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Abstract

Let L(H) be the algebra of bounded linear operators on a Hilbert spadeor A, B € L(H),
define the elementary operattf, p by M4 p(X) = AXB (X € L(H)). We give necessary and
sufficient conditions for any pair of operatassand B to satisfy the equatiof/ + M4 gll =1+
IAIlIBIl, wherel is the identity operator of .
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Let H be a complex Hilbert space and l&tH) be the Banach algebra of all bounded
linear operators ol . ForA, B € L(H), let L 4 (respectivelyRp) denote the left (respec-
tively, right) multiplication by A (respectively,B). The basic elementary operator (two-
sided multiplication)M4 p induced by the operatord and B is defined byM4 p =
LaRp. An elementary operator ofi(H) is a finite sumR = >""_; M4, p, of basic ones.

A familiar example of elementary operators is the generalized derivégigndefined by
daB=Las—Rp.

Many facts about the relation between the spectrum® @ihd spectrums of the coeffi-
cientsA; and B; are known. This is not the case with the relation between the operator
norm R and norms ofA; and B;. Apparently, the only elementary operators on a Hilbert
space for which the norm is computed are the basic ones and generalized derivations [10].
We refer to [2,4—11] for an intensive study of norms of elementary operators.

Let A, B € L(H) and let] denote the identity operator di. It is well known and easy
to prove thaf|Ma gl = [|A|l||B||. Thus we always haviel + M4 g|| < 1+ || Al B]l.
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In this note we shall give necessary and sufficient conditions for any pair of operators
A andB to satisfy the equatioft/ + M4 gl =1+ ||All|| Bl

In order to state our results in detail, we first recall some notation and results from the
literature. Letl’ € L(H). Following [10], the maximal numerical range Bfis defined by

Wo(T) = [A € C: there existgx,} € H, ||x,|| =1 such that
lim (T x,, %) = 4 and im|Tx, | = |7},
n n

and its normalized maximal numerical range is given by

_ [Wo(T/ITI)) if T #0,
(=g it 7 =0,
The setWp(T) is nonempty, closed, convex, and contained in the closure of the numerical
range, see [10].
ForA e L(H), leto (A) ando,,(A) denote, respectively, the spectrum and approximate
point spectrum ofd.
The next theorem is our main result.

Theorem 1. For A, B € L(H) the following are equivalent:

Q) 11+ Mapll=21+|lAllBIl.
(2) Wy (A*)NWy(B) #0.

Proof. (1) = (2) Suppose thatll + M4 gl = 1+ ||All||Bll. Then we can find two
sequencegX,} C L(H) and{x,} C H with | X, || = ||x,|| = 1 for eachn such that
Iilr1'n | Xnxn + AXyBxyll =1+ Al B
Since
| Xnxn + AXyBxnll < | Xuxnll + |AXn Bxall < 1+ AN B,
it follows that
Ii'r1n IAXnBx, |l = |AllIB.

On the other hand, we have for eagh

11X + AX By |2 = 1 X0 1% + | AX, By % + 2 RE(X X, AX By).
Consequently, we derive that

Ii’rln (Xnxn, AX,,Bxn) = ||Allll Bl
Thus lim, |A*X,x,|| = ||A]l and lim, | X, Bx,|| = ||B|| becaus€g(X,x,, AX,Bx;)| <
|A* X, x ||| X Bxn|l. For eachn > 1, we have

84 —Bll = [|A" Xy + Xn Bl > | A" Xpxn + X Bxn].

Since lim, |A* X, x, + X, Bxn || = ||All + || Bl and||§4+.—g| < ||All + || B]l, we conclude
that ||§4+—g|l = ||All + | B]l. Thus, it follows from [10, Theorem 7] tha¥y (A*) N
Wi (B) # 0.
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(2) = (1) Let u € Wy (A*) N Wy (B). Then there exist two sequendas} and{y,} in
H such that|x, || = lly.ll = 1, limy, [|A*x, || = [A]l, limy [| By, || = | Bl lim,, (A*x,, xn) =
wllAll, and lim, (Byy,, yu) = nl||Bll. SetA*x, = ayx, + Byu,, wherea,,, 8, € C, u, € H
with ||u, || = 1 and{x,, u,) = 0. We may choose,, so that{A*x,, u,) = 8, > 0 for all n.
Set alsoBy, = v, yn + 8nv,, Wherey,, 8, € C, lvqll = 1, (yu, v,) = 0 and(By,, v,) =
8, = 0.

Define a sequende&X,,}, € L(H) by

X =, yn)Xn + (-, Un)ttn.
Then clearly|| X, || = 1 for all n, and we have

(Xnyns AXnByn) = (A" Yn, YnYn + Snttn) = n¥n + Budn.
By the definitions of the sequences,} and{y,}, we derive that lim |, |2 + 82 = || A|1?
and limy, la,| = |||l All. Thus, lim, g, = V1 — |rl?]|All. In a similar way we obtain

lim, 8, =+1—|u|?|B|. Hence,
Iilgn (Xnyn, AXuByn) = ”rrln n¥n + Bndn
= ulPIAIIBI + (1= [w®) AN Bl = | AllIB].
From this we conclude that lim|AX, By, || = ||A|||B]. Now, we have for each > 1,
1+ IANIBI = 1] + Ma.Bll Z 11 Xn + AXn Bl Z | Xnyn + AXp Bynll.
Therefore,
im (X, yn + AXnBynll = 1+ [AIIBI < I + Ma,pll < 1+ I ANIIBI.
Consequently,
11+ Mapll=21+|A|lB]|. O
Remark 2. (i) Let A, B € L(H). It follows from Theorem 1, [10, Theorem 1], and [10,
Theorem 8] that G= Wo(A) if and only if |[I — M+ 4|l = 1+ [|A]|? if and only if
84,41 = 2| All.
(i) Also we conclude from Theorem 1 and [10] that the following are equivalent:
(1) 11 +Ma sl =1+ lAIIBI,
(2) 118ax,—gll =1AlI+ B,
) A+ IBI <A =All+ 1B — 2] forallx € C.
An immediate consequence of Theorem 1 is the following
Corollary 3. 1f A € L(H), then | + M4 a+|| =1+ || A||%.

Another consequence of Theorem 1 is the following result proved in [1,3].

Corollary 4.1f A € L(H),then ||[I + A|| =1+ ||Al| ifand only if |A|| € 04, (A).
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Proof. If B =1 in Theorem 1, then we see thif + A|| =1+ ||A| if and only if

1e Wy(A*). This is equivalent to the existence of a unit sequengg, in H such that
lim,(Ax,, x,) = ||A] and lim, ||Ax,|| = ||A]|. From this we conclude that lij| Ax, —

| Allx, || =0, thatis,[|A|| € 04 (A). O
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