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Abstract

We use certain norm inequalities for 2 × 2 operator matrices to establish norm inequalities for sums of two basic elementary
operators on a Hilbert space. Further, we give necessary and sufficient conditions under which the norm of the above sum of
elementary operators attains its optimal value. Applications of the inequalities obtained are also considered.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Norm; Elementary operators; Numerical ranges; C∗-algebras

1. Introduction

Let A be a complex Banach algebra. An elementary operator on A is a linear mapping of the form

x �→
n∑

i=1

aixbi,

where ai, bi ∈ A (1 � i � n). Interesting examples of elementary operators on A are left multiplication La by a, right
multiplication Rb by b, two-sided multiplication Ma,b := LaRb (Ma,b is also called the basic elementary operator
induced by a and b), generalized derivation δa,b := La −Rb and the Jordan elementary operator Ua,b := Ma,b +Mb,a ,
here a and b are elements in A.

The norm problem of an elementary operator consists in finding a formula which describes the norm of an ele-
mentary operator in terms of its coefficients. It has been considered by many authors, see [2–4,9–11,13,14,16–18]
and references therein. We refer to the recent paper [19] for a formula for the norm of an elementary operator on a
C∗-algebra, involving matrix-valued numerical ranges and a kind of tracial geometric mean.

In the second section of the present paper, we shall be concerned with some useful estimates for the norm of
the elementary operator MA,B + MC,D , when A,B,C and D are bounded linear operators on a complex Hilbert
space H . As applications, we derive some operator norm inequalities. The third section is devoted to the triangle
“equality,” that is, we establish necessary and sufficient conditions on the operators A, B , C and D, under which
‖MA,B + MC,D‖ equals its optimal value ‖A‖‖B‖ + ‖C‖‖D‖. For the special case of a Jordan elementary operator,
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we provide an answer to [14, Problem 9] (see Corollary 3.6 below). In the last section, we give an estimate for the
norm of a Jordan elementary operator on arbitrary C∗-algebra.

We conclude this section with some notations and terminology.
Given a complex Hilbert space H , we denote by B(H) the algebra of all bounded linear operators acting on H . If

A ∈ B(H), we denote by W(A) its numerical range defined by

W(A) = {〈Ax,x〉: x ∈ H, ‖x‖ = 1
}
.

It is known that the closure of the set W(A) is compact, convex and ‖A‖ = sup{|λ|: ∈ W(A)} whenever A is a
self-adjoint operator on H (see [5]).

Let A,B ∈ B(H). Following [8], the numerical range of A∗B relative to B is defined to be the set

WB

(
A∗B

) =
{
λ ∈ C: there exists {xn} ⊆ H, ‖xn‖ = 1 such that lim

n

〈
A∗Bxn, xn

〉 = λ and lim
n

‖Bxn‖ = ‖B‖
}
.

In the case A = I this reduces to the Stampfli maximal numerical range W0(B) of B , see [16]. The set WB(A∗B)

enjoys a number of exceptional properties listed below (see [8]):

(i) WB(A∗B) is a closed convex subset of the complex plane C for each A,B ∈ B(H),

(ii) The relation ‖B‖ = infλ∈C‖B − λA‖ holds if and only if 0 ∈ WB(A∗B).

The normalized maximal numerical range of a bounded operator T ∈ B(H) is given by

WN(T ) =
{

W0(
T

‖T ‖ ) if T 
= 0,

0 if T = 0.

The set WN(T ) is nonempty, closed, convex and contained in the closure of the numerical range of T , see [16].
Let E be a normed space. If T : E → E is a bounded linear operator, we denote by ‖T : E → E‖ the norm of T ,

or simply by ‖T ‖ when there is no confusion.
Throughout, I stands for the identity operator of B(H). If A ∈ B(H), we denote its adjoint by A∗. The real part

and complex conjugate of a complex number z are denoted by �(z) and z, respectively.

2. A general norm inequality

Before we state and prove our first result we need a technical lemma.

Lemma 2.1. Let A and B be positive operators on H . If T is the operator matrix on H ⊕ H defined by T = [
A C∗
C B

]
,

then

‖T ‖ � max
{‖A‖,‖B‖} + ‖C‖.

Proof. Write T = [
A 0
0 B

] + [ 0 C∗
C 0

]
. It is easy to check that

∥∥[
A 0
0 B

]∥∥ � max{‖A‖,‖B‖} and
∥∥[ 0 C∗

C 0

]∥∥ � ‖C‖. Hence
we get

‖T ‖ � max
{‖A‖,‖B‖} + ‖C‖. �

Besides some special cases, the norm of the operator MA,B + MC,D is usually difficult to compute (see [10,17] for
examples). The following estimation could be more useful.

Theorem 2.2. If A,B,C and D are operators in B(H), then

‖MA,B + MC,D‖ �
[(

max
{‖B‖2,‖D‖2} + ∥∥BD∗∥∥)(

max
{‖A‖2,‖C‖2} + ∥∥C∗A

∥∥)] 1
2 .

Proof. Let X ∈ B(H) and x ∈ H be given such that ‖X‖ = ‖x‖ = 1. We have

‖AXBx + CXDx‖2 = ‖AXBx‖2 + ‖CXDx‖2 + 2�(〈AXBx,CXDx〉)
and
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‖AXBx‖2 + ‖CXDx‖2 � ‖A‖2‖Bx‖2 + ‖C‖2‖Dx‖2

� max
{‖A‖2,‖C‖2}(‖Bx‖2 + ‖Dx‖2)

� max
{‖A‖2,‖C‖2}∥∥[

B 0
D 0

]( x
0

)∥∥2

� max
{‖A‖2,‖C‖2}∥∥[

B 0
D 0

]∥∥2
.

Since
∥∥[

B 0
D 0

]∥∥2 = ∥∥[
B 0
D 0

][
B∗ D∗
0 0

]∥∥ = ∥∥[
BB∗ BD∗
DB∗ DD∗

]∥∥, we obtain by virtue of Lemma 2.1,

∥∥[
B 0
D 0

]∥∥2 � max
{‖B‖2,‖D‖2} + ∥∥BD∗∥∥.

Therefore

‖AXBx‖2 + ‖CXDx‖2 � max
{‖A‖2,‖C‖2}[max

{‖B‖2,‖D‖2} + ∥∥BD∗∥∥]
.

On the other hand, we have

2�(〈AXBx,CXDx〉) � 2‖Bx‖‖Dx‖∥∥C∗A
∥∥ �

∥∥C∗A
∥∥(‖Bx‖2 + ‖Dx‖2).

As in the above, we deduce that

2�(〈AXBx,CXDx〉) �
∥∥C∗A

∥∥[
max

{‖B‖2,‖D‖2} + ∥∥BD∗∥∥]
.

Hence

‖MA,B + MC,D‖2 �
[
max

{‖B‖2,‖D‖2} + ∥∥BD∗∥∥][
max

{‖A‖2,‖C‖2} + ∥∥C∗A
∥∥]

.

This ends the proof. �
The majorisation in Theorem 2.2 can be used to derive several operator norm inequalities:

Corollary 2.3. For A,B ∈ B(H), the following properties hold:

(1) ‖A + B‖2 � 2(max{‖A‖2,‖B‖2} + ‖B∗A‖),
(2) ‖AA∗ + BB∗‖ � max{‖A‖2,‖B‖2} + ‖B∗A‖.

Proof. The inequality in (1) follows from Theorem 2.2 by letting B = D = I . The second inequality follows by
letting B = A∗ and D = C∗ in the same theorem. �
Remark 2.4. If A and B are operators in B(H) with orthogonal ranges, then

‖A + B‖2 � max
{‖A‖2,‖B‖2} + ∥∥BA∗∥∥. (2.1)

To see this, observe first that, since A∗B = 0, we have (A + B)∗(A + B) = A∗A + B∗B . Thus, the inequality (2.1)
follows from Corollary 2.3(2). We refer to [7] for other norm inequalities for sums of operators having orthogonal
ranges.

Remark 2.5. Let A,B ∈ B(H) and let A ⊗ B denote the tensor product of A by B . It is well known (and easy to
prove) that ‖A ⊗ B‖ = ‖A‖‖B‖ (here ‖A ⊗ B‖ denotes the norm of A ⊗ B induced by the usual inner product on the
Hilbert space H ⊗ H ), hence it follows from Corollary 2.3(1) that

‖A ⊗ B + B ⊗ A‖ �
√

2‖A‖2‖B‖2 + 2
∥∥B∗A

∥∥2
.

For the Jordan elementary operator UA,B we get the following upper estimate which is sharper than the triangle
inequality.
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Corollary 2.6. If A,B ∈ B(H), then

‖UA,B‖ �
[(‖A‖‖B‖ + ∥∥AB∗∥∥)(‖A‖‖B‖ + ∥∥B∗A

∥∥)] 1
2 . (2.2)

In particular, if AB∗ = B∗A = 0, then

‖UA,B‖ = ‖A‖‖B‖.

Proof. By letting D = A and C = B in Theorem 2.2, we get

‖UA,B‖2 �
[
max

{‖A‖2,‖B‖2} + ∥∥AB∗∥∥][
max

{‖A‖2,‖B‖2} + ∥∥B∗A
∥∥]

. (2.3)

Since ‖UA,B‖ = ‖A‖‖B‖‖U A
‖A‖ , B

‖B‖
‖ (we may assume that A and B are nonzero), we derive from (2.3) that

‖UA,B‖ �
[(‖A‖‖B‖ + ∥∥AB∗∥∥)(‖A‖‖B‖ + ∥∥B∗A

∥∥)] 1
2 .

This proves the first part.
Next, assume that AB∗ = B∗A = 0. By the inequality in (2.2), it turns out that ‖UA,B‖ � ‖A‖‖B‖. Since we

always have ‖UA,B‖ � ‖A‖‖B‖, then ‖UA,B‖ = ‖A‖‖B‖, as required. �
Remark 2.7. In many cases the inequality ‖UA,B‖ � ‖A‖‖B‖(1 + ‖AB‖) (A,B ∈ B(H)) is satisfied. In [15], Stacho
and Zalar asked whether this holds in general. The next example shows that the inequality fails to be true. Let A ∈
B(H) be nilpotent of order 2. Then clearly we have ‖UA,A‖ = 2‖A‖, but A2 = 0.

Proposition 2.8. Let A,B ∈ B(H). If ‖UA,B‖ = ‖A‖‖B‖, then 0 ∈ WB(A∗B) ∪ WA(B∗A), if one of the following
conditions is satisfied:

(1) there exists λ ∈ WB(A∗B) and there exists μ ∈ WA(B∗A) such that �(λμ) � 0,

(2) either A∗B or AB∗ � 0 is positive,
(3) both A and B are positive.

Proof. Assume that ‖UA,B‖ = ‖A‖‖B‖. We may suppose that ‖A‖ = ‖B‖ = 1. If x and y are unit elements in H ,
then

‖UA,B‖ �
∥∥UA,B(x ⊗ By)(y)

∥∥
�

∣∣‖Ax‖2‖By‖2 + 〈
A∗Bx,x

〉〈
B∗Ay,y

〉∣∣.
On the other hand, we have

‖UA,B‖ �
∣∣〈Ax,x〉〈By,y〉 + 〈Ay,y〉〈Bx,x〉∣∣.

From these inequalities we may deduce the following:

(1) If λ ∈ WB(A∗B) and μ ∈ WA(B∗A) are given such that �(λμ) � 0, then λμ = 0, that is, 0 ∈ WB(A∗B) ∪
WA(B∗A).

(2) If either A∗B � 0 or B∗A � 0, then �(λμ) � 0 for all λ ∈ WB(A∗B) and μ ∈ WA(B∗A). So the result follows
by (1).

(3) If the operators A and B are positive, then w(A) = w(B) = 1. Hence, considering a subsequence if necessary, we
deduce from the second above inequality that 0 ∈ WB(AB) ∪ WA(BA). �

Remark 2.9. If ‖UA,B‖ = ‖A‖‖B‖, then w(A∗B) � 1
2‖A‖‖B‖. This follows easily from the fact that if x ∈ H is a

unit vector, with Ax 
= 0, then

‖UA,B‖ � 1

‖Ax‖
∥∥UA,B(x ⊗ Ax)

∥∥ � 2
∣∣〈Bx,Ax〉∣∣.

In particular, we conclude that if ‖UA,B‖ = ‖A‖‖B‖, then the operator A∗B may not be normaloid.
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Remark 2.10. If A is an isometry and ‖UA,B‖ = ‖A‖‖B‖, then WB(A∗B) = {0}. Indeed, by [3, Theorem 1], we have

‖UA,B‖ � sup
λ∈WB(A∗B)

∥∥∥∥‖B‖A + λ

‖B‖B

∥∥∥∥. (2.4)

Since A is isometry, we derive from (2.4) that ‖UA,B‖2 � ‖B‖2 +3|λ|2 for all λ ∈ WB(A∗B). Hence WB(A∗B) = {0}.

3. The triangle “equality”

Our next aim is to establish necessary and sufficient conditions on the set {A,B,C,D} of operators so that the
norm of MA,B + MC,D equals its optimal value.

The following theorem is a generalization of [2, Theorem 1].

Theorem 3.1. For nonzero operators A,B,C,D ∈ B(H) the following properties are equivalent:

(1) ‖MA,B + MC,D‖ = ‖A‖‖B‖ + ‖C‖‖D‖,
(2) WN(C∗A) ∩ WN(DB∗) 
= ∅, ‖C∗A‖ = ‖A‖‖C‖ and ‖DB∗‖ = ‖B‖‖D‖.

Proof. (1) ⇒ (2). Suppose that ‖MA,B + MC,D‖ = ‖A‖‖B‖ + ‖C‖‖D‖. Then we can find two unit sequences
{Xn}n ⊆ B(H) and {xn}n ⊆ H such that

lim
n

‖AXnBxn + CXnDxn‖ = ‖A‖‖B‖ + ‖C‖‖D‖. (3.1)

We have, for each n � 1,

‖AXnBxn + CXnDxn‖2 = ‖AXnBxn‖2 + ‖CXnDxn‖2 + 2�(〈AXnBxn,CXnDxn〉
)
. (3.2)

Since ‖AXnBxn‖ � ‖A‖‖Bxn‖ � ‖A‖‖B‖ and ‖CXnDxn‖ � ‖C‖‖Dxn‖ � ‖C‖‖D‖, it follows that

lim
n

‖Bxn‖ = ‖B‖ and lim
n

‖Dxn‖ = ‖D‖.
Therefore

lim
n

(
B∗Bxn − ‖B‖2xn

) = lim
n

(
D∗Dxn − ‖D‖2xn

) = 0.

Set yn = Bxn‖B‖ . Then one can write xn = B∗yn

‖B‖ + zn, where zn is a vector in H such that limn zn = 0. So

〈AXnBxn,CXnDxn〉 = 〈
C∗AXnyn,XnDB∗yn

〉 + εn, (3.3)

where εn ∈ C, with limn εn = 0. Combining (3.1)–(3.3) we obtain

lim
n

〈
C∗AXnyn,XnDB∗yn

〉 = ‖A‖‖B‖‖C‖‖D‖.
From this we derive that

lim
n

∥∥(
C∗A

)
Xnyn

∥∥ = ‖A‖‖C‖ = ∥∥C∗A
∥∥, lim

n

∥∥Xn

(
DB∗)yn

∥∥ = ‖B‖‖D‖ = ∥∥DB∗∥∥,

so it follows immediately that ‖δC∗A,−DB∗‖ = ‖A‖‖C‖ + ‖B‖‖D‖ = ‖C∗A‖ + ‖DB∗‖. So from [16, Theorem 7] it
turns out that

WN

(
C∗A

) ∩ WN

(
DB∗) 
= ∅.

(2) ⇒ (1). Suppose that ‖C∗A‖ = ‖A‖‖C‖, ‖DB∗‖ = ‖B‖‖D‖ and WN(C∗A) ∩ WN(DB∗) 
= ∅. Then by [16,
Theorem 7], we get

‖δC∗A,−DB∗‖ = ‖A‖‖C‖ + ‖B‖‖D‖.
Thus, there exist two sequences {Xn}n ⊆ B(H) and {xn}n ⊆ H , with ‖Xn‖ = ‖xn‖ = 1 for each n such that

lim
∥∥C∗AXnxn + XnDB∗xn

∥∥ = ‖A‖‖C‖ + ‖B‖‖D‖. (3.4)

n
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As in the above we deduce that limn‖B∗xn‖ = ‖B‖. Thus, one can write BB∗xn = ‖B‖2xn + zn, where zn ∈ H with
limn zn = 0. From the equality (3.4) it follows that

lim
n

〈
C∗AXnxn,XnDB∗xn

〉 = lim
n

〈
(AXnB)

B∗xn

‖B‖ , (CXnD)
B∗xn

‖B‖
〉
= ‖A‖‖B‖‖C‖‖D‖.

From this we conclude that

‖MA,B + MC,D‖ = ‖A‖‖B‖ + ‖C‖‖D‖.
This completes the proof. �
Corollary 3.2. For A,B ∈ B(H) the following properties are equivalent:

(1) ‖A + B‖ = ‖A‖ + ‖B‖,
(2) ‖A‖‖B‖ ∈ W0(A

∗B).

Remark 3.3. Suppose that A and B are positive operators in B(H). By Corollary 3.2 and Propositions 3.3 and 3.4
in [7], we see that the following are also equivalent:

(1) ‖A + B‖ = ‖A‖ + ‖B‖,
(2) ‖A 1

2 B
1
2 ‖ = ‖A‖ 1

2 ‖B‖ 1
2 ,

(3) ‖AB‖ = ‖A‖‖B‖,
(4) w(AB) = ‖A‖‖B‖.

Corollary 3.4. For A,B ∈ B(H) the following properties are equivalent:

(1) ‖I + MA,B‖ = 1 + ‖A‖‖B‖,
(2) WN(A) ∩ WN(B∗) 
= ∅,

(3) ‖A‖ + ‖B‖ � ‖A − λ‖ + ‖B − λ‖ for all λ ∈ C.

Proof. The equivalence (1) ⇔ (2) is an immediate consequence of Theorem 3.1.
The equivalence (2) ⇔ (3) follows from Theorems 7 and 8 of [16]. �

Corollary 3.5. If A,B ∈ B(H) are given such that ‖A∗B‖ = ‖A‖‖B‖, then

‖MA,A∗ + MB,B∗‖ = ‖A‖2 + ‖B‖2.

The next result, obtained as a special case of Theorem 3.1, is a generalization of [12, Theorem 9]. It provides a
solution to Problem 9 in [14].

Corollary 3.6. If A,B ∈ B(H), then the following assertions are equivalent:

(1) ‖UA,B‖ = 2‖A‖‖B‖,
(2) ‖AB∗‖ = ‖B∗A‖ = ‖A‖‖B‖ and WN(AB∗) ∩ WN(B∗A) 
= ∅.

Remark 3.7. If AB = BA and B is normal, then we conclude from the above corollary and Putnam–Fuglede theorem
that ‖UA,B‖ = 2‖A‖‖B‖ if and only if ‖A∗B‖ = ‖A‖‖B‖. If we drop the commutativity condition this equivalence
is no longer true. Indeed, let {en}n�0 be an orthonormal basis for the space �2(N). Let S be the right shift on �2(N)

defined by Sen = en+1 (n = 0,1, . . .), and let P be the orthogonal projection on the space spanned by e0. If we set
A = S∗ and B = P , then AB∗ = 0 and ‖A∗B‖ = ‖A‖‖B‖ = 1. Thus, it follows from Corollary 2.6 that ‖UA,B‖ �√

2‖A‖‖B‖. This answers negatively Questions 1 and 2 in [12].
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4. An estimate for the norm of a Jordan elementary operator on a C∗-algebra

In this section, we establish an upper bound for the norm of the Jordan elementary operator UA,B on a C∗-algebra.

Proposition 4.1. Let A be an arbitrary C∗-algebra, and let A,B ∈A. Then

‖UA,B‖ �
[(‖LARB‖ + ∥∥AB∗∥∥)(‖LARB‖ + ∥∥B∗A

∥∥)] 1
2 .

Proof. Let A,B ∈ A. By [1, Theorem 5.3.12], we have

‖UA,B :A →A‖ = sup
π∈Irr(A)

∥∥Uπ(A),π(B) :π(A) → π(A)
∥∥, (4.1)

where Irr(A) denotes a faithful family of irreducible representations of A.
Let π : A → B(Hπ) be an irreducible representation of A. Since C∗-algebras have metric approximate identities,

we have∥∥Uπ(A),π(B) :π(A) → π(A)
∥∥ = ∥∥Uπ(A),π(B) :π(A) + CIπ → π(A) + CIπ

∥∥, (4.2)

where Iπ denotes the identity of B(Hπ). Moreover, since π(A) is irreducible, the commutant of π(A) + CIπ

is precisely B(Hπ), and so, by the double commutant theorem and the Kaplanski density theorem [6, Theo-
rems 5.3.1 and 5.3.5], we have∥∥Uπ(A),π(B) :π(A) + CIπ → π(A) + CIπ

∥∥ = ∥∥Uπ(A),π(B) :B(Hπ) → B(Hπ)
∥∥. (4.3)

Combining (4.1)–(4.3), and then using Corollary 2.6, we obtain

‖UA,B :A →A‖ = sup
π∈Irr(A)

∥∥Uπ(A),π(B) : B(Hπ) → B(Hπ)
∥∥

� sup
π∈Irr(A)

[(∥∥π(A)
∥∥∥∥π(B)

∥∥ + ∥∥π
(
AB∗)∥∥)(∥∥π(A)

∥∥∥∥π(B)
∥∥ + ∥∥π

(
B∗A

)∥∥)] 1
2 .

It is known (see [11, p. 364]) that, for every C∗-algebra A, ‖LARB‖ = supπ∈Irr(A)‖π(A)‖‖π(B)‖. Hence,

‖UA,B :A →A‖ � sup
π

[(‖LARB‖ + ∥∥π
(
AB∗)∥∥)(‖LARB‖ + ∥∥π

(
B∗A

)∥∥)] 1
2

�
[(‖LARB‖ + ∥∥AB∗∥∥)(‖LARB‖ + ∥∥B∗A

∥∥)] 1
2 ,

because every representation π is a contraction [1, Proposition 1.2.3]. �
Remark 4.2. Let A, A and B as in the hypotheses of the last proposition. If AB∗ = B∗A = 0, then ‖UA,B :A → A‖ �
‖LARB‖. It is known [4, Corollary 3.9] that, ‖UA,B :A → A‖ � ‖LARB‖, so it follows that ‖UA,B :A → A‖ =
‖LARB‖. In particular, if A is prime, and AB∗ = B∗A = 0, then ‖UA,B :A →A‖ = ‖A‖‖B‖.

We conclude with the following questions posed also in [12].

Questions 4.3.

(1) If ‖UA,B : A →A‖ = ‖LARB‖, does it follow that AB∗ = B∗A = 0?
(2) Does Proposition 2.8 remain true if we drop all conditions on the operators A and B?
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