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Abstract

We study properties of operators that are in the convex hull of a finite set of surjective isometries on the Banach space of complex
valued continuous maps defined on a compact and connected topological space. We characterize those projections that are in the
convex combination of two surjective isometries and we show that they are generalized bi-circular projections.
© 2007 Published by Elsevier Inc.
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1. Introduction

Let (X,‖‖) be a complex Banach space and let P : X → X be a linear projection. A basic problem in Banach space
theory is to determine the structure of the projections on a given space and provide characterizations of their ranges.
Various types of projections have been studied in the past, cf. [2,3,10,12,14]. Recently, a class of hermitian projections,
namely bi-circular projections, has been a topic of research interest, see [13]. These projections are in fact hermitian
projections as shown in [8]. A projection is called a bi-circular projection if eiαP + eiβ(I − P) is an isometry for
all α,β ∈ R. This notion was generalized by Fosner, Ilisevic, and C.K. Li in [7], by requiring that P + λ(I − P) is
an isometry for some modulus 1 complex number λ, different from 1. In [7], a characterization of these projections
was obtained in a finite dimensional setting for both real and complex vector spaces. Similar characterization was
derived in [4] for such projections on the Banach spaces C(Ω) and the vector valued C(Ω,X), where X is a Banach
space. The Banach space C(Ω) consists of all continuous functions over the complex numbers equipped with the norm
‖f ‖∞ = maxx∈Ω |f (x)|. Throughout this paper we consider Ω to be a compact and connected topological space.

Theorem 1.1. (See [4].) If Ω is a compact and connected topological space, then P is a generalized bi-circular
projection on C(Ω) if and only if there exist a homeomorphism φ : Ω → Ω, with φ2 = Id, and a continuous function
u : Ω → C, with |u(ω)| = 1 and u(ω) = u(φ(ω)) ( for every ω ∈ Ω), such that

P(f )(ω) = 1

2

[
f (ω) + u(ω)f

(
φ(ω)

)]
.
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The result in Theorem 1.1 is typical in that generalized bi-circular projections can be represented as the average
of the identity with an isometric reflection, see [5] and also [4]. This raises the question of whether the convex
combination of surjective isometries contain any projections. In this paper, we characterize those projections that are
in the convex combination of two surjective isometries on C(Ω).

In our study, the representation of surjective isometries, known as the Banach–Stone theorem, plays a crucial role,
cf. [6].

Theorem 1.2 (Banach–Stone). T is a surjective isometry of C(Ω) if and only if there exist a continuous map
u :Ω → C, with |u(ω)| = 1, and a homeomorphism φ : Ω → Ω so that

T (f )(ω) = u(ω)f
(
φ(ω)

)
.

2. Projections in the convex combination of two isometries

In this section we show that the only projections expressed as a convex combination of two isometries are general-
ized bi-circular projections. We consider two distinct isometries in C(Ω), I1 and I2, with representations

Ii(f )(ω) = uif
(
φi(ω)

)
,

where φi is a homeomorphism of Ω and ui : Ω → C is a continuous map with |ui(ω)| = 1.

Proposition 2.1. Let I1 and I2 be isometries on C(Ω). If Qλ = λI1 + (1 − λ)I2 (with 0 < λ < 1) is a projection, then
λ = 1

2 .

Proof. The operator Qλ is a projection if and only if

λ2u1(ω) · u1
(
φ1(ω)

)
f

(
φ2

1(ω)
) + λ(1 − λ)u1(ω) · u2

(
φ1(ω)

)
f

(
φ2 ◦ φ1(ω)

)
+ λ(1 − λ)u2(ω) · u1

(
φ2(ω)

)
f

(
φ1 ◦ φ2(ω)

) + (1 − λ)2u2(ω) · u2
(
φ2(ω)

)
f

(
φ2

2(ω)
)

= λu1(ω)f
(
φ1(ω)

) + (1 − λ)u2(ω)f
(
φ2(ω)

)
, (2.1)

for every f ∈ C(Ω). First, we observe that, a given ω ∈ Ω determines a partition of Ω into the following four sets

Ω0 = {
ω

∣∣ φ1(ω) = φ2(ω)
}
, Ω1 = {

ω
∣∣ ω = φ1(ω) �= φ2(ω)

}
, Ω2 = {

ω
∣∣ ω = φ2(ω) �= φ1(ω)

}
,

and Ω3 = {ω | ω �= φ1(ω) �= φ2(ω) �= ω}.
If ω ∈ Ω0, then Eq. (2.1) reduces to[

λu1(ω) + (1 − λ)u2(ω)
][

λu1
(
φ1(ω)

)
f

(
φ2

1(ω)
) + (1 − λ)u2

(
φ2(ω)

)
f

(
φ2

2(ω)
)]

= [
λu1(ω) + (1 − λ)u2(ω)

]
f

(
φ1(ω)

)
.

If λu1(ω) + (1 − λ)u2(ω) = 0, then u1(ω) − u2(ω) �= 0. Moreover, u1(ω) · u2(ω) is a real number, since
λ = − u2(ω)

u1(ω)−u2(ω)
. This implies that u1(ω) · u2(ω) = ±1 and λ = 1

2 . If λu1(ω) + (1 − λ)u2(ω) �= 0, then

λu1(φ1(ω))f (φ2
1(ω)) + (1 − λ)u2(φ2(ω))f (φ2

2(ω)) = f (φ1(ω)). We have that λu1(φ1(ω)) + (1 − λ)u2(φ2(ω)) = 1,

for the constant function equal to 1. Furthermore, given a continuous function such that f (φ1(ω)) = 0, we
must have φ2

1(ω) = φ2
2(ω) = φ1(ω). Consequently, Eq. (2.1) is satisfied provided that ω = φ1(ω) = φ2(ω) and

u1(ω) = u2(ω) = 1.

If, for every ω, we have that ω ∈ Ω0 then I1 = I2, contradicting our assumption that the two isometries were
distinct. We assume that ω ∈ Ω1, or equivalently ω = φ1(ω) �= φ2(ω). Equation (2.1) now reduces to

λ2u2
1(ω)f (ω) + (1 − λ)2u2(ω) · u2

(
φ2(ω)

)
f

(
φ2

2(ω)
) + λ(1 − λ)u1(ω) · u2(ω)f

(
φ2(ω)

)
+ λ(1 − λ)u2(ω) · u1

(
φ2(ω)

)
f

(
φ1 ◦ φ2(ω)

)
= λu1(ω)f (ω) + (1 − λ)u2(ω)f

(
φ2(ω)

)
.

In particular, for a continuous function f such that f (ω) = f (φ2(ω)) = 0, we have

λu1
(
φ2(ω)

)
f

(
φ1 ◦ φ2(ω)

) + (1 − λ)u2
(
φ2(ω)

)
f

(
φ2(ω)

) = 0.
2
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Therefore φ1 ◦ φ2(ω) = φ2(ω) and φ2
2(ω) = ω. Equation (2.1) is now written as follows

λ2u2
1(ω)f (ω) + λ(1 − λ)u1(ω)u2(ω)f

(
φ2(ω)

) + λ(1 − λ)u2(ω) · u1
(
φ2(ω)

)
f

(
φ2(ω)

)
+ (1 − λ)2u2(ω)u2

(
φ2(ω)

)
f (ω)

= λu1(ω)f (ω) + (1 − λ)u2(ω)f
(
φ2(ω)

)
.

We consider a continuous function so that f (ω) = 0 and f (φ2(ω)) = 1. Therefore λu1(ω) + λu1(φ2(ω)) = 1. This
implies that u1(ω) + u1(φ2(ω)) is a real number, u1(ω) = u1(φ2(ω)) and λ = 1

u1(ω)+u1(ω)
� 1

2 . On the other hand, for

a function f so that f (ω) = 1 and f (φ2(ω)) = 0, we have λ2u2
1(ω) + (1 − λ)2u2(ω)u2(φ2(ω)) = λu1(ω). Therefore,

λ � 2λ2 − 2λ + 1 and λ = 1
2 . Similar considerations hold for ω ∈ Ω2. It is left to consider ω ∈ Ω3. Given a function

f satisfying f (φ1(ω)) = f (φ2
2(ω)) = f (φ2 ◦ φ1(ω)) = 0 and f (φ2(ω)) = 1, (2.1) reduces to

λ2u1(ω)u1
(
φ1(ω)

)
f

(
φ2

1(ω)
) + λ(1 − λ)u2(ω)u1

(
φ2(ω)

)
f

(
φ1 ◦ φ2(ω)

) = (1 − λ)u2(ω). (2.2)

For a function f such that f (φ2(ω)) = f (φ2
1(ω)) = f (φ1 ◦ φ2(ω)) = 0 and f (φ1(ω)) = 1, Eq. (2.1) becomes

λ(1 − λ)u1(ω)u2
(
φ1(ω)

)
f

(
φ2 ◦ φ1(ω)

) + (1 − λ)2u2(ω)u2
(
φ2(ω)

)
f

(
φ2

2(ω)
) = λu1(ω). (2.3)

Equation (2.2) implies that φ2
1(ω) = φ2(ω) and λ = −1+√

5
2 . Furthermore, Eq. (2.3) implies that φ1(ω) = φ2

2(ω),

(1 − λ)2 = λ and λ = 3−√
5

2 , contradicting the value for λ previously determined. This shows that ω /∈ Ω3. Therefore,
if Qλ is a projection (i.e. Qλ ◦ Qλ(f )(ω) = Qλ(f )(ω)), then ω ∈ Ω0 ∪ Ω1 ∪ Ω2. If ω ∈ Ω1 ∪ Ω2, then λ = 1/2. �
Remark 2.2. We observe that the path Qλ connecting I1 with I2 consist of operators of norm 1 provided the
homeomorphisms φ1 and φ2 are distinct. In fact, it is a consequence of Urysohn’s Lemma the existence of a con-
tinuous function f so that f (φ1(ω)) = u1(ω) and f (φ2(ω)) = u2(ω), for ω ∈ Ω such that φ1(ω) �= φ2(ω). Therefore
‖Qλ(f )‖∞ = 1 and ‖Qλ‖ = 1.

Proposition 2.3. If I1 and I2 are isometries on C(Ω), then Q = I1+I2
2 is a projection if and only if every ω ∈ Ω

satisfies one of the following statements:

(1) ω = φ1(ω) = φ2(ω) and u1(ω) = u2(ω) = 1, or
(2) φ1(ω) = φ2(ω) and u1(ω) = −u2(ω), or
(3) ω = φi(ω) �= φj (ω), φ2

j (ω) = ω, φi ◦ φj (ω) = φj (ω), ui(ω) = ui(φj (ω)) = 1 and the product uj (ω) ·
uj (φj (ω)) = 1.

Proof. Q is a projection if and only if

u1(ω)u1
(
φ1(ω)

)
f

(
φ2

1(ω)
) + u1(ω)u2

(
φ1(ω)

)
f

(
φ2 ◦ φ1(ω)

) + u2(ω)u1
(
φ2(ω)

)
f

(
φ1 ◦ φ2(ω)

)
+ u2(ω)u2

(
φ2(ω)

)
f

(
φ2

2(ω)
)

= 2
{
u1(ω)f

(
φ1(ω)

) + u2(ω)f
(
φ2(ω)

)}
. (2.4)

We first consider ω ∈ Ω so that φ1(ω) = φ2(ω). This implies that φ2
1(ω) = φ1 ◦ φ2(ω) and φ2 ◦ φ1(ω) = φ2

2(ω).

Equation (2.4) reduces to(
u1(ω) + u2(ω)

){
u1

(
φ1(ω)

)
f

(
φ2

1(ω)
) + u2

(
φ1(ω)

)
f

(
φ2

2(ω)
) − 2f

(
φ1(ω)

)} = 0,

therefore u1(ω) = −u2(ω) (statement (2) in the proposition) or

u1
(
φ1(ω)

)
f

(
φ2

1(ω)
) + u2

(
φ1(ω)

)
f

(
φ2

2(ω)
) = 2f

(
φ1(ω)

)
,

for every continuous function f ∈ C(Ω). This implies that φ1(ω) = ω and u1(ω) = u2(ω) = 1, as in the statement (1).
Now, we assume that φ1(ω) �= φ2(ω). We consider f in C(Ω), with values in the interval [0,1], such that

f (φ1(ω)) = 1 and f (φ2(ω)) = 0. Therefore Eq. (2.4) implies that there must exist at least two points in the set{
φ2(ω),φ1 ◦ φ2(ω),φ2 ◦ φ1(ω),φ2(ω)

}

1 2
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equal to φ1(ω). Since φ1(ω) �= φ2(ω), we have φ2
1(ω) �= φ1 ◦ φ2(ω) and φ2

2(ω) �= φ2 ◦ φ1(ω). Consequently, there are
four cases to consider:

(A) φ1(ω) = φ2
1(ω) = φ2 ◦ φ1(ω);

(B) φ1(ω) = φ2
1(ω) = φ2

2(ω);
(C) φ1(ω) = φ1 ◦ φ2(ω) = φ2 ◦ φ1(ω);
(D) φ1(ω) = φ1 ◦ φ2(ω) = φ2

2(ω).

The statement (A) leads to a contradiction, since φ1(ω) = ω and φ1(ω) = φ2(ω). The statement (B) implies that
φ1(ω) = ω and φ2

2(ω) = ω. We observe that φ1 ◦ φ2(ω) �= φ1(ω) �= φ2 ◦ φ1(ω). Furthermore, given a continuous
function f satisfying the conditions: f (φ1(ω)) = f (φ2

1(ω)) = f (φ2
2(ω)) = 1 and f (φ2(ω)) = f (φ1 ◦φ2(ω)) = f (φ2 ◦

φ1(ω)) = 0, Eq. (2.4) reduces to: u2
1(ω)+u2(ω)u2(φ2(ω)) = 2u1(ω). Therefore u1(ω) = 1 and u2(ω) ·u2(φ2(ω)) = 1.

These conditions allows us to rewrite Eq. (2.4) as follows:

u2(ω)u1
(
φ2(ω)

)
f

(
φ1 ◦ φ2(ω)

) = u2(ω)f
(
φ2(ω)

)
.

Hence, we have φ1 ◦ φ2(ω) = φ2(ω) and u1(φ2(ω)) = 1, as in the third statement of the proposition, for i = 1. The
statement (C) yields ω = φ2(ω) and φ1(ω) = φ2 ◦ φ1(ω). Given a continuous function f such that f (φ2

1(ω)) =
f (φ2

2(ω)) = f (φ2(ω)) = 0 and f (φ1 ◦ φ2(ω)) = f (φ2 ◦ φ1(ω)) = 1, Eq. (2.4) becomes u1(ω)u2(φ1(ω)) +
u2(ω)u1(ω) = 2u1(ω). Hence u2(φ1(ω)) = u2(ω) = 1. Now, we consider a continuous function f so that
f (φ2

1(ω)) = f (φ2
2(ω)) = f (φ2(ω)) = 1 and f (φ1 ◦ φ2(ω)) = f (φ2 ◦ φ1(ω)) = 0. Equation (2.4) now reduces to

u1(ω)u1(φ1(ω)) + u2
2(ω) = 2u2(ω) and u1(φ1(ω)) · u1(ω) = u2(ω) = 1. Hence, we get:

f
(
φ2

1(ω)
) = f

(
φ2(ω)

) (= f (ω)
)
,

implying that φ2
1(ω) = ω, as in the statement 3 of the proposition, for i = 2. The statement (D), as statement (A), leads

to a contradiction since φ2(ω) = ω and φ1(ω) = φ2(ω). Conversely, it is straightforward to show that the average
of two isometries, Ii(f )(ω) = ui(ω)f (φi(ω)) (i = 1 or 2) with ui and φi satisfying the conditions stated in the
proposition, satisfies Eq. (2.4). �
Theorem 2.4. The average of two isometries on C(Ω) is a projection if and only if it is a generalized bi-circular
projection.

Proof. We first observe that a generalized bi-circular projection Q is the average of the identity with an isomet-
ric reflection, as stated in Theorem 1.1. Conversely, we denote by Q, the average of I1 and I2, where Ii(f )(ω) =
ui(ω)f (φi(ω)). Proposition 2.3 allows us to define the following partition of Ω :

S = {
ω: φ1(ω) = φ2(ω)

}
,

A1 = {
ω /∈ S: φ1(ω) = ω, φ2

2(ω) = ω, φ1 ◦ φ2(ω) = φ2(ω), u1(ω) = u1
(
φ2(ω)

) = 1, and

u2(ω) · u2
(
φ2(ω)

) = 1
}

and

A2 = {
ω /∈ S: φ2(ω) = ω, φ2

1(ω) = ω, φ2 ◦ φ1(ω) = φ1(ω), u2(ω) = u2
(
φ1(ω)

) = 1, and

u1(ω) · u1
(
φ1(ω)

) = 1
}
.

We construct a continuous function u : Ω → C of modulus 1 and a homeomorphism φ such that

u1(ω)f
(
φ1(ω)

) + u2(ω)f
(
φ2(ω)

) = f (ω) + u(ω)f
(
φ(ω)

)
, (2.5)

for every f ∈ C(Ω,C) and ω ∈ Ω. Let

φ(ω) =
{

φ1(ω) if ω ∈ A2,

φ2(ω) if ω ∈ A1,
φ1(ω) = φ2(ω) if ω ∈ S.
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We show that φ is a homeomorphism. We first show that φ is continuous. In fact, given a net {ωα}, in Ω, converging
to ω∗, we have that the net {φ(ωα)} converges to φ(ω∗). This is a straightforward consequence of the continuity of
both φ1 and φ2. We also have that φ is a bijection. We consider ω1 and ω2 such that φ(ω1) = φ(ω2). Without loss of
generality we assume that ω1 ∈ A1 and ω2 ∈ A2. Therefore, φ2(ω1) = φ1(ω2) and ω1 = φ2 ◦ φ2(ω1) = φ2 ◦ φ1(ω2) =
φ1(ω2). Consequently, ω1 = φ1(ω1) = φ2

1(ω2) = ω2. Furthermore, φ is surjective. Given ω ∈ A1, we have that φ2(ω)

is also in A1 and φ(φ2(ω)) = ω. Similarly for ω ∈ A2. The surjectivity of φ now follows since φi(Ai) ∩ S = ∅. The
continuity of φ−1 follows from the continuity of φ and the compactness of Ω. The function u is determined so that
Eq. (2.5) holds true for all continuous functions, in particular for f ≡ 1. Hence u = u1 + u2 − 1. We observe that u is
modulus 1 since for ω ∈ A1 (or A2) we have that u(ω) = u2(ω), (or u1(ω), respectively). If ω ∈ S then u(ω) = ±1.

Furthermore, we have that u(ω) · u(φ(ω)) = 1. �
Generalized bi-circular projection are the average of the identity operator and an involution isometry, i.e. an isom-

etry L so that L ◦ L = Id. This motivates the following definition of n-circular projection.

Definition 2.5. L is said to be an n-isometry on a Banach space if and only if L is an isometry such that Ln = Id.
Further, Q is a generalized n-circular projection if and only if there exists an n-isometry L of X such that

Q = 1

n

[
Id+L + L2 + · · · + Ln−1]

where n is the smallest positive integer for which Ln = Id.

Remark 2.6. 1. The point spectrum of an n-isometry (L) consists of the nth roots of 1. We denote these roots by
λ0 (= 1), λ1, . . . , λn. A theorem from Taylor, cf [11], implies that L = Q0 + λ1Q1 + · · · + λnQn, where Qk is the
projection onto the kernel of L − λk Id. In particular, this implies that the projection Q0 is a generalized n-circular
projection.

2. It follows from the Banach–Stone Theorem (see [1]) that L is an n-isometry on C(Ω) if and only if
there exist a homeomorphism φ such that φn = Id and a continuous function u : Ω → C such that |u(ω)| = 1,

u(ω)u(φ(ω)) · · ·u(φn−1(ω)) = 1 and Lk(f )(ω) = u(ω) · u(φ(ω)) · · ·u(φk−1(ω))f (φk(ω)).

Examples.

(1) Consider Ω = {z ∈ C: |z| = 1}, φ(z) = e
2π
n

iz, u(z) = 1. Therefore Q(f )(z) = 1
2 [f (z) + f (φ(z)) + f (φ2(z)) +

· · · + f (φn−1(z))] is a n-circular projection.
(2) It follows from Theorem 1.1 that generalized bi-circular projections on C([0,1]) are 2-circular projections, how-

ever there are no n-circular projections for n � 3. This follows from the fact that there are no homeomorphism of
the interval with period n, for n � 3.

Remark 2.7. Similar techniques to those applied in the previous results allow us to show that a projection Q in the
convex combination of three surjective isometries is given by

Q(f )(ω) = f (ω) + f (φ(ω)) + f (φ2(ω))

3
,

where φ is a homeomorphism of Ω such that φ3 = Id. This suggests that for higher values of n the same result might
also hold.

3. Operators in the convex combination of isometries

In this section we study operators in the linear convex combination of finitely many isometries on C(Ω). We start
with a definition to distinguish isometries.

Definition 3.1. We say that two isometries I1(f )(ω) = u1(ω)f (φ1(ω)) and I2(f )(ω) = u2(ω)f (φ1(ω)) are essen-
tially distinct if and only if φ1 and φ2 are distinct homeomorphisms.
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Proposition 3.2. If I1 and I2 are essentially distinct isometries, then ‖I1 − I2‖ = 2. If I1 and I2 are not essentially
distinct isometries, then ‖I1 − I2‖ = ‖u1 − u2‖∞.

Proof. If I1 and I2 are essentially distinct, then there exists ω such that φ1(ω) �= φ2(ω) and hence an Urysohn’s
function f, with modulus 1 values, such that f (φ1(ω)) = u1(ω) and f (φ2(ω)) = −u2(ω). The first statement in the
proposition follows from

‖I1 − I2‖ �
∥∥I1(f ) − I2(f )

∥∥∞ �
∣∣I1(f )(ω) − I2(f )(ω)

∣∣ = 2.

If I1 and I2 are not essentially distinct, then

‖I1 − I2‖ = sup
‖f ‖∞=1

∥∥[
u1(ω) − u2(ω)

]
f

(
φ1(ω)

)∥∥∞ � ‖u1 − u2‖∞ sup
‖f ‖∞=1

∥∥f
(
φ1(ω)

)∥∥∞ = ‖u1 − u2‖∞.

On the other hand, we have that ‖I1 − I2‖ � ‖u1 − u2‖∞, which concludes the proof. �
Definition 3.3. We say that two isometries I1 and I2 are isometrically connected if there exists a continuous map I
from the closed interval [0,1] into the set of all surjective isometries SI , I : [0,1] → SI, such that I(0) = I1 and
I(1) = I2. Each isometry I determines a unique isometric component.

The following corollary is a consequence of the previous proposition.

Corollary 3.4.

(1) The set of all surjective isometries is closed.
(2) Two isometries at a distance less than 2 are isometrically connected.
(3) Two essentially distinct isometries belong to distinct isometric components.

Proof. (1) Given a Cauchy sequence of isometries {In}, after a certain order any two isometries are at a distance
less than 2 and hence, by Proposition 3.2, all the corresponding homeomorphisms are equal. Therefore, a sequence
of isometries is Cauchy if and only if the associated sequence of modulus 1 maps {un} is a Cauchy sequence. Such
sequence is convergent and hence the original sequence of isometries also converges. This completes the proof of the
first statement.

(2) If two isometries I1 and I2 are at a distance less than 2, then ‖I1 − I2‖ = ‖u1 − u2‖∞ < 2, where u1 and
u2 are the associated modulus 1 factors and φ the corresponding homeomorphism. We define the following path of
isometries

I(λ) = λu1 + (1 − λ)u2

|λu1 + (1 − λ)u2|f
(
φ(ω)

)
,

where we observe that |λu1 + (1 − λ)u2| �= 0 since u1 and u2 are modulus 1, and ‖u1 − u2‖∞ < 2.

(3) If I1 and I2 are essentially distinct, then the associated homeomorphisms φ1 and φ2 are distinct. Let I be a
continuous path on [0,1] with values on the set of surjective isometries such that I(0) = I1 and I(1) = I2. We denote
by φλ the homeomorphism associated with the isometry I(λ), for λ ∈ [0,1]. A continuity argument implies that φλ is
locally constant, and it follows that φ1 = φ2, contradicting our initial assumption. �
Remark 3.5. Two isometries, not essentially distinct and with associated multiplicative factors at a distance equal
to 2, are isometrically connected if and if the multiplicative factors are homotopic in S1 = {z ∈ C: |z| = 1}. As for
example, if I1(f )(ω) = f (φ(ω)) and I2(f )(ω) = −f (φ(ω)), then I(λ)(f )(ω) = eπλif (φ(ω)). On the other hand,
if Ω = S1, I1(f )(ω) = f (ω) and I2(f )(ω) = ωf (ω), there is no path of isometries connecting I1 with I2. Otherwise
S1 would be contractible which is impossible, see [9].

Definition 3.6. The n-simplex determined by n surjective isometries is defined to be Δ(I1, I2, . . . , In) = {∑n
k=1 λkIk:

0 � λk � 1, and
∑

λk = 1}.
k
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We also establish when a convex combination of surjective isometries is an operator of norm 1. The convex com-
bination of finitely many surjective isometries consists of operators with norm � 1.

Proposition 3.7. If T is a convex combination of n surjective isometries, with associated homeomorphisms {φi}i=1,...,n

and multiplicative factors {ui}i=1,...,n, then ‖T ‖ < 1 if and only if for every ω ∈ Ω there exist i and j (i �= j) with
φi(ω) = φj (ω) and ui(ω) �= uj (ω).

Proof. Let T (f )(ω) = ∑n
i=1 λiui(ω)f (φi(ω)) with λi � 0 and

∑n
i=1 λi = 1. We assume that for every ω ∈ Ω there

exist i and j (i �= j ) such that φi(ω) = φj (ω) and ui(ω) �= uj (ω). Therefore for a given ω we have that∣∣T (f )(ω)
∣∣ �

∣∣λiui(ω) + λjuj (ω)
∣∣ +

∑
k �=i,j

λk < 1,

for every f with ‖f ‖∞ = 1. Since Ω is compact we have that ‖T ‖ < 1. Conversely, we assume that there exists
ω ∈ Ω so that either

(a) φi(ω) �= φj (ω), for all i �= j , or
(b) there exist i1, i2, . . . , ik ∈ {1, . . . , n} with φip (ω) = φiq (ω) (then uip (ω) = uiq (ω), for p,q ∈ {1, . . . , k}).

Case (a). We select a Urysohn’s function f with ‖f ‖∞ = 1 such that f (φi(ω)) = ui(ω). Therefore T (f )(ω) = 1
and ‖T ‖ = 1.

Case (b). A similar argument used in Case (a) leads to a contradiction and completes the proof. �
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