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Abstract. We characterize norm hermitian operators on classes of tensor prod-
ucts of Banach spaces and derive results for the particular settings of injective
and projective tensor products. We provide a characterization of bi-circular
and generalized bi-circular projections on tensor products of Banach spaces
supporting only dyadic surjective isometries.
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1. Introduction. In this paper, we characterize the structure of norm hermitian
operators on tensor products of Banach spaces in which the only surjective isome-
tries are of dyadic type. Khalil in [9], Khalil-Salem in [8], and Jarosz in [11] pro-
vided classifications of surjective isometries for different tensor products of Banach
spaces that assure the existence of spaces with such isometries. The structure of
norm hermitian operators allows an easy characterization of those operators that
are also hermitian projections. Such characterization can be transcribed for bi-
circular projections, as established by Jamison in [10]. The last section extends
previous results to the more general case of generalized bi-circular projections,
introduced in [7], and provides characterizations of these projections in a variety
of tensor product spaces. Characterizations of generalized bi-circular projections
in various Banach spaces can be found in [3], [4] and [13].

We start by recalling the definitions of norm hermitian operators, bi-circular
and generalized bi-circular projections, see [6] and [7].

Definition 1.1. We consider a complex Banach space X. A bounded operator S on
X is said to be hermitian if and only if {eitS}t∈R defines a one-parameter group
of isometries. An operator P on X is said to be a bi-circular projection if and
only if P 2 = P and P + λ(Id− P ) is an isometry for every complex number λ of



342 F. Botelho and J. Jamison Arch. Math.

modulus 1. An operator Pλ (on X) is said to be a generalized bi-circular projection
if and only if P 2

λ = Pλ and Pλ + λ(I − Pλ) is an isometry of X, for some λ ∈ C,
λ �= 1, and |λ| = 1.

We observe that such isometries must be surjective. In fact, if ω ∈ X, there
exists z ∈ X, z = Pλ(ω) + 1

λ (ω − Pλ(ω)), such that [Pλ + λ(I − Pλ)](z) = ω.

We consider the algebraic tensor product of two Banach spaces X1 and X2,
denoted by X1 ⊗ X2, equipped with some crossnorm α, cf. [12]. We denote the
completion of X1⊗X2 relatively to this crossnorm byX1⊗αX2. The two most well-
known crossnorms onX1⊗X2 are the so called projective crossnorm (denoted by ν)
and injective crossnorm (denoted by λ). The corresponding completions relative to
these norms are called projective and injective tensor products, commonly denoted
byX1⊗̂X2 andX1⊗̌X2, respectively. For completeness of exposition, we recall that
the projective tensor norm is defined as follows

ν(z) = inf

{
n∑

i=1

‖xi‖ ‖yi‖ : z =
n∑

i=1

xi⊗yi

}

the injective tensor norm is defined as follows

λ

(
n∑

i=1

xi⊗yi

)
= sup

{
|

n∑
i=1

ϕ(xi)ψ(yi)|, ‖ϕ‖ = ‖ψ‖ = 1

}
.

It is shown in [12, 5] that λ is the least crossnorm and µ the greatest crossnorm,
i.e. for every reasonable crossnorm α on X1 ⊗X2, and z ∈ X1 ⊗X2, we have that

λ(z) ≤ α(z) ≤ µ(z).

Definition 1.2. We say that a bounded operator T on X1⊗αX2 is dyadic if and
only if there exist bounded operators on the component spaces, denoted by T1 and
T2, so that T = T1⊗T2.

It follows from the Hahn Banach theorem that the representation of a dyadic
operator as the tensor product of two factors is essentially unique. If T1⊗T2 =
T ′

1⊗T ′
2 then there must exist a scalar a so that T1 = aT ′

1 and T ′
2 = aT2. Moreover,

given a dyadic isometry T1⊗T2, T1 is an isometry if and only if T2 is an isometry.

2. Norm Hermitian Operators on Tensor Products Spaces with Dyadic Isometries.
In this section we characterize the norm hermitian operators on a tensor product
of two Banach Spaces X1⊗αX2, where α is a reasonable crossnorm.

Theorem 2.1. If every surjective isometry on X1⊗αX2 is dyadic, then S is a norm
hermitian operator on X1⊗αX2 if and only if either

1. S = rIdX1⊗αX2 , for some r ∈ R, or
2. There exist hermitian operators L and R, on X1 and X2 respectively, such

that S(x1⊗x2) = L(x1)⊗x2 + x1⊗R(x2).
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Proof. If S is either of form (1) or (2) then we show that it is an hermitian operator.
It is sufficient to prove that Tt = eitS is a one-parameter group of isometries.
This follows trivially, whenever S is a multiple of the Id, since Tt = erit Id . If
S(x1⊗x2) = L(x1)⊗x2 + x1⊗R(x2) then Tt(x1⊗x2) = eitL(x1)⊗eitR(x2). Each
tensor factor is a one-parameter group of isometries, so is {Tt}.

Conversely, given S, an hermitian operator on X1⊗αX2, then Tt = eitS is a
uniformly continuous one-parameter group of isometries on X1⊗αX2, see [6]. Each
isometry is dyadic, hence Tt = Lt⊗Rt, with Lt and Rt surjective isometries on
X1 and X2 respectively. We show that these components also define uniformly
continuous one-parameter groups of isometries. We assume that L0 = IdX1 and
R0 = IdX2 . Furthermore, we first assume that {Tt} is a nontrivial family, i.e. for
every t �= 0, Tt is not a multiple of the Id .

Step I {Lt} and {Rt} are uniformly continuous families of operators.

‖Tt − Tt0‖ = sup{α((Tt − Tt0)(z)) : α(z) = 1}

≥ sup{α [(Tt − Tt0)(x⊗y)] , ‖x‖ = ‖y‖ = 1}

= sup{α [(Lt(x)⊗Rt(y) − Lt0(x)⊗Rt0(y)] , ‖x‖ = ‖y‖ = 1}

≥ sup{λ [Lt(x)⊗Rt(y) − Lt0(x)⊗Rt0(y)] , ‖x‖ = ‖y‖ = 1}

= sup{‖ϕ[Lt(x) − Lt0(x)]Rt(y) + ϕ(Lt0(x))[Rt(y) −Rt0(y)]‖X2 ,

‖x‖ = ‖y‖ = ‖ϕ‖ = 1}.

We assume that there exists x ∈ X1 (depending on t) of norm equal to 1 such
that {Lt(x) −Lt0(x), Lt0(x)} is linearly independent. The Hahn-Banach theorem
asserts the existence of ϕ ∈ X∗ such that ϕ(Lt0(x)) = 1, ϕ(Lt(x) − Lt0(x)) = 0,
and ‖ϕ‖ = 1. Therefore

‖Tt − Tt0‖ ≥ sup{‖Rt(y) −Rt0(y)‖X2 : ‖y‖ = 1} = ‖Rt −Rt0‖.
Now, we assume the existence of a sequence {tn} converging to t0 such that for
every n and x ∈ X1, {Ltn(x) − Lt0(x), Lt0(x)} is linearly dependent. This means
that Ltn

(x) − Lt0(x) = an(x)Lt0(x), for scalars an(x) depending on both tn and
x. We prove that each function an(x) is, in fact, independent of x. We start by
selecting two linearly independent vectors in X1, say x1 and x2 (X1 and X2 are
of dimension greater than 1). Therefore

Ltn(x1 + x2) − Lt0(x1 + x2) = an(x1 + x2)Lt0(x1 + x2)

= an(x1)Lt0(x1) + an(x2)Lt0(x2),

and an(x1) = an(x1 + x2) = an(x2). On the other hand, for x1 = kx2 (k a scalar)
we have that an(x1) = an(x2), hence Ltn = (an + 1)Lt0 , with |an + 1| = 1. For
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each n, we have

‖Ttn − Tt0‖ ≥ sup{α(Ltn(x)⊗Rtn(y) − Lt0(x)⊗Rt0(y)) : ‖x‖ = ‖y‖ = 1}

= sup{α((an + 1)Lt0(x)⊗Rtn(y) − Lt0(x)⊗Rt0(y)) : |x‖ = ‖y‖ = 1}

= sup{‖Lt0(x)‖X1 ‖(an + 1)Rtn(y) −Rt0(y)‖X2 , ‖x‖ = ‖y‖ = 1}

= sup{‖(an + 1)Rtn
(y) −Rt0(y)‖X2 : ‖y‖ = 1}

= sup{|(an + 1)ψ(Rtn(y) − ψ(Rt0(y))| : ‖y‖ = |ψ‖ = 1}.

Moreover, if there exists a yn ∈ X2 (of norm 1) such that {Rtn
(yn), Rt0(yn)}

is linearly independent, then let ψ ∈ X∗
2 such that ψ(Rtn(yn)) = an + 1 and

ψ(Rt0(yn)) = 0. This would imply that sup{|(an + 1)ψ(Rtn
(y)) − ψ(Rt0(y))| :

‖y‖ = |ψ‖ = 1} = 1 and then ‖Ttn
− Tt0‖ ≥ 1. This leads to a contradiction,

since {Tt} is uniformly continuous. Therefore we assume that for every n and y,
{Rtn

(y), Rt0(y)} is linearly dependent. As previously shown, there exist scalars
depending on tn so that Rtn

= (bn + 1)Rt0 (|bn + 1| = 1). Since we also have that
Ltn = (an + 1)Lt0 , then Ttn−tm

= (an+1)(bn+1)
(am+1)(bm+1) Id . Consequently, there must exist

a sequence {τn}, converging to zero, and modulus 1 complex numbers λn, such
that Tτn

= λnId , equivalently ei τn S = eln(λn)Id . Since the operator S is hermitian,
it has real spectrum (σ(S)), the spectrum of ln(λn)Id is clearly ln(λn). Theorem 6,
in [16], implies that λn = 1 or S − ln(λn)Id = (2knπi)Id , for some integers kn. In
either case Tτn is a multiple of the identity, contradicting our initial assumption.

We have shown that {Rt} is a uniformly continuous family of surjective isome-
tries. Now we prove that {Lt} is also uniformly continuous. For every ε > 0 there
exists δ > 0 so that given t with |t − t0| < δ, we have ‖Tt − Tt0‖ < ε/2 and
‖Rt −Rt0‖ < ε/2. Consequently, we have that

sup{‖Rt(y) −Rt0(y)‖X2 : ‖y‖ = 1} = ‖Rt −Rt0‖ < ε/2

and

‖Tt − Tt0‖

= sup‖x‖=‖y‖=|ϕ‖=1{‖ϕ[Lt(x) − Lt0(x)]Rt(y) + ϕ(Lt0(x))[Rt(y) −Rt0(y)]‖X2}

≥ sup‖x‖=‖y‖=|ϕ‖=1{|ϕ[Lt(x) − Lt0(x)]|‖Rt(y)‖ − ‖ϕ(Lt0(x))‖ε/2}

= ‖Lt − Lt0‖ − ε/2.

Therefore ‖Lt − Lt0‖ < ε and the uniform continuity of {Lt} follows as well.

Step II {Lt} and {Rt} are weakly differentiable.
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We observe that the function f(t) = Tt is strongly differentiable, hence weakly
differentiable. For every functional Φ ∈ (X1⊗αX2)∗ we have that

lim
t→t0

Φ
(
Tt(z) − Tt0(z)

t− t0

)
exists.

In particular, this limit also exists for functionals of the form ϕ⊗ψ. The linearity
of f allows us to reduce the problem to the differentiability at zero. Hence, for
z = x⊗y, we have

lim
h→0

ϕ⊗ψ
(

Th(z)−z
h

)
= lim

h→0
ϕ⊗ψ

(
(Lh⊗Rh)(x⊗y)−x⊗y

h

)

= lim
h→0

ϕ⊗ψ
[
Lh(x)⊗Rh(y)−y

h + Lh(x)−x
h ⊗y

]
.

If there exists y, so that {Rh(y)−y
h , y} is linearly independent, let ψ be a functional

on X2 that attains the value 1 at y and 0 at Rh(y)−y
h . In this case, we have that

lim
h→0

ϕ⊗ψ
[
Lh(x)⊗Rh(y) − y

h
+
Lh(x) − x

h
⊗y
]

= lim
h→0

ϕ

[
Lh(x) − x

h

]
.

Therefore g(t) = Lt is weakly differentiable. Similarly, if we assume the existence
of x such that {Lh(x)−x

h , x} is linearly independent it follows that h(t) = Rt is
weakly differential. The weak differentiability of either g(t), or h(t) implies the
weak differentiability of h(t), or g(t) respectively. It remains to consider the exis-
tence of a sequence hn converging to zero such that for every x ∈ X1 and y ∈ X2,

{Lh(x)−x
h , x} and {Rh(y)−y

h , y} are both linearly dependent. An analogue of a pre-
vious argument would imply that Tt is trivial, for some values of t, contradicting
our assumption.

Step III {Rt} and {Lt} are one parameter groups of isometries.

The group condition Tt1+t2 = Tt1 ◦ Tt2 implies that Lt1+t2 = λ(t1, t2)Lt1 ◦ Lt2

and Rt1+t2 = λ(t1, t2)Rt1 ◦ Rt2 , for some modulus 1 scalars. We prove that
λ(t1, t2) = 1, for every t1 and t2. We recall that T0 = IdX1⊗αX2 = IdX1⊗IdX2

and without loss of generality we may assume that L0 = IdX1 and R0 = IdX2 .
We also have that L0 = IdX1 = λ(t1,−t1)Lt1 ◦ L−t1 = λ(−t1, t1)L−t1 ◦
Lt1 and Lt1 = λ(t1,−t1)L−1

−t1 implying that IdX1 = λ(−t1, t1)L−t1 ◦ Lt1 =
λ(−t1, t1)λ(t1,−t1)L−t1 ◦L−1

−t1 . Therefore λ(−t1, t1) = λ(t1,−t1) and L−t1 ◦Lt1 =
Lt1 ◦ L−t1 .

We clearly have λ(0, t) = λ(t, 0) = 1, for all t.

First, we observe that λ(t1, t2) = λ(t2, t1) if and only if Lt1 ◦ Lt2 = Lt2 ◦ Lt1 .
In order to prove this last statement we proceed as follows:

L3t = λ(2t, t)L2t ◦ Lt = λ(2t, t)λ(t, t)Lt ◦ Lt ◦ Lt = λ(2t, t)Lt ◦ L2t

and
Lt ◦ L2t = L2t ◦ Lt.
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This last statement is equivalent to λ(2t, t) = λ(t, 2t). Inductively we show that
Lmt ◦ Lnt = Lnt ◦ Lmt and λ(nt,mt) = λ(mt, nt), for n, m integers and t a real
number. Therefore we have Lr1 ◦Lr2 = Lr2 ◦Lr1 for rational values r1 and r2 and
continuity implies that Lt1 ◦ Lt2 = Lt2 ◦ Lt1 and λ(t1, t2) = λ(t2, t1).

Furthermore, for arbitrary values of t, say t, t1, t2 we have that λ(t +
t1, t2)λ(t, t1) = λ(t1 + t2, t)λ(t1, t2). The weak differentiability established in Step
II implies the differentiability of λ, then we have

∂tλ(t+ t1, t2)λ(t, t1) + λ(t+ t1, t2)∂tλ(t, t1) = ∂tλ(t, t1 + t2)λ(t1, t2).

Hence, for t = t2, the equation above implies that ∂tλ(t2, t1) = 0 and λ(t2, t1) =
C(t1), a constant depending on t1. For t2 = 0, we have that 1 = λ(0, t1) = C(t1)
and we have established that λ = 1 which completes the proof of Step III.

The families {Lt} and {Rt} are one-parameter groups of uniformly continu-
ous family of isometries, hence there exist hermitian operators L and R so that
Lt = eitL and Rt = eitR. Therefore we have that Tt = eitS = eitL⊗eitR and the
corresponding generator satisfies

S =
(

−i d
dt

)
t=0

eitS(x1⊗x2) = L(x1)⊗x2 + x1⊗R(x2).

This completes the proof of statement 2, provided that {Tt} is a nontrivial family.

If we assume that, for some t0, Tt0 is a multiple of the Id, then Theorem 6, in
[16], implies that λ = 1 or S − ln(λ)Id = (2kπi)Id , for some integer k. In either
case S is a multiple of the identity. This completes the proof of the theorem. �

3. Norm Hermitian Operators on Projective and Injective tensor Products. The-
orems by Khalil and Saleh [8, 9] state that surjective isometries on a class of
projective tensor products are dyadic. A theorem by Jarosz states that surjective
isometries, that are not reflections, on a class of injective tensor products are also
dyadic. This isometry structure and the theorem 2.1 provide the infrastructure
for the characterization of norm hermitian operators on Khalil-Saleh projective
tensor products and Jarosz injective tensor products, as it will be shown in the
forthcoming corollary 3.3. We start by stating Khalil, Khalil-Saleh and Jarosz
characterizations.

Theorem 3.1. 1. (Khalil in [9]) T is a surjective isometry on Lp⊗̂Lp (p > 1)
if and only if there exists surjective isometries T1, T2 on Lp such that T =
T1⊗T2.

2. (Khalil and Saleh in [8]) If X and Y are an ideal pair of Banach spaces i.e.
X and Y are reflexive Banach spaces so that X and Y ∗ are strictly convex
and X∗ has the approximation property ([5]), then every surjective isometry
T on X⊗̂Y ∗ is of the form T = T1⊗T2, for surjective isometries T1, T2 on
X and Y ∗.
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Theorem 3.2. (Jarosz in [11]) If X1 is a complex Banach space with trivial central-
izer and X2 a complex Banach space with strictly convex dual, then every isometry
T from X1⊗̌X2 onto itself is of the form

1. T (x1⊗x2) = T1(x1)⊗T2(x2), where T1 and T2 are onto isometries.
2. There exists a Banach space Z such that Z⊗̌X2 is isometric to X1 and T

under this identification is of the form T (z⊗ a⊗ b) = z⊗ b⊗ a, for all z ∈ Z
and a, b ∈ X2.

Corollary 3.3. Let E = E1⊗αE2 with Ei of any of the following forms:

1. E1 = E2 = Lp and α = ν,
2. E2 = Y ∗ where (E1, Y ) is an ideal pair of Banach spaces and α = ν, or
3. E1 a Banach space with trivial centralizer and E2 a Banach space with strictly

convex dual and α = λ,

then S is a hermitian operator on E if and only if either

1. S = rId, for some r ∈ R, or
2. There exist hermitian operators L on E1, and R, on E2, respectively, such

that S(x1⊗x2) = L(x1)⊗x2 + x1⊗R(x2).

Proof. If S is of any of the forms (1) or (2) then it is clearly hermitian as previously
shown. If S is hermitian then {eitS}t is a one-parameter group of isometries. This
situation follows clearly from the Theorem 2.1, provided that for every t, eitS is
a dyadic isometry. On the other hand, if there exists a t0(�= 0) so that eit0S is
not dyadic then there must exist an isometry onto Z⊗̌X2 such that, eit0S under
this identification is of the form described in Jarosz theorem. This implies that
e2it0S = Id therefore S is a multiple of the identity, see [16]. This completes the
proof. �

4. Bi-circular Projections on Injective and Projective Tensor Products. The
notion of bi-circular projection on a Banach space was first introduced by Sta-
cho and Zalar in [17] and [18]. A projection P on a Banach space X is said to be
bi-circular if eiaP + eib(I −P ) is an isometry for all choices of real numbers a and
b. These projections are in fact norm hermitian, as shown in [10]. The following
theorem characterizes these projections in a class of tensor product spaces.

Theorem 4.1. If every surjective isometry on X1⊗αX2 is dyadic, then S is a her-
mitian projection on X1⊗̂X2 if and only if S = IdX1⊗R or L⊗IdX2 where L and
R are hermitian projections on X1 and X2, respectively.

Proof. We begin by assuming that S is a hermitian projection then by the previous
theorem

S(x1⊗x2) = L(x1)⊗x2 + x1⊗R(x2),
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where L and R are hermitian operators on X and Y respectively. Since S is a
projection then

[L2 − L](x1)⊗x2 + 2L(x1)⊗R(x2) + x1⊗[R2 −R](x2) = 0.(4.1)

Hahn-Banach Theorem leads to a contradiction if there exists xi ∈ Xi (i = 1, 2)
so that either {x1, L(x1), [L2 − L](x1)} or {x2, R(x2), [R2 − R](x2)} is lin-
early independent. Therefore for every xi ∈ Xi, {x1, L(x1), [L2 − L](x1)} and
{x2, R(x2), [R2 − R](x2)} are linearly dependent. If there exists x1 �= 0 so that
L(x1) = ax1 then equation 4.1 reduces to

x1⊗
[
(a2 − a)x2 + 2aR(x2) + (R2 −R)(x2)

]
= 0,

and R2 +(2a−1)R+(a2 −a) Id ≡ 0. A theorem due to Taylor (see [15]) applied to
R implies that R = −aP1 +(1−a)P2 = P2 −aId, where P1 and P2 are projections
such that P1 ◦P2 = P1 ◦P2 = 0 and a is a real number. These projections are also
hermitian projections. The equation 4.1 reduces to[

(L2 − L)(x1) − 2aL(x1) + (a2 + a)x1
]⊗x2 + [2L(x1) − 2ax1] ⊗P2(x2) ≡ 0.

Therefore, for x2 in the range of P2, the last equation implies that L2 + (1 −
2 a)L+ (a2 − a)Id = 0 and L = aQ1 + (a− 1)Q2, with Q1 and Q2 two orthogonal
projections. Since S(x1⊗x2) = −Q2(x1)⊗x2+x1⊗P2(x2), equation 4.1 now implies
that Q2(x1)⊗P2(x2) = 0 and then either Q2 or P2 is the zero projection. Clearly
if S = IdX1⊗R or L⊗IdX2 , with L and R hermitian projections on X1 and X2
respectively, S is an hermitian projection. This completes the proof. �

Remark 4.2. 1. S is a hermitian projection on Lp⊗̂Lp (p > 1) or on a projective
tensor product X⊗̂Y ∗ where (X,Y ) is an ideal pair of Banach spaces, if and only
if S = IdX⊗SY or SX⊗IdY where SX and SY are hermitian projections on X
and Y respectively.

2. S is a hermitian projection on X1⊗̌X2, with X1 a Banach space with trivial
centralizer and X2 a Banach space with strictly convex dual, if and only if S =
IdX1⊗SX2 or SX1⊗IdX2 where SX2 and SX1 are hermitian projections on X2 and
X1 respectively.

5. Generalized Bi-Circular Projections as Dyadic Operators. A generalization of
bi-circular projections was recently introduced by Fosner, Illisevic, and Li in [7].
It concerns with projections Pλ on X so that Pλ + λ(I −Pλ) is an isometry of X,
for some modulus 1 complex number λ �= 1.

In the next theorem B(X1⊗αX2) represents the bounded operators on
X1⊗αX2.

Theorem 5.1. If λ ∈ T with λ �= 1, then Pλ ∈ B(X1⊗αX2) is a projection asso-
ciated with a dyadic isometry (i.e. Pλ + λ(I − Pλ) is dyadic) if and only if Pλ is
dyadic.
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Proof. Given a generalized dyadic projection Pλ, the isometry Pλ + λ(Id− Pλ) is
clearly dyadic.

We prove the converse, if T denotes a dyadic isometry associated with Pλ,
then Pλ is also dyadic. Since Pλ is a projection then T must satisfy the algebraic
equation T 2 − (λ+ 1)T + λI = 0. Furthermore T = T1⊗T2, hence we have that

T 2
1 (x) ⊗ T 2

2 (y) − (λ+ 1)T1(x) ⊗ T2(y) + λx⊗ y = 0, for all x ∈ X1, and y ∈ X2,

(5.1)

with x⊗y interpreted as an operator from the dual X∗
1 into X2. For every ϕ ∈ X∗

1
the equation (5.1) yields

ϕ(T 2
1 (x))T 2

2 (y) − (λ+ 1)ϕ(T1(x))T2(y) + λϕ(x)y = 0.(5.2)

We first assume that λ = −1, then (5.2) reduces to ϕ(T 2
1 (x))T 2

2 (y) = ϕ(x)y. For
each x ∈ X1 we have that T 2

1 (x) = ax x (for some scalar ax) and T 2
2 = ax Id .

The linearity of T1 implies that ax is independent of x. Hence T 2
1 = aId and

T 2
2 = aId . Therefore Pλ = Id+T

2 = Id, which is clearly dyadic. Now, we assume
λ �= −1. If, in addition, there exists x1 ∈ X1 so that {x1, T1(x1), T 2

1 (x1)} is linearly
independent then the Hahn-Banach theorem assures the existence of a functional
in X∗

1 such that ϕ(T1(x1)) = 1 and ϕ(T 2
1 (x1)) = ϕ(x1) = 0. This leads to a

contradiction. Hence, for all x ∈ X1, the set {x, T1(x), T 2
1 (x)} must be linearly

dependent. If there exists x ∈ X1 such that {x, T1(x)} is linearly independent then
T 2

1 (x) = a x+ bT1(x), for some scalars a and b. Then equation (5.2) reduces to

[aϕ(x) + bϕ(T1(x))]T 2
2 (y) − (λ+ 1)ϕ(T1(x))T2(y) + λϕ(x)y = 0.

We select a functional ϕ such that ϕ(x) = 1 and ϕ(T1(x)) = 0. Hence aT 2
2 (y) +

λy = 0, for all y ∈ X2. This implies that T 2
2 = cId, for some c of modulus

1. We also select a functional ψ such that ψ(x) = 0 and ψ(T1(x)) = 1. Then
b c y − (λ + 1)T2(y) = 0 and T2 = d Id for some scalar d of modulus 1. The
equation (5.2) becomes φ(d2T 2

1 (x) − (λ + 1) d T1(x) + λx) = 0, for all φ ∈ X∗
1 .

Therefore d2T 2
1 − (λ+ 1)d T1 + λId = 0. The projection Pλ is given as follows

Pλ(x⊗ y) =
1

1 − λ
[−λx⊗ y + T1(x) ⊗ T2(y)] =

1
1 − λ

[−λx+ d T1(x)] ⊗ y.

We set S1(x) = −λx+d T1(x)
1−λ , hence Pλ = S1 ⊗ Id . The remaining case assumes

that for every x ∈ X1, {x, T1(x)} is linearly dependent. For each x, there exists a
modulus 1 scalar ex such that T1(x) = ex x. The linearity of T1 assures that ex is
independent of x and then T1 = eId . The equation (5.2) becomes

e2φ(x)T 2
2 (y) − (λ+ 1) eφ(x)T2(y) + λφ(x)y = 0,

for every φ ∈ X∗
1 and y ∈ X2. Therefore e2T 2

2 − e(λ + 1)T2 + λId = 0 and
Pλ = Id ⊗ S2 with S2(y) = −λy+eT2(y)

1−λ . �

It is a consequence of the previous proof the following corollary.
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Z1⊗αZ2 �S
Z1⊗αZ2

U1 ⊗ U2
� �

U1 ⊗ U2

X1⊗αX2 �T X1⊗αX2

Figure 1. S and T are tensor conjugate if and only if the diagram commutes.

Corollary 5.2. If λ �= −1, Pλ ∈ B(X1 ⊗αX2) is a generalized bi-circular projection
associated with a dyadic isometry if and only if Pλ is either of the form S1 ⊗ Id
or Id ⊗ S2, with Si a generalized bi-circular projection on Xi.

Proof. It was shown in the previous that if Pλ is associated with a dyadic isometry
then

Pλ(x⊗ y) = S1(x)⊗y or Pλ(x⊗ y) = x⊗S2(y)

with S1(x) = −λx+d T1(x)
1−λ and S2(y) = −λy+e T2(y)

1−λ . The operators S1 and S2 are
generalized bi-circular projections on the component spaces since d2T 2

1 − (λ +
1)d T1 + λId = 0 and e2T 2

2 − e (λ + 1)T2 + λId = 0. It is trivial to check the
converse. �

Definition 5.3. Given the Banach spacesX1,X2, Z1 and Z2, we consider the tensor
products X1 ⊗α X2 and Z1 ⊗α Z2, representing the completions of X1 ⊗X2 and
Z1 ⊗Z2 relative to the crossnorm α. A bounded operator S on Z1 ⊗α Z2 is said to
be tensor conjugate to a bounded operator T, on X1 ⊗α X2, if and only if there
exists a dyadic isometry U1 ⊗ U2 with isometric factors Ui : Zi → Xi such that
(see Figure 1)

T = (U1 ⊗ U2) ◦ S ◦ (U−1
1 ⊗ U−1

2 ).(5.3)

Remark 5.4. Isometric properties are preserved under tensor conjugacy. The equa-
tion 5.3 also implies that T k = (U1⊗U2)◦Sk◦(U−1

1 ⊗U−1
2 ), for every positive inte-

ger k. In particular, we conclude that, for X1 = X2, the operator S(a⊗ b) = b⊗ a
is not tensor conjugate to a dyadic one.

If X1 has trivial centralizer (see [1] for the definition) and X2 has strictly
convex dual it was shown in [11] that there exists a Banach space Z so that the
injective tensor product Z⊗̌X2 is isometric to X1, we denote such isometry by
U . If T is a nondyadic surjective isometry on X1⊗̌X2 then S = U⊗IdX2 ◦ T ◦
U−1⊗IdX2 , acting on the basis element z⊗a⊗ b, yields z⊗b ⊗ a. If we assume that
a given generalized bi-circular projection Pλ, on X1⊗̌X2, is associated with such
an isometry T then P∗ = U−1⊗IdX2 ◦ Pλ ◦ U⊗IdX2 is a projection (P 2

∗ = P∗).
Therefore we have that (λ+1)(S− Id) = 0, and hence λ = −1 or S = Id . In either
case Pλ is the average of the Id with an isometric reflection (S2 = Id).
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Corollary 5.5. If X1 is a complex Banach space with trivial centralizer and X2 a
complex Banach space with strictly convex dual then every generalized bi-circular
projection P on X1⊗̌X2 is of the form

P1⊗IdX2 , IdX1⊗P2, or
IdX1⊗X2 +R

2
,

where Pi are generalized bi-circular projections on Xi and R is an isometric re-
flection on X1⊗̌X2.

Proof. If the isometry associated with P is dyadic then corollary 5.2 applies. Other-
wise Jarosz’s theorem asserts the existence of a Banach space Z such thatX1 is iso-
metrically isomorphic to Z⊗X2 where the isometry associated with P , denoted by
R, is tensor conjugate to a reflection, hence R2 = Id . Since R2−(1+λ)R+λId = 0
then λ = −1 and P =

IdX1⊗̌X2
+R

2 . This completes the proof. �

Corollary 5.6. 1. Every generalized bi-circular projection, Pλ with λ �= −1, on
Lp⊗̂Lp is of the form

P1⊗Id or Id⊗P2,

where Pi is a generalized bi-circular projection on Lp.
2. If X and Y define an ideal pair of Banach spaces, every generalized bi-circular

projection, Pλ with λ �= −1, on X⊗̂Y ∗ is of the form

P1 ⊗ IdY ∗ or IdX ⊗ P2,

where P1 is a generalized bi-circular projection on X and P2 is a generalized
bi-circular projection on Y ∗ .
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