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Abstract. We introduce and study the essential numerical range for Banach

space operators. This generalizes the corresponding well-known concept for

Hilbert space operators.

1. Introduction

Let A be a complex normed algebra with unit. Denote by A∗ the set of all

bounded linear functionals on A. The algebraic numerical range of an element

a ∈ A is defined by

V (a, A) = {f(a) : f ∈ A∗, f(1) = 1 = ‖f‖}.

It is well-known that V (a, A) is a compact convex subset of the complex plane and

σ(a) ⊂ V (a, A) (see [BD1]). Moreover,

V (a, A) =
⋂

µ∈C

{λ : |λ − µ| ≤ ‖a − µ‖}

and

exp(−1) · ‖a‖ ≤ max{|λ| : λ ∈ V (a, A)} ≤ ‖a‖.
Let B(X) be the Banach algebra of all bounded linear operators acting on a complex

Banach space X . For T ∈ B(X) the spatial numerical range is defined by

W (T ) =
{
〈Tx, x∗〉 : x ∈ X, x∗ ∈ X∗, ‖x‖ = 1 = ‖x∗‖ = 〈x, x∗〉

}
.
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If X is a Hilbert space and T ∈ B(X) then the above definition assumes a simpler

form

W (T ) =
{
〈Tx, x〉 : x ∈ X, ‖x‖ = 1

}
.

The algebraic and spatial numerical ranges of an operator are closely connected. For

Hilbert space operators the set W (T ) is convex by the classical Toeplitz–Hausdorff

theorem; moreover,

V (T, B(X)) = W (T ).

For Banach space operators this is no longer true. By [BD1], Theorem 9.4, we have

only

(1) V (T, B(X)) = conv W (T ),

where conv denotes the closed convex hull.

An essential version of the numerical range has also been studied.

Denote by K(X) the ideal of all compact operators acting on a complex Ba-

nach space X , and let π be the canonical projection from B(X) onto the Calkin al-

gebra B(X)/K(X). Denote further by ‖·‖e the essential norm ‖T ‖e = inf{‖T+K‖ :

K ∈ K(X)}.

Definition 1. [BD2] Let X be an infinite-dimensional Banach space and T ∈ B(X).

The essential numerical range Ve(T ) of T is defined by

Ve(T ) = V
(
π(T ), B(X)/K(X), ‖ · ‖e

)
.

We summarize the basic properties of the essential numerical range in the following

theorem:

Theorem 2. [BD2] Let X be an infinite-dimensional Banach space and T ∈ B(X).

Then:

(i) Ve(T ) is a nonempty compact convex set and σe(T ) ⊂ Ve(T );

(ii) Ve(T ) = {0} if and only if T ∈ K(X);

(iii) Ve(T ) =
⋂{

V (T + K, B(X)) : K ∈ K(X)
}

;

(iv) Ve(T ) =
{
f(T ) : f ∈ B(X)∗, f(I) = 1 = ‖f‖, f(K(X)) = {0}

}
;

(v) exp(−1) · ‖T ‖e ≤ max{|λ| : λ ∈ Ve(T )} ≤ ‖T ‖e.

Here σe(T ) denotes the essential spectrum of T , σe(T ) = {λ ∈ C : T −
λ is not Fredholm}.

The essential spatial numerical range (defined by property (ii) of the following

theorem) was studied for Hilbert space operators.

Acta Sci. Math. (Szeged),71:1−2(2005)
All rights reserved c© Bolyai Institute, University of Szeged

All rights reserved © Bolyai Institute, University of Szeged



On the essential numerical range 287

Theorem 3. ([FSW]) Let H be an infinite-dimensional Hilbert space and T ∈
B(H). Let λ ∈ C. The following properties are equivalent:

(i) λ ∈ Ve(T );

(ii) there exists a sequence (xn) ⊂ H such that ‖xn‖ = 1 for all n, xn → 0 weakly,

and limn→∞〈Txn, xn〉 = λ;

(iii) there exists an orthonormal sequence (un) ⊂ H such that

lim
n→∞

〈Tun, un〉 = λ.

Thus the algebraic and spatial essential numerical ranges for Hilbert space

operator coincide.

The aim of this paper is to study the essential version of spatial numerical

range for Banach space operators. We use the following natural definition:

Definition 4. Let X be an infinite-dimensional Banach space and T ∈ B(X).

Denote by We(T ) the set of all complex numbers λ with the property that there

are nets (uα) ⊂ X , (u∗
α) ⊂ X∗ such that

‖uα‖ = ‖u∗
α‖ = 〈uα, u∗

α〉 = 1

for all α, uα → 0 weakly and 〈Tuα, u∗
α〉 → λ.

In analogy to (1) we prove that the algebraic essential numerical range is

equal to the convex hull of the set We(T ); however, instead of the essential norm in

the Calkin algebra it is necessary to consider another measure of non-compactness.

This is probably the reason why the essential spatial numerical ranges for Banach

space operators have not been studied before.

Moreover, for reflexive Banach spaces it is sufficient to consider only sequences

(instead of nets) in the definition of We(T ). The same is true for a more general

class of Asplund spaces (i.e., Banach spaces with the property that each separable

subspace has a separable dual).

2. Spatial essential numerical range

Let X be an infinite-dimensional complex Banach space and T ∈ B(X). In

this section we study the basic properties of the spatial essential numerical range.
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Proposition 5. We(T ) is a closed subset of C.

Proof. Let λ ∈ We(T )− and let λn ∈ We(T ), λn → λ. Let ε > 0 and let F =

{v∗1 , . . . , v∗k} be a finite subset of X∗. Find an n such that |λn − λ| < ε/2. Since

λn ∈ We(T ), there are elements uε,F ∈ X and u∗
ε,F ∈ X∗ such that ‖uε,F‖ =

1 = ‖u∗
ε,F‖ = 〈uε,F , u∗

ε,F 〉, |〈Tuε,F , u∗
ε,F 〉 − λn| < ε/2 and |〈uε,F , v∗j 〉| < ε (j =

1, . . . , k). Thus

|〈Tuε,F , u∗
ε,F 〉 − λ| ≤ |〈Tuε,F , u∗

ε,F 〉 − λn| + |λn − λ| < ε.

Consider the nets (uε,F ), (u∗
ε,F ) ordered by the relation (ε, F ) ≤ (ε′, F ′) if and only

if ε′ ≤ ε and F ′ ⊃ F . It is easy to see that uε,F → 0 weakly and 〈Tuε,F , u∗
ε,F 〉 → λ.

Hence λ ∈ We(T ) and We(T ) is closed.

Proposition 6. Let T ∈ B(X) and λ ∈ C. The following properties are equivalent:

(i) λ ∈ We(T );

(ii) for every subspace M ⊂ X of finite codimension and each ε > 0 there are

x ∈ M and x∗ ∈ X∗ such that ‖x‖ = ‖x∗‖ = 1 = 〈x, x∗〉 and |〈Tx, x∗〉−λ| ≤ ε.

Proof. (ii)⇒(i): For M ⊂ X with codim M < ∞ and ε > 0 choose xM,ε ∈
M and x∗

M,ε ∈ X∗ such that ‖xM,ε‖ = ‖x∗
M,ε‖ = 1 = 〈xM,ε, x

∗
M,ε〉 and

|〈TxM,ε, x
∗
M,ε〉 − λ| ≤ ε. Consider the nets (xM,ε) and (x∗

M,ε) ordered by the

relation (M, ε) ≤ (M ′, ε′) if and only if M ′ ⊂ M and ε′ ≤ ε. Clearly xM,ε → 0

weakly and 〈TxM,ε, x
∗
M,ε〉 → λ. Thus λ ∈ We(T ).

(i)⇒(ii): Conversely, let λ ∈ We(T ) and let (uα) ⊂ X and (u∗
α) ⊂ X∗ be the

nets with the properties required in the definition of We(T ). Let M ⊂ X be a

subspace of finite codimension and let ε > 0. We may assume that M 6= X since

otherwise the statement is obvious. Let L = M ∩ T−1M . Then L is a subspace of

X of finite codimension. Let k = codim L.

Consider the finite-dimensional space X/L. By the Auerbach lemma there

are elements w̃1, . . . , w̃k ∈ X/L and

v∗1 , . . . , v∗k ∈ (X/L)∗ = L⊥ ⊂ X∗

such that ‖w̃i‖X/L = 1 = ‖v∗j ‖ and 〈w̃i, v
∗
j 〉 = δi,j (the Kronecker symbol) for all

i, j = 1, . . . , k. Choose δ > 0 small enough (δ ≤ min{(4k)−1, ε2

402‖T‖2k}). Choose

vi ∈ X such that vi + L = w̃i and ‖vi‖ < 1 + δ for all i = 1, . . . , k. Thus

〈vi, v
∗
j 〉 = δi,j (i, j = 1, . . . , k).
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Moreover, L =
⋂k

j=1 Ker v∗j . Find β such that |λ − 〈Tuβ, u∗
β〉| < ε/2 and

|〈uβ , v∗j 〉| ≤ δ for j = 1, . . . , k. Let y = uβ − ∑k
j=1〈uβ, v∗j 〉vj . Then 〈y, v∗j 〉 = 0 for

j = 1, . . . , k, and so y ∈ L. Further

‖y − uβ‖ ≤
k∑

j=1

|〈uβ , v∗j 〉| · ‖vj‖ < kδ(1 + δ) ≤ 2kδ.

Let y1 = y
‖y‖ and y∗

1 =
u∗

β |M
‖u∗

β
|M‖ . We have y1 ∈ L ⊂ M , y∗

1 ∈ M∗, ‖y1‖ = 1 =

‖y∗
1‖ and

‖y1 − y‖ = | 1 − ‖y‖ | = | ‖uβ‖ − ‖y‖ | ≤ ‖uβ − y‖ ≤ 2kδ.

Thus

‖y1 − uβ‖ ≤ ‖y1 − y‖ + ‖y − uβ‖ ≤ 4kδ

and

|〈y1, u
∗
β〉 − 1| = |〈y1 − uβ , u∗

β〉| ≤ ‖y1 − uβ‖ ≤ 4kδ.

Further ‖u∗
β|M‖ ≤ ‖u∗

β‖ = 1 and

‖u∗
β|M‖ ≥ |〈y1, u

∗
β〉| ≥ |〈uβ, u∗

β〉| − |〈uβ − y1, u
∗
β〉| ≥ 1 − ‖uβ − y1‖≥1 − 4kδ.

We have

‖y∗
1 − u∗

β|M‖ =
∣∣∣ 1 − ‖u∗

β|M‖
∣∣∣ ≤ 4kδ,

and so

|〈y1, y
∗
1〉 − 1| ≤ |〈y1, u

∗
β〉 − 1| + |〈y1, y

∗
1 − u∗

β|M 〉| ≤ 4kδ + ‖y∗
1 − u∗

β|M‖ ≤ 8kδ.

By the Bishop–Phelps–Bollobás Theorem, there are x ∈ M and z∗ ∈ M∗ such that

‖x‖ = ‖z∗‖ = 1 = 〈x, z∗〉, ‖x − y1‖ ≤
√

32kδ ≤ 6
√

kδ and ‖z∗ − y∗
1‖ ≤

√
32kδ ≤

6
√

kδ. We have

‖z∗ − u∗
β|M‖ ≤ ‖z∗ − y∗

1‖ + ‖y∗
1 − u∗

β |M‖ ≤ 6
√

kδ + 4kδ ≤ 10
√

kδ.

Let x∗ be an extension of z∗ to X such that ‖x∗‖ = ‖z∗‖ = 1. Then ‖x‖ = ‖x∗‖ =

1 = 〈x, x∗〉. Since Ty1 ∈ M , we have

|〈Tx, x∗〉 − λ|
≤ |〈Tx − Ty1, x

∗〉| + |〈Ty1, x
∗〉 − λ|

≤‖T ‖ · ‖x − y1‖ + |〈Ty1, z
∗〉 − λ|

≤6‖T ‖
√

kδ+|〈Tuβ, u∗
β〉 − λ|+|〈T (y1 − uβ), u∗

β〉|+|〈Ty1, z
∗ − u∗

β |M 〉|
≤6‖T ‖

√
kδ + ε/2 + 4‖T ‖kδ + 10‖T ‖

√
kδ

≤ε/2 + 20‖T ‖
√

kδ ≤ ε.
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We now introduce another seminorm in B(X) (see e.g. [LS], or [M2], Sec. 23). For

T ∈ B(X) let

‖T ‖µ = inf
{
‖T |M‖ : M ⊂ X a subspace of finite codimension

}
.

It is well-known that ‖ · ‖µ is a “measure of non-compactness”, i.e., ‖T ‖µ = 0 if

and only if T is compact. Moreover, ‖ · ‖µ is an algebra seminorm, i.e.,

‖T + S‖µ ≤ ‖T ‖µ + ‖S‖µ, ‖TS‖µ ≤ ‖T ‖µ · ‖S‖µ, ‖αT ‖µ = |α| · ‖T ‖µ

for all T, S ∈ B(X) and α ∈ C. Thus ‖ · ‖µ defines an algebra norm on the Calkin

algebra B(X)/K(X).

For T ∈ B(X) we define a new essential numerical range by

Vµ(T ) = V
(
T, B(X)/K(X), ‖ · ‖µ

)
.

Thus Vµ(T ) is the set of all complex numbers λ such that there is a functional

Φ̃ ∈ (B(X)/K(X), ‖·‖µ)∗ satisfying ‖Φ̃‖ = 1 = Φ̃(I+K(X)) and Φ̃(T +K(X)) = λ.

Equivalently, there is a functional Φ ∈ B(X)∗ such that Φ(K(X)) = 0, Φ(I) = 1,

Φ(T ) = λ and |Φ(S)| ≤ ‖S‖µ for all S ∈ B(X).

In particular, Vµ(T ) is a closed convex set and

exp(−1) · ‖T ‖µ ≤ max{|λ| : λ ∈ Vµ(T )} ≤ ‖T ‖µ.

Remarks 7. (i) If H is a Hilbert space then ‖T ‖µ coincides with the essential norm

‖T ‖e, and so

Vµ(T ) = Ve(T ).

(ii) In general ‖T ‖µ ≤ ‖T ‖e, and so

Vµ(T ) ⊂ Ve(T ).

However, in general the norms ‖·‖e and ‖·‖µ are not equivalent, see [AT]. Thus the

above inclusion can be proper (by Theorem 2 (v) and the corresponding property

of Vµ(T )).

(iii) Although in general Vµ(T ) 6= Ve(T ), for any Banach space X and T ∈
B(X) we have Vµ(T ) = {0} if and only if Ve(T ) = {0}; this is true if and only if T

is compact.
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Theorem 8. Let T ∈ B(X). Then Vµ(T ) = conv We(T ).

Proof. Let λ ∈ We(T ). Let (uα), (u∗
α) be the nets with the required properties.

For β, γ ∈ C define Φ(βI + γT ) = β + γλ. We show that

|Φ(βI + γT )| ≤ ‖βI + γT ‖µ

for all β, γ ∈ C. Write for short S = βI + γT .

Let M ⊂ X be a subspace of finite codimension and ε > 0. Then there are

x ∈ M and x∗ ∈ X∗ such that ‖x‖ = ‖x∗‖ = 1 = 〈x, x∗〉 and |〈Tx, x∗〉 − λ| < ε.

Thus

‖S|M‖ ≥ ‖Sx‖ ≥ |〈Sx, x∗〉| = |β + γ〈Tx, x∗〉| ≥ |β + γλ| − |γε|.

Since ε > 0 was arbitrary, we have ‖S|M‖ ≥ |β + γλ|, and so ‖S‖µ ≥ |β + γλ|.
Thus ‖S‖µ ≥ |Φ(S)| for each S ∈ ∨{I, T }. By the Hahn–Banach Theorem, it

is possible to extend Φ to a functional (denoted also by Φ) on B(X) such that

|Φ(R)| ≤ ‖R‖µ for all R ∈ B(X). In particular, Φ(K) = 0 for each compact

operator K ∈ K(X). By definition, λ = Φ(T ) ∈ Vµ(T ). Since Vµ(T ) is a convex set,

we have conv We(T ) ⊂ Vµ(T ).

To show the opposite inclusion, we first prove the following lemma.

Lemma 9. Let S ∈ B(X) and 0 ∈ Vµ(S). Then there exists η ∈ We(S) with

Re η ≥ 0.

Proof. By definition, there exists a functional Φ ∈ B(X)∗ such that Φ(I) = 1,

Φ(S) = 0 and |Φ(R)| ≤ ‖R‖µ for all R ∈ B(X).

Let ε > 0 and M ⊂ X be a subspace of finite codimension. Let a > 0 be

sufficiently large. We have |Φ(aI + S))| = a ≤ ‖aI + S‖µ. Then there exists

x ∈ M, ‖x‖ = 1 such that ‖(aI + S)x‖ > a − ε. By the Hahn–Banach Theorem,

there is an x∗ ∈ X∗ with ‖x∗‖ = 1 and

〈ax + Sx, x∗〉 = ‖ax + Sx‖ > a − ε.

We have

Re 〈Sx, x∗〉 = Re 〈ax + Sx, x∗〉 − Re 〈ax, x∗〉 > a − ε − |〈ax, x∗〉| ≥ −ε,

and

Re 〈ax, x∗〉 = Re 〈ax + Sx, x∗〉 − Re 〈Sx, x∗〉 > a − ε − ‖S‖.
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Thus Re 〈x, x∗〉 > 1 − ε+‖S‖
a . By choosing a sufficiently large, we can find x ∈ M

and x∗ ∈ X∗ such that ‖x‖ = 1 = ‖x∗‖ and |〈x, x∗〉 − 1| < ε2/4.

By the Bishop–Phelps–Bollobás Theorem, there exist y ∈ X and y∗ ∈ X∗

such that

‖y‖ = 1 = ‖y∗‖ = 〈y, y∗〉, ‖y − x‖ < ε and ‖y∗ − x∗‖ < ε.

Thus dist {y, M} ≤ ‖y − x‖ < ε and

Re 〈Sy, y∗〉 = Re 〈Sx, x∗〉 + Re 〈S(y − x), x∗〉 + Re 〈Sy, y∗ − x∗〉|
> −ε − 2ε‖S‖.

Therefore we have nets (yM,ε) ⊂ X, (y∗
M,ε) ⊂ X∗ (indexed by subspaces M ⊂ X of

finite codimension and by ε > 0) such that

‖yM,ε‖ = 1 = ‖y∗
M,ε‖ = 〈yM,ε, y

∗
M,ε〉, dist {yM,ε, M} < ε

and Re 〈SyM,ε, y
∗
M,ε〉 > −ε − 2ε‖S‖ for all M and ε > 0.

We show that the net (yM,ε) converges weakly to 0. Let u∗ ∈ X∗, ‖u∗‖ = 1,

let τ > 0 and L = Ker u∗. For every (M, ε) ≥ (L, τ) (i.e., M ⊂ L, ε ≤ τ) we

have dist {yM,ε, L} < ε ≤ τ , and so

|〈yM,ε, u
∗〉| ≤ dist {yM,ε, L} < τ.

Hence the net (yM,ε) converges weakly to 0.

Set ηM,ε = 〈SyM,ε, y
∗
M,ε〉. We have Re ηM,ε > −ε−2ε‖S‖. Find a subnet (yβ)

of yM,ε such that the corresponding numbers (ηβ) are converging to some number

η. Clearly (yβ) converges weakly to 0, Re η ≥ 0 and η ∈ We(S).

Continuation of the proof of Theorem 8. Since We(T ) is closed, its convex hull

conv We(T ) is also closed. Suppose on the contrary that there is a λ ∈ Vµ(T ) \
conv We(T ). Then there are µ ∈ C, |µ| = 1 and q ∈ R such that Re (µλ) > q and

conv We(T ) ⊂ {z ∈ C : Re (µz) < q}.

Let S = µT − µλI. Then 0 ∈ Vµ(S) and

We(S) = {µz − µλ : z ∈ We(T )} ⊂ {z ∈ C : Re z < 0},

a contradiction with Lemma 9.

This finishes the proof of Theorem 8.
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Proposition 10. Let T ∈ B(X). Then σe(T ) ⊂ We(T ).

Proof. Let λ ∈ σe(T ), i.e., T − λ is not Fredholm. We distinguish two cases.

Suppose first that T − λ is not upper semi-Fredholm. Let ε > 0 and let

M ⊂ X be a subspace of finite codimension.

Then there exists x ∈ M with ‖x‖ = 1 and ‖(T − λ)x‖ < ε. Find x∗ ∈ X∗

such that ‖x∗‖ = 1 = 〈x, x∗〉. Then

|〈Tx, x∗〉 − λ| = |〈(T − λ)x, x∗〉| ≤ ‖(T − λ)x‖ < ε.

By Proposition 6, λ ∈ We(T ).

Suppose now that T − λ is upper semi-Fredholm but not Fredholm. Then

dim Ker (T ∗ − λ) = ∞.

Let u∗
1, . . . , u

∗
n ∈ X∗ be of norm one and let ε > 0. Denote by F ′ the subspace

of X∗ spanned by the elements u∗
1, . . . , u

∗
n. Since dimKer (T ∗ − λ) = ∞ and

dim F ′ < ∞, there exists v∗ ∈ Ker (T ∗ − λ) such that ‖v∗‖ = 1 = dist {v∗, F ′},
see [K, p. 199]. Therefore there exists a functional v∗∗ ∈ F

′⊥ ⊂ X∗∗ such that

‖v∗∗‖ = 1 = 〈v∗, v∗∗〉.
By the local reflexivity principle, see e.g. [FHH], Theorem 9.15, there exists

v ∈ X such that v ∈ ⊥F ′, 〈v, v∗〉 = 1 and ‖v‖ ≤ 1 + ε. Thus 〈 v
‖v‖ , v∗〉 = 1

‖v‖ ≥
1

1+ε ≥ 1 − ε.

By the Bishop–Phelps–Bollobás Theorem, there exist w ∈ X , w∗ ∈ X∗ such

that ‖w‖ = ‖w∗‖ = 1 = 〈w, w∗〉,
∥∥∥w − v

‖v‖

∥∥∥ < 2
√

ε and ‖w∗ − v∗‖ ≤ 2
√

ε. Thus

|〈Tw, w∗〉 − λ| ≤
∣∣∣
〈
T

(
w − v

‖v‖
)
, w∗

〉∣∣∣ +
∣∣∣
〈 Tv

‖v‖ , w∗ − v∗
〉∣∣∣ +

∣∣∣
〈 Tv

‖v‖ , v∗
〉
− λ

∣∣∣

≤ 2‖T ‖√ε + 2‖T ‖√ε +
∣∣∣
〈 v

‖v‖ , λv∗
〉
− λ

∣∣∣

≤ 4‖T ‖√ε + |λ| ·
∣∣∣

1

‖v‖ − 1
∣∣∣ ≤ 4‖T ‖√ε + ε|λ|.

Further,

|〈w, u∗
i 〉| = |〈w − v, u∗

i 〉| ≤ ‖w − v‖ ≤
∥∥∥w − v

‖v‖
∥∥∥ +

∥∥∥
v

‖v‖ − v
∥∥∥ < 2

√
ε + ε

for all i = 1, . . . , n.

In this way we obtain nets (wα) ⊂ X and (w∗
α) ⊂ X∗ indexed by finite subsets

of X∗ and positive numbers ε which satisfy all the conditions of the definition of

We(T ).

Hence σe(T ) ⊂ We(T ).
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3. Reflexive and Asplund spaces

For operators on reflexive Banach spaces (and more generally, on Asplund

spaces) it is sufficient to consider only sequences instead of nets in the definition

of We(T ). Thus the situation is more similar to the Hilbert space case.

Recall that a sequence (xn) in a Banach space X is called basic if every vector

u ∈ ∨{xn : n ∈ N} can be uniquely expressed as a sum u =
∑∞

n=1 αnxn for some

complex coefficients αn.

By a classical result of Banach, see [FHH], Prop. 6.13, a sequence (xn) ⊂ X

consisting of nonzero vectors is basic if and only if there is a constant k > 0 such

that for all r, m ∈ N, r < m and complex numbers α1, . . . , αm we have

∥∥∥
r∑

i=1

αixi

∥∥∥ ≤ k ·
∥∥∥

m∑

i=1

αixi

∥∥∥.

Theorem 11. Let X be a reflexive Banach space and T ∈ B(X). Let λ ∈ C. Then

the following conditions are equivalent:

(i) λ ∈ We(T );

(ii) there exist sequences (xn) ⊂ X, (x∗
n) ⊂ X∗ such that

‖xn‖ = ‖x∗
n‖ = 〈xn, x∗

n〉 = 1

for all n, xn → 0 weakly and 〈Txn, x∗
n〉 → λ;

(iii) there exists a basic sequence (xn) ⊂ X and a sequence (x∗
n) ⊂ X∗ such that

‖xn‖ = ‖x∗
n‖ = 〈xn, x∗

n〉 = 1

for all n and 〈Txn, x∗
n〉 → λ.

Proof. (ii)⇒(i): Clear.

(iii)⇒(ii): By the James Theorem, see e.g. [FHH], Th. 6.11, every basic

sequence in a reflexive Banach space is weakly converging to 0 (in fact this property

characterizes reflexive Banach spaces). This implies (ii).

(i)⇒(iii): This follows from the following (more general) lemma.
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Lemma 12. Let X be a Banach space, let T ∈ B(X), λ ∈ We(T ) and let 0 <

εn < 1, εn → 0. Then there exist sequences (xn) ⊂ X and (x∗
n) ⊂ X∗ such that

〈Txn, x∗
n〉 → λ, ‖xn‖ = 1 = ‖x∗

n‖ = 〈xn, x∗
n〉 (n ∈ N), and for all m, r ∈ N,

r < m and complex numbers α1, . . . , αm we have

∥∥∥
r∑

i=1

αixi

∥∥∥ ≤ (1 − εr)
−1

∥∥∥
m∑

i=1

αixi

∥∥∥.

In particular, the sequence (xn) is basic.

Proof. We construct the sequences (xn) ⊂ X , (x∗
n) ⊂ X∗ and subspaces X = L0 ⊃

L1 ⊃ · · · of finite codimension inductively. Choose x1 ∈ X and x∗
1 ∈ X∗ such that

‖x1‖ = 1 = ‖x∗
1‖ = 〈x1, x

∗
1〉 and |〈Tx1, x

∗
1〉 − λ| < 1.

Let k ≥ 1 and suppose that the vectors x1, . . . , xk ∈ X , functionals

x∗
1, . . . , x

∗
k ∈ X∗ and subspaces L0, . . . , Lk−1 ⊂ X have already been constructed.

Set Fk =
∨{x1, . . . , xk}. By [M1], Lemma 1, there exists a subspace Mk ⊂ X of

finite codimension such that ‖f + m‖ ≥ (1 − εk)max{‖f‖, ‖m‖/2} for all f ∈ Fk

and m ∈ Mk.

Set Lk+1 = Lk∩Mk. Then codim Lk+1 < ∞ and Lk+1 ⊂ Lk. By Proposition

6, there exist xk+1 ∈ Lk+1 and x∗
k+1 ∈ X∗ such that ‖xk+1‖ = ‖x∗

k+1‖ = 1 =

〈xk+1, x
∗
k+1〉 and |〈Txk+1, x

∗
k+1〉 − λ| < (k + 1)−1.

Let (xn), (x∗
n) be the sequences constructed in the above described way.

Clearly lim〈Txn, x∗
n〉 = λ. Let r, m ∈ N, r < m and let α1, . . . , αm ∈ C. Since∑r

i=1 αixi ∈ Fr and
∑m

i=r+1 αixi ∈ Mr, we have

∥∥∥
r∑

i=1

αixi

∥∥∥ ≤ (1 − εr)
−1

∥∥∥
m∑

i=1

αixi

∥∥∥.

Since supk(1 − εk)−1 < ∞, the sequence (xn) is basic.

Results similar to those in Theorem 11 are true also for a more general class of

Asplund spaces. Recall that a Banach space X is called Asplund if each separable

subspace of X has a separable dual.

Let (xn) be a basic sequence in a Banach space X . Let X0 =
∨

n xn.

The sequence (xn) is called shrinking if the dual functionals y∗
n ∈ X∗

0 defined

by 〈xm, y∗
n〉 = δm,n (m, n = 1, 2, . . .) generate X∗

0 .
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Theorem 13. Let X be an Asplund space, T ∈ B(X), λ ∈ C. Then the following

conditions are equivalent:

(i) λ ∈ We(T );

(ii) there exist sequences (xn) ⊂ X, (x∗
n) ⊂ X∗ such that

‖xn‖ = ‖x∗
n‖ = 〈xn, x∗

n〉 = 1

for all n, xn → 0 weakly and 〈Txn, x∗
n〉 → λ;

(iii) there exists a shrinking basic sequence (xn) ⊂ X and a sequence (x∗
n) ⊂ X∗

such that

‖xn‖ = ‖x∗
n‖ = 〈xn, x∗

n〉 = 1

for all n and 〈Txn, x∗
n〉 → λ.

Proof. (ii)⇒(i): Clear.

(iii)⇒(ii): Any shrinking basic sequence is weakly converging to zero.

(i)⇒(iii): Set εk = 1/k. By Lemma 12, there exists sequences (xn) ⊂ X and

(x∗
n) ⊂ X∗ with the properties described there. Let X0 =

∨
n xn. Then X∗

0 is

separable. By [FHH], Proposition 8.34 and Theorem 8.19, (xn) is a shrinking basic

sequence.

4. Sequential numerical range

For a Banach space X and T ∈ B(X) we can define the sequential essential

numerical range Wω(T ) as the set of all complex numbers λ with the property that

there are sequences (xn) ⊂ X , (x∗
n) ⊂ X∗ such that

‖xn‖ = ‖x∗
n‖ = 〈xn, x∗

n〉 = 1

for all n ∈ N , xn → 0 weakly and 〈Txn, x∗
n〉 → λ.

It is clear that Wω(T ) ⊂ We(T ). For operators on Asplund spaces we have

Wω(T ) = We(T ) by the previous theorem.

On the other hand, in general Wω(T ) 6= We(T ). To see this, let T ∈ B(X)

be a completely continuous operator (i.e., ‖Txn‖ → 0 for every sequence (xn) ⊂ X

weakly converging to 0) which is not compact. Then Ww(T ) ⊂ {0} and sup{|z| :

z ∈ We(T )} = sup{|z| : z ∈ Vµ(T )} ≥ exp(−1) · ‖T ‖µ > 0.

Corollary 14. Let X be an Asplund space. An operator T ∈ B(X) is compact if

and only if it is completely continuous.
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Example 15. Let X = ℓ1. Then every sequence (xn) ⊂ X weakly converging to

0 is also strongly converging, i.e., ‖xn‖ → 0. Consequently, Wω(T ) = ∅ for every

operator T ∈ B(X).

Example 16. Let H be a separable infinite-dimensional Hilbert space and let X =⊕∞
n=1 H (the ℓ1-direct sum). Let T =

⊕∞
n=1(1 − n−1)IH . Then 1− n−1 ∈ Wω(T )

for each n and 1 /∈ Wω(T ). Consequently, Wω(T ) is not closed.

Proof. It is easy to see that 1−n−1 ∈ Wω(T ) for each n (consider an orthonormal

sequence in the n-th copy of H).

We show that 1 /∈ Wω(T ). Suppose on the contrary that there are sequences

(xn) ⊂ X , (x∗
n) ⊂ X∗ such that xn → 0 weakly, ‖xn‖ = 1 = ‖x∗

n‖ = 〈xn, x∗
n〉 for

all n, and 〈Txn, x∗
n〉 → 1. In particular, ‖Txn‖ → 1.

For n ∈ N, let xn =
⊕∞

j=1 h
(n)
j with h

(n)
j ∈ H ,

∑∞
j=1 ‖h

(n)
j ‖ = 1. Let

an = max
{
k :

k−1∑

j=1

‖h(n)
j ‖ ≤ 1

5

}

and

bn = min
{
k :

∞∑

j=k+1

‖h(n)
j ‖ ≤ 1

5

}
.

Since ‖Txn‖ → 1, we have an → ∞. By passing to a subsequence if necessary, we

may assume without loss of generality that a1 < b1 < a2 < b2 < · · ·.
For n, j ∈ N let g

(n)
j =

h
(n)

j

‖h
(n)
j

‖
if h

(n)
j 6= 0 and g

(n)
j = 0 otherwise. Consider

the functional x∗ =
∞⊕

n=1

bn⊕
j=an

g
(n)
j ∈ X∗. Then

‖x∗‖ = sup
{
‖g(n)

j ‖ : n ∈ N, an ≤ j ≤ bn

}
≤ 1.

For each n we have

|〈xn, x∗〉| ≥
∣∣∣
〈 bn∑

j=an

h
(n)
j , g

(n)
j

〉∣∣∣ −
∣∣∣
〈 an−1∑

j=1

h
(n)
j , g

(n)
j

〉∣∣∣ −
∣∣∣
〈 ∞∑

j=bn+1

h
(n)
j , g

(n)
j

〉∣∣∣

≥
bn∑

j=an

‖h(n)
j ‖ −

an−1∑

j=1

‖h(n)
j ‖ −

∞∑

j=bn+1

‖h(n)
j ‖ ≥ 3

5
− 1

5
− 1

5
=

1

5
,

a contradiction with the assumption that xn → 0 weakly. Hence 1 /∈ Wω(T ) and

Wω(T ) is not closed.
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