinite dimensional
spin factor. If M is infinite dimensional there is an infinite dimensional
real Hilbert spacef, such thatK (Hy)s, embeds inK(M)s, as aJC-
subalgebra so that {fx,,) is an infinite orthonormal sequenceffy, x,, =
h1®hp+h, @y — 0weakly but, fom > 2,22 = hy ® hy + h, @ h,, does
not converge weakly to zero. Therefayéis finite dimensional whence the
result. O

ForaJB*-triple Alet.J,(A) denote the norm closed ideal of all elements
z of A for which w(z) € o(M) for all Cartan factor representations :
A — M. LetMax(A) denote the set of all maximal norm closed ideals of
A.

(5.4) Lemma.Let A be aJB*-triple. ThenJ,(A) C o(A).

Proof. Leta € J,(A) and let(z,,) be a sequence iA such thatz,, — 0
weakly. Givenp € 0.(A7) we haver, ({z, anzn}) = {7p(zn) 7p(a)
7p(zn)} — 0 weakly. Butp = pm, and sor ({z, az,}) — 0 weakly. As
({zn ax,}) is bounded, it follows thafx,, a =, } — 0 weakly by Rainwa-
ter’'s Theorem [34]. Hence, a lies é(A). 0
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We can now give our classification of sequentially weakly continuous
J B*-triples.

(5.5) Theorem.The following are equivalent for dB*-triple A.

(a) A is sequentially weakly continuous.

(b) Prim(A) = Max(A) and A** is type | with no infinite spin part.

(c) A is liminal with no infinite dimensional spin factor representations.

Proof. The equivalence of (b) and (c) follows from (3.3) and (4.7) together
with the fact that elementatyB*-triples have no proper norm closed ideals.

(8) = (c): Assume (a). A spin factor representation A — V induces a
spin factor representation dfB*-algebrasr : A(x) — V(e) = V, where
e is a unitary tripotent i/ andz is in A with w(x) = e. By assumption
and (5.2) we must hawe(1") = V' so thatV' is finite dimensional by (5.1).

Via (3.1) (b), in order to show th&t is liminal we may suppose that it is
aJ(C*-algebra and, by a further invocation of (5.2), thais weak * dense
in a typel JW*-factorM C B(H), for some complex Hilbert spadd.
We must show thatl = K (M).

Suppose that there exisis> 0 in A lying outside K (M ). The JB*-
subalgebra ofd generated by: is a commutativeC*-algebra isomorphic
to Cy (sp(a) \ {0}). By functional calculus this contains a sequential in-
creasing approximate identity.,,) such thatu,, a,+1 = a, for all n. As
lla — aay,| — 0, for somen a,, anda,1 are not inK (M ). In particular,
there existr > 0 andy > 0 in A lying outside K (M) such that in the
operator product o3 (H) we havery = yx andzy = y. It follows that
xz = zforall z € A(y). Lete be the projection in/ for which the weak
closureA(y) = M(e).

Let (z,) be a sequence iA(y) such thatz,, — 0 weakly. As A and
hence A(y), is sequentially weakly continuous the above implies that

22 = (2, %) 2 = {20 T 2,} — 0 weakly.

SoA(y) satisfies the condition of (5.3). This implies tidte) (= eMe) is
finite dimensional and so must be containedsit}M ). Hencez € K (M)
and we have arrived at a contradiction, proving (c).

(c)= (a): By (5.1) the condition (c) implies thdt (A) = Asothatr(A) =
A, by (5.4). 0

(5.6) Corollary. Let A be aJ B*-triple.

(a) If A is sequentially weakly continuous then so is eveBf -triple quo-
tient of A.

(b) A is sequentially weakly continuous if and onhyifx) is sequentially
weakly continuous for alt in A. O
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(5.7) Theorem.Let A be aJB*-triple, let I and J be, respectively, the
largest liminal and largest postliminal ideal of and let

V(A) = ﬂ {P € Prim(A) | A/Pis an infinite dimensional spin factpr

Theno(A) =1NV(A) = J,(A).
Further J N V(A) is the smallest norm closed idealof A for which
o(A/L) = {0}.

Proof. By construction/ N V' (A) is the largest liminal ideal oA without
infinite dimensional spin factor representations and eqiigld) by (5.1).
Therefore, as(A) is sequentially weakly continuous, (5.5) é&)(c) implies
thato(A) C J,(A). Henceg(A) = J,(A) by (5.4).

We note that//(J N V(A)) is the largest postliminal ideal of /(J N
V(A))andthatl (A/JNV(A)) =V (A)/(JNV(A)). Hence, by the first
part, we have that(A/(J NV (A))) = {0}. Now let L be a norm closed
ideal of Awith o(A/L) = {0}. If JNV(A) is not contained ir. there is a
norm closed idead of Awith JNV(A)NL c M C JNV(A) such that
M/(JNV(A)NL)isanon-zero liminal ideal without infinite dimensional
spin factor representations, (d NV (A))/(JNV(A)N L), giving rise to a
non-zero ideal of A/L with the same properties. In which case the first part
giveso(A/L) # {0} and so the required contradiction. 0

(5.8) Corollary. A C*-algebra A is sequentially weakly continuous if and
only if it is liminal. Further,o(A) is the largest liminal ideal of4, and
o(A) = {0} if and only if A is antiliminal. 0

Forn € N we say that a/ BW*-triple A is of rank typen if A is an
£°-sum of L (X, pa, Co)'s Where eaclt,, is a Cartan factor of rank.
Given a complete tripotent in a rank typen JBW-triple, A, A(e) is a
type I,, JBW*-algebra: in the case when = 2 but A has no spin part,
Ae) ~ L>®(Xq, tta, V3) & L>®(Xy, up, V5). We note that a rank type
JBW*-triple is generated as a Banach space by its abelian tripotents and
if it is without spin part it is sequentially weakly continuous (by (4.8) and
(5.6)). We say thad/ is homogeneous of finite rank tyjiét is of rank type
n for somen € N.

A JBW*-triple is said to becontinuousdf it has no type | part. By (5.6)
or (5.7),0(A) = {0} for continuous/ BW *-triples A. Therefore, questions
of sequential weak continuity fof BIW*-triples devolve to the type | case.

Let A be atype UBW*-triple. We haved = A,, & B = S;® S ® B,
whereB is type | and without spin parf is the infinite spin part ofi and
Sy = X%A,, where eachd,,, = L=(X,,,, pn,, Vn,) and(n;) is a strictly
increasing sequence (possibly finite Nn

This notation is retained for the next two results.
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(5.9) Theorem.For the type IJBW *-triple A = A, © B we have

(@) o(A) = (X%PA,,), ® Ba, Where( ), denotes:-sum and where3,;,

is the norm closed ideal d8 generated by its abelian tripotents;

(b) o(A/o(A)) = {0}.

Proof. The idealJ on the right hand side of the equation in (a) has no
infinite dimensional spin factor representations and is clearly liminal so that
J C o(A) by (5.7). Also by (5.7) we have(A)/J C o(A/J). Therefore
parts (a) and (b) will follow ifr (A/J) = {0}. If A = A, this is immediate
from (4.8) (a) and (5.7). Suppose that A=Bandthat A — M is

a Cartan factor representation witli.J) = {0}. If K(M) C w(A) (4.9)
implies that there is a tripoteatof A such thatr(e) = f # 0 is a minimal
tripotent of M. This gives a Jordah homomorphismr : A(e) — Cf.
Thus, if A(e) = I @ K where | is the typejl part of A(e) [19, (5.3.5)], we
havern(K) = {0}. ButI C J by construction so that(I) = {0} also.
This is a contradiction and it proves thaf J is antiliminal in this case so
thato(A/J) = {0} as before. The result follows. 0

(5.10) Corollary. The type IJBW*-triple A = A,, ® B is sequentially
weakly continuous if and only i, is a direct sum of finitely many> (X,
Lo Vo )'s Wherea < oo and B is a direct sum of finitely many JBW-triples
that are homogeneous of finite rank type. O

We close with an example of BB*-triple A with only linear sequentially
weakly continuous biholomorphic automorphisms on its open unit ball but
which has a faithful family of finite dimensional spin factor representations.

(5.11) ExampleConsider the finite dimensional spin factdfs, 2 < n <
oo, realised as/C*-algebras with a common identity so thdt C V41

andV is the norm closure df} V,,. Let B = C ([0, 1], V) be theJC*-
1

algebra, with supremum norm, of all continuous functins [0, 1] — V.
Now let (r,,) be an enumeration of the rationals in [0,1] and define

A={feB| f(rn) € Voya, foral n} .

ThenA is aJC*-subalgebra oB and the evaluationg, — f(¢),t € [0, 1],
are* Jordan homomorphisms : A — V., with m,, (A) C V41 for

eachn. Givenn € N, choosey € C[0,1] with g(r1) = ... = g(r,) =
0, ¢g(rny1) = 1. For eachr in V,, 42 defineG, in B by G,(t) = f(t)x.
ThenG, € A andm,, ,(G,;) = x. Hence,m, ., (A) = V,42. Since

for fin A, f(r,) = 0foralln > 2 impliesf =0, {m,|n>2}isa
faithful family of finite dimensional spin factor representationsAfOn
the other hand for irrational in [0,1] we have, fom € N, h € C[0, 1]
with h(r1) = ... = h(r,) = 0, h(s) = 1. As before, for each in
Vnto, Hy € AwhereH,(t) = f(t)x for all t, andrs(H,) = x. Therefore,
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Vigo C ms(A), for all n. Hence,V,, = m5(A) for all irrational s in [0,1],
giving a faithful family of representations of onto V.. By (5.7) we have
o(A) = {0}, as required.
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