Norm equality for a basic elementary operator

Mohamed Barraa* and Mohamed Boumazgour
Department of Mathematics, Faculty of Sciences, Semlalia, Marrakesh B.P. 2390, Morocco

Received 28 July 2002
Submitted by R. Curto

Abstract

Let $\mathcal{L}(H)$ be the algebra of bounded linear operators on a Hilbert space H. For $A, B \in \mathcal{L}(H)$, define the elementary operator $M_{A, B}$ by $M_{A, B}(X)=A X B(X \in \mathcal{L}(H))$. We give necessary and sufficient conditions for any pair of operators A and B to satisfy the equation $\left\|I+M_{A, B}\right\|=1+$ $\|A\|\|B\|$, where I is the identity operator on H. © 2003 Published by Elsevier Inc.

Keywords: Norm; Numerical range; Elementary operators

Let H be a complex Hilbert space and let $\mathcal{L}(H)$ be the Banach algebra of all bounded linear operators on H. For $A, B \in \mathcal{L}(H)$, let L_{A} (respectively, R_{B}) denote the left (respectively, right) multiplication by A (respectively, B). The basic elementary operator (twosided multiplication) $M_{A, B}$ induced by the operators A and B is defined by $M_{A, B}=$ $L_{A} R_{B}$. An elementary operator on $\mathcal{L}(H)$ is a finite sum $R=\sum_{i=1}^{n} M_{A_{i}, B_{i}}$ of basic ones. A familiar example of elementary operators is the generalized derivation $\delta_{A, B}$ defined by $\delta_{A, B}=L_{A}-R_{B}$.

Many facts about the relation between the spectrum of R and spectrums of the coefficients A_{i} and B_{i} are known. This is not the case with the relation between the operator norm R and norms of A_{i} and B_{i}. Apparently, the only elementary operators on a Hilbert space for which the norm is computed are the basic ones and generalized derivations [10]. We refer to [2,4-11] for an intensive study of norms of elementary operators.

Let $A, B \in \mathcal{L}(H)$ and let I denote the identity operator on H. It is well known and easy to prove that $\left\|M_{A, B}\right\|=\|A\|\|B\|$. Thus we always have $\left\|I+M_{A, B}\right\| \leqslant 1+\|A\|\|B\|$.

[^0]In this note we shall give necessary and sufficient conditions for any pair of operators A and B to satisfy the equation $\left\|I+M_{A, B}\right\|=1+\|A\|\|B\|$.

In order to state our results in detail, we first recall some notation and results from the literature. Let $T \in \mathcal{L}(H)$. Following [10], the maximal numerical range of T is defined by

$$
\begin{array}{r}
W_{0}(T)=\left\{\lambda \in \mathbb{C} \text { : there exists }\left\{x_{n}\right\} \subseteq H,\left\|x_{n}\right\|=1\right. \text { such that } \\
\left.\qquad \lim _{n}\left\langle T x_{n}, x_{n}\right\rangle=\lambda \text { and } \lim _{n}\left\|T x_{n}\right\|=\|T\|\right\},
\end{array}
$$

and its normalized maximal numerical range is given by

$$
W_{N}(T)= \begin{cases}W_{0}(T /\|T\|) & \text { if } T \neq 0 \\ 0 & \text { if } T=0\end{cases}
$$

The set $W_{0}(T)$ is nonempty, closed, convex, and contained in the closure of the numerical range, see [10].

For $A \in \mathcal{L}(H)$, let $\sigma(A)$ and $\sigma_{a p}(A)$ denote, respectively, the spectrum and approximate point spectrum of A.

The next theorem is our main result.
Theorem 1. For $A, B \in \mathcal{L}(H)$ the following are equivalent:
(1) $\left\|I+M_{A, B}\right\|=1+\|A\|\|B\|$,
(2) $W_{N}\left(A^{*}\right) \cap W_{N}(B) \neq \emptyset$.

Proof. (1) \Rightarrow (2) Suppose that $\left\|I+M_{A, B}\right\|=1+\|A\|\|B\|$. Then we can find two sequences $\left\{X_{n}\right\} \subseteq \mathcal{L}(H)$ and $\left\{x_{n}\right\} \subseteq H$ with $\left\|X_{n}\right\|=\left\|x_{n}\right\|=1$ for each n such that

$$
\lim _{n}\left\|X_{n} x_{n}+A X_{n} B x_{n}\right\|=1+\|A\|\|B\| .
$$

Since

$$
\left\|X_{n} x_{n}+A X_{n} B x_{n}\right\| \leqslant\left\|X_{n} x_{n}\right\|+\left\|A X_{n} B x_{n}\right\| \leqslant 1+\|A\|\|B\|,
$$

it follows that

$$
\lim _{n}\left\|A X_{n} B x_{n}\right\|=\|A\|\|B\| .
$$

On the other hand, we have for each n,

$$
\left\|X_{n} x_{n}+A X_{n} B x_{n}\right\|^{2}=\left\|X_{n} x_{n}\right\|^{2}+\left\|A X_{n} B x_{n}\right\|^{2}+2 \operatorname{Re}\left\langle X_{n} x_{n}, A X_{n} B x_{n}\right\rangle .
$$

Consequently, we derive that

$$
\lim _{n}\left\langle X_{n} x_{n}, A X_{n} B x_{n}\right\rangle=\|A\|\|B\| .
$$

Thus $\lim _{n}\left\|A^{*} X_{n} x_{n}\right\|=\|A\|$ and $\lim _{n}\left\|X_{n} B x_{n}\right\|=\|B\|$ because $\left|\left\langle X_{n} x_{n}, A X_{n} B x_{n}\right\rangle\right| \leqslant$ $\left\|A^{*} X_{n} x_{n}\right\|\left\|X_{n} B x_{n}\right\|$. For each $n \geqslant 1$, we have

$$
\left\|\delta_{A^{*},-B}\right\| \geqslant\left\|A^{*} X_{n}+X_{n} B\right\| \geqslant\left\|A^{*} X_{n} x_{n}+X_{n} B x_{n}\right\| .
$$

Since $\lim _{n}\left\|A^{*} X_{n} x_{n}+X_{n} B x_{n}\right\|=\|A\|+\|B\|$ and $\left\|\delta_{A^{*},-B}\right\| \leqslant\|A\|+\|B\|$, we conclude that $\left\|\delta_{A^{*},-B}\right\|=\|A\|+\|B\|$. Thus, it follows from [10, Theorem 7] that $W_{N}\left(A^{*}\right) \cap$ $W_{N}(B) \neq \emptyset$.
(2) \Rightarrow (1) Let $\mu \in W_{N}\left(A^{*}\right) \cap W_{N}(B)$. Then there exist two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in H such that $\left\|x_{n}\right\|=\left\|y_{n}\right\|=1, \lim _{n}\left\|A^{*} x_{n}\right\|=\|A\|, \lim _{n}\left\|B y_{n}\right\|=\|B\|, \lim _{n}\left\langle A^{*} x_{n}, x_{n}\right\rangle=$ $\mu\|A\|$, and $\lim _{n}\left\langle B y_{n}, y_{n}\right\rangle=\mu\|B\|$. Set $A^{*} x_{n}=\alpha_{n} x_{n}+\beta_{n} u_{n}$, where $\alpha_{n}, \beta_{n} \in \mathbb{C}, u_{n} \in H$ with $\left\|u_{n}\right\|=1$ and $\left\langle x_{n}, u_{n}\right\rangle=0$. We may choose u_{n} so that $\left\langle A^{*} x_{n}, u_{n}\right\rangle=\beta_{n} \geqslant 0$ for all n. Set also $B y_{n}=\gamma_{n} y_{n}+\delta_{n} v_{n}$, where $\gamma_{n}, \delta_{n} \in \mathbb{C},\left\|v_{n}\right\|=1,\left\langle y_{n}, v_{n}\right\rangle=0$ and $\left\langle B y_{n}, v_{n}\right\rangle=$ $\delta_{n} \geqslant 0$.

Define a sequence $\left\{X_{n}\right\}_{n} \subseteq \mathcal{L}(H)$ by

$$
X_{n}=\left\langle\cdot, y_{n}\right\rangle x_{n}+\left\langle\cdot, v_{n}\right\rangle u_{n}
$$

Then clearly $\left\|X_{n}\right\|=1$ for all n, and we have

$$
\left\langle X_{n} y_{n}, A X_{n} B y_{n}\right\rangle=\left\langle A^{*} y_{n}, \gamma_{n} y_{n}+\delta_{n} u_{n}\right\rangle=\alpha_{n} \gamma_{n}+\beta_{n} \delta_{n}
$$

By the definitions of the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$, we derive that $\lim _{n}\left|\alpha_{n}\right|^{2}+\beta_{n}^{2}=\|A\|^{2}$ and $\lim _{n}\left|\alpha_{n}\right|=|\mu|\|A\|$. Thus, $\lim _{n} \beta_{n}=\sqrt{1-|\mu|^{2}}\|A\|$. In a similar way we obtain $\lim _{n} \delta_{n}=\sqrt{1-|\mu|^{2}}\|B\|$. Hence,

$$
\begin{aligned}
\lim _{n}\left\langle X_{n} y_{n}, A X_{n} B y_{n}\right\rangle & =\lim _{n} \alpha_{n} \gamma_{n}+\beta_{n} \delta_{n} \\
& =|\mu|^{2}\|A\|\|B\|+\left(1-|\mu|^{2}\right)\|A\|\|B\|=\|A\|\|B\|
\end{aligned}
$$

From this we conclude that $\lim _{n}\left\|A X_{n} B y_{n}\right\|=\|A\|\|B\|$. Now, we have for each $n \geqslant 1$,

$$
1+\|A\|\|B\| \geqslant\left\|I+M_{A, B}\right\| \geqslant\left\|X_{n}+A X_{n} B\right\| \geqslant\left\|X_{n} y_{n}+A X_{n} B y_{n}\right\|
$$

Therefore,

$$
\lim _{n}\left\|X_{n} y_{n}+A X_{n} B y_{n}\right\|=1+\|A\|\|B\| \leqslant\left\|I+M_{A, B}\right\| \leqslant 1+\|A\|\|B\|
$$

Consequently,

$$
\left\|I+M_{A, B}\right\|=1+\|A\|\|B\|
$$

Remark 2. (i) Let $A, B \in \mathcal{L}(H)$. It follows from Theorem 1 , [10, Theorem 1$]$, and [10, Theorem 8] that $0 \in W_{0}(A)$ if and only if $\left\|I-M_{A^{*}, A}\right\|=1+\|A\|^{2}$ if and only if $\left\|\delta_{A, A}\right\|=2\|A\|$.
(ii) Also we conclude from Theorem 1 and [10] that the following are equivalent:
(1) $\left\|I+M_{A, B}\right\|=1+\|A\|\|B\|$,
(2) $\left\|\delta_{A^{*},-B}\right\|=\|A\|+\|B\|$,
(3) $\|A\|+\|B\| \leqslant\|A-\lambda\|+\|B-\lambda\|$ for all $\lambda \in \mathbb{C}$.

An immediate consequence of Theorem 1 is the following

Corollary 3. If $A \in \mathcal{L}(H)$, then $\left\|I+M_{A, A^{*}}\right\|=1+\|A\|^{2}$.
Another consequence of Theorem 1 is the following result proved in [1,3].

Corollary 4. If $A \in \mathcal{L}(H)$, then $\|I+A\|=1+\|A\|$ if and only if $\|A\| \in \sigma_{a p}(A)$.

Proof. If $B=I$ in Theorem 1, then we see that $\|I+A\|=1+\|A\|$ if and only if $1 \in W_{N}\left(A^{*}\right)$. This is equivalent to the existence of a unit sequence $\left\{x_{n}\right\}_{n}$ in H such that $\lim _{n}\left\langle A x_{n}, x_{n}\right\rangle=\|A\|$ and $\lim _{n}\left\|A x_{n}\right\|=\|A\|$. From this we conclude that $\lim _{n} \| A x_{n}-$ $\|A\| x_{n} \|=0$, that is, $\|A\| \in \sigma_{a p}(A)$.

References

[1] Y.A. Abramovich, C.D. Aliprantis, O. Burkinshaw, The Daugavet equation in uniformly convex Banach spaces, J. Funct. Anal. 97 (1991) 215-230.
[2] M. Barraa, M. Boumazgour, Inner derivations and norm equality, Proc. Amer. Math. Soc. 130 (2002) 471476.
[3] C.L. Lin, The unilateral shift and norm equality for bounded linear operators, Proc. Amer. Math. Soc. 127 (1999) 1693-1696.
[4] B.E. Johnson, Norms of derivations on $\mathcal{L}(X)$, Pacific J. Math. 38 (1971) 465-469.
[5] M. Mathieu, The norm problem for elementary operators, in: K.D. Bierstedt, et al. (Eds.), Recent Progress in Functional Analysis, in: North-Holland Math. Stud., Vol. 189, Elsevier, Amsterdam, 2001, pp. 363-368.
[6] M. Mathieu, Elementary operators on Calkin algebras, Irish Math. Soc. Bull. 46 (2001) 33-42.
[7] E. Saksman, H.-O. Tylli, The Apostol-Fialkow formula for elementary operators on Calkin algebras, J. Funct. Anal. 161 (1999) 1-26.
[8] L.L. Stacho, B. Zalar, On the norm of Jordan elementary operators in standard operator algebras, Publ. Math. Debrecen 49 (1996) 127-134.
[9] L.L. Stacho, B. Zalar, Uniform primeness of the Jordan algebra of symmetric operators, Proc. Amer. Math. Soc. 126 (1998) 2241-2247.
[10] J. Stampfli, The norm of a derivation, Pacific J. Math. 33 (1970) 737-747.
[11] R.M. Timoney, Norms of elementary operators, Irish Math. Soc. Bull. 46 (2001) 13-17.

[^0]: * Corresponding author.

 E-mail addresses: barraa@ucam.ac.ma (M. Barraa), boumazgour@ucam.ac.ma (M. Boumazgour).

