

Available at www.ElsevierMathematics.com POWERED BY BCIENCE DIRECT"

J. Math. Anal. Appl. 286 (2003) 359-362

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

www.elsevier.com/locate/jmaa

Note

Norm equality for a basic elementary operator

Mohamed Barraa* and Mohamed Boumazgour

Department of Mathematics, Faculty of Sciences, Semlalia, Marrakesh B.P. 2390, Morocco

Received 28 July 2002 Submitted by R. Curto

Abstract

Let $\mathcal{L}(H)$ be the algebra of bounded linear operators on a Hilbert space H. For $A, B \in \mathcal{L}(H)$, define the elementary operator $M_{A,B}$ by $M_{A,B}(X) = AXB$ $(X \in \mathcal{L}(H))$. We give necessary and sufficient conditions for any pair of operators A and B to satisfy the equation $||I + M_{A,B}|| = 1 + ||A|| ||B||$, where I is the identity operator on H. © 2003 Published by Elsevier Inc.

Keywords: Norm; Numerical range; Elementary operators

Let *H* be a complex Hilbert space and let $\mathcal{L}(H)$ be the Banach algebra of all bounded linear operators on *H*. For *A*, $B \in \mathcal{L}(H)$, let L_A (respectively, R_B) denote the left (respectively, right) multiplication by *A* (respectively, *B*). The basic elementary operator (twosided multiplication) $M_{A,B}$ induced by the operators *A* and *B* is defined by $M_{A,B} = L_A R_B$. An elementary operator on $\mathcal{L}(H)$ is a finite sum $R = \sum_{i=1}^n M_{A_i,B_i}$ of basic ones. A familiar example of elementary operators is the generalized derivation $\delta_{A,B}$ defined by $\delta_{A,B} = L_A - R_B$.

Many facts about the relation between the spectrum of R and spectrums of the coefficients A_i and B_i are known. This is not the case with the relation between the operator norm R and norms of A_i and B_i . Apparently, the only elementary operators on a Hilbert space for which the norm is computed are the basic ones and generalized derivations [10]. We refer to [2,4–11] for an intensive study of norms of elementary operators.

Let $A, B \in \mathcal{L}(H)$ and let I denote the identity operator on H. It is well known and easy to prove that $||M_{A,B}|| = ||A|| ||B||$. Thus we always have $||I + M_{A,B}|| \le 1 + ||A|| ||B||$.

^{*} Corresponding author.

E-mail addresses: barraa@ucam.ac.ma (M. Barraa), boumazgour@ucam.ac.ma (M. Boumazgour).

⁰⁰²²⁻²⁴⁷X/\$ – see front matter @ 2003 Published by Elsevier Inc. doi:10.1016/S0022-247X(02)00657-1

In this note we shall give necessary and sufficient conditions for any pair of operators *A* and *B* to satisfy the equation $||I + M_{A,B}|| = 1 + ||A|| ||B||$.

In order to state our results in detail, we first recall some notation and results from the literature. Let $T \in \mathcal{L}(H)$. Following [10], the maximal numerical range of T is defined by

$$W_0(T) = \{ \lambda \in \mathbb{C} : \text{ there exists } \{x_n\} \subseteq H, \|x_n\| = 1 \text{ such that } \}$$

 $\lim_{n} \langle Tx_n, x_n \rangle = \lambda \text{ and } \lim_{n} \|Tx_n\| = \|T\| \Big\},$

and its normalized maximal numerical range is given by

$$W_N(T) = \begin{cases} W_0(T/||T||) & \text{if } T \neq 0, \\ 0 & \text{if } T = 0. \end{cases}$$

The set $W_0(T)$ is nonempty, closed, convex, and contained in the closure of the numerical range, see [10].

For $A \in \mathcal{L}(H)$, let $\sigma(A)$ and $\sigma_{ap}(A)$ denote, respectively, the spectrum and approximate point spectrum of A.

The next theorem is our main result.

Theorem 1. For $A, B \in \mathcal{L}(H)$ the following are equivalent:

(1) $||I + M_{A,B}|| = 1 + ||A|| ||B||,$ (2) $W_N(A^*) \cap W_N(B) \neq \emptyset.$

Proof. (1) \Rightarrow (2) Suppose that $||I + M_{A,B}|| = 1 + ||A|| ||B||$. Then we can find two sequences $\{X_n\} \subseteq \mathcal{L}(H)$ and $\{x_n\} \subseteq H$ with $||X_n|| = ||x_n|| = 1$ for each *n* such that

 $\lim_{n \to \infty} \|X_n x_n + A X_n B x_n\| = 1 + \|A\| \|B\|.$

Since

$$||X_n x_n + A X_n B x_n|| \le ||X_n x_n|| + ||A X_n B x_n|| \le 1 + ||A|| ||B||,$$

it follows that

 $\lim_{n \to \infty} \|AX_n Bx_n\| = \|A\| \|B\|.$

On the other hand, we have for each n,

$$||X_n x_n + A X_n B x_n||^2 = ||X_n x_n||^2 + ||A X_n B x_n||^2 + 2 \operatorname{Re}\langle X_n x_n, A X_n B x_n \rangle.$$

Consequently, we derive that

 $\lim_{n} \langle X_n x_n, A X_n B x_n \rangle = \|A\| \|B\|.$

Thus $\lim_n ||A^*X_nx_n|| = ||A||$ and $\lim_n ||X_nBx_n|| = ||B||$ because $|\langle X_nx_n, AX_nBx_n\rangle| \le ||A^*X_nx_n|| ||X_nBx_n||$. For each $n \ge 1$, we have

$$\|\delta_{A^*,-B}\| \ge \|A^*X_n + X_nB\| \ge \|A^*X_nx_n + X_nBx_n\|.$$

Since $\lim_{n} \|A^*X_nx_n + X_nBx_n\| = \|A\| + \|B\|$ and $\|\delta_{A^*, -B}\| \le \|A\| + \|B\|$, we conclude that $\|\delta_{A^*, -B}\| = \|A\| + \|B\|$. Thus, it follows from [10, Theorem 7] that $W_N(A^*) \cap W_N(B) \neq \emptyset$.

360

 $(2) \Rightarrow (1)$ Let $\mu \in W_N(A^*) \cap W_N(B)$. Then there exist two sequences $\{x_n\}$ and $\{y_n\}$ in H such that $||x_n|| = ||y_n|| = 1$, $\lim_n ||A^*x_n|| = ||A||$, $\lim_n ||By_n|| = ||B||$, $\lim_n \langle A^*x_n, x_n \rangle = \mu ||A||$, and $\lim_n \langle By_n, y_n \rangle = \mu ||B||$. Set $A^*x_n = \alpha_n x_n + \beta_n u_n$, where $\alpha_n, \beta_n \in \mathbb{C}, u_n \in H$ with $||u_n|| = 1$ and $\langle x_n, u_n \rangle = 0$. We may choose u_n so that $\langle A^*x_n, u_n \rangle = \beta_n \ge 0$ for all n. Set also $By_n = \gamma_n y_n + \delta_n v_n$, where $\gamma_n, \delta_n \in \mathbb{C}, ||v_n|| = 1$, $\langle y_n, v_n \rangle = 0$ and $\langle By_n, v_n \rangle = \delta_n \ge 0$.

Define a sequence $\{X_n\}_n \subseteq \mathcal{L}(H)$ by

 $X_n = \langle \cdot, y_n \rangle x_n + \langle \cdot, v_n \rangle u_n.$

Then clearly $||X_n|| = 1$ for all *n*, and we have

$$\langle X_n y_n, A X_n B y_n \rangle = \langle A^* y_n, \gamma_n y_n + \delta_n u_n \rangle = \alpha_n \gamma_n + \beta_n \delta_n.$$

By the definitions of the sequences $\{x_n\}$ and $\{y_n\}$, we derive that $\lim_n |\alpha_n|^2 + \beta_n^2 = ||A||^2$ and $\lim_n |\alpha_n| = |\mu| ||A||$. Thus, $\lim_n \beta_n = \sqrt{1 - |\mu|^2} ||A||$. In a similar way we obtain $\lim_n \delta_n = \sqrt{1 - |\mu|^2} ||B||$. Hence,

$$\lim_{n} \langle X_n y_n, A X_n B y_n \rangle = \lim_{n} \alpha_n \gamma_n + \beta_n \delta_n$$

= $|\mu|^2 ||A|| ||B|| + (1 - |\mu|^2) ||A|| ||B|| = ||A|| ||B||.$

From this we conclude that $\lim_{n \to \infty} ||AX_n By_n|| = ||A|| ||B||$. Now, we have for each $n \ge 1$,

 $1 + \|A\| \|B\| \ge \|I + M_{A,B}\| \ge \|X_n + AX_nB\| \ge \|X_ny_n + AX_nBy_n\|.$

Therefore,

$$\lim_{n} \|X_{n}y_{n} + AX_{n}By_{n}\| = 1 + \|A\|\|B\| \le \|I + M_{A,B}\| \le 1 + \|A\|\|B\|.$$

Consequently,

$$|I + M_{A,B}|| = 1 + ||A|| ||B||. \square$$

Remark 2. (i) Let $A, B \in \mathcal{L}(H)$. It follows from Theorem 1, [10, Theorem 1], and [10, Theorem 8] that $0 \in W_0(A)$ if and only if $||I - M_{A^*,A}|| = 1 + ||A||^2$ if and only if $||\delta_{A,A}|| = 2||A||$.

(ii) Also we conclude from Theorem 1 and [10] that the following are equivalent:

(1) $||I + M_{A,B}|| = 1 + ||A|| ||B||,$ (2) $||\delta_{A^*,-B}|| = ||A|| + ||B||,$ (3) $||A|| + ||B|| \le ||A - \lambda|| + ||B - \lambda||$ for all $\lambda \in \mathbb{C}.$

An immediate consequence of Theorem 1 is the following

Corollary 3. If $A \in \mathcal{L}(H)$, then $||I + M_{A,A^*}|| = 1 + ||A||^2$.

Another consequence of Theorem 1 is the following result proved in [1,3].

Corollary 4. If $A \in \mathcal{L}(H)$, then ||I + A|| = 1 + ||A|| if and only if $||A|| \in \sigma_{ap}(A)$.

Proof. If B = I in Theorem 1, then we see that ||I + A|| = 1 + ||A|| if and only if $1 \in W_N(A^*)$. This is equivalent to the existence of a unit sequence $\{x_n\}_n$ in H such that $\lim_n \langle Ax_n, x_n \rangle = ||A||$ and $\lim_n ||Ax_n|| = ||A||$. From this we conclude that $\lim_n ||Ax_n - ||A||x_n|| = 0$, that is, $||A|| \in \sigma_{ap}(A)$. \Box

References

- Y.A. Abramovich, C.D. Aliprantis, O. Burkinshaw, The Daugavet equation in uniformly convex Banach spaces, J. Funct. Anal. 97 (1991) 215–230.
- [2] M. Barraa, M. Boumazgour, Inner derivations and norm equality, Proc. Amer. Math. Soc. 130 (2002) 471– 476.
- [3] C.L. Lin, The unilateral shift and norm equality for bounded linear operators, Proc. Amer. Math. Soc. 127 (1999) 1693–1696.
- [4] B.E. Johnson, Norms of derivations on $\mathcal{L}(X)$, Pacific J. Math. 38 (1971) 465–469.
- [5] M. Mathieu, The norm problem for elementary operators, in: K.D. Bierstedt, et al. (Eds.), Recent Progress in Functional Analysis, in: North-Holland Math. Stud., Vol. 189, Elsevier, Amsterdam, 2001, pp. 363–368.
- [6] M. Mathieu, Elementary operators on Calkin algebras, Irish Math. Soc. Bull. 46 (2001) 33–42.
- [7] E. Saksman, H.-O. Tylli, The Apostol–Fialkow formula for elementary operators on Calkin algebras, J. Funct. Anal. 161 (1999) 1–26.
- [8] L.L. Stacho, B. Zalar, On the norm of Jordan elementary operators in standard operator algebras, Publ. Math. Debrecen 49 (1996) 127–134.
- [9] L.L. Stacho, B. Zalar, Uniform primeness of the Jordan algebra of symmetric operators, Proc. Amer. Math. Soc. 126 (1998) 2241–2247.
- [10] J. Stampfli, The norm of a derivation, Pacific J. Math. 33 (1970) 737-747.
- [11] R.M. Timoney, Norms of elementary operators, Irish Math. Soc. Bull. 46 (2001) 13-17.