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Realization of the invariant inner products
on the highest quotients of the composition series

Jonathan Arazy®

§ 1. Introduction

Let Z be an irreducible JB*-algebra of finite dimension d and rank r. Let D
be the open unit ball of Z; it is a bounded symmetric domain of tube type. We
denote by G=Aut (D), the connected component of the identity in the group
Aut (D) of all biholomorphic automorphisms of D. The isotropy subgroup at the
origin

K = {p€G; ¢(0) = 0} = GNGL(Z)

is a maximal compact subgroup. ‘
In the recent work [FK] Faraut and Koranyi describe the Hilbert spaces of
analytic functions on D which are invariant under the unitary action of G given by

UP(p) = foo-(Jp)*?, ¢€G.

Here Jo=det (¢") is the complex Jacobian of ¢, p is the genus of D (to be defined
below) and /1 ranges over a permissible set of non negative real numbers called the
Wallach set. The formulas for the invariant inner products in [FK] are in terms of a
certain orthogonal expansion of the functions (called the Peter—Weyl decomposi-
tion), which refines the homogeneous expansion.

The purpose of this work is to provide more concrete formulas (in terms of
integrals of certain derivatives) for the invariant inner products, in the special cases
of the highest quotients associated with points A is the discrete part of the Wallach
set. The main results are Theorems 12, 14, and 19 below.

Our formulas for the invariant inner products exhibit the invariant Hilbert

spaces as certain Besov spaces. They can be used effectively to define duality in the
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invariant Banach spaces of analytic functions on D. Our results extend some known
facts concerning the Dirichlet space in the context of the unit disk in the complex
plane.

We fix some notation and terminology. For more details see [FK], [U1] and

the references therein. Fix a frame {e;, e;, ..., ¢,} of minimal orthogonal tripotents, -

let e=e;+...+e,. Let Z=3z;=;=,9Z;; be the Peirce decomposition of Z
relative to {e,}j, and let

Z; = Dhi=mi=m=i®Ziy, j=1,2,..,r

Z; is a JB*-algebra with unit e;j+...4+e;. Let N; be the determinant (“norm”
polynomial of Z;, j=1,...,r. We denote N,=N.

For 1=i<j=r let a=dim(Z, ;). It is known that @ is independent of the
particular choice of 7, j with 1=i<j=r. Thus d=r+r(r—1)%. The genus of D is
p=(r—1a+2=2d/r.

For two polynomials p, g let

(2, Dr = 9,(4%)(0)

be the Fischer inner product. Here dp=p [—(,—)—] and ¢(z*)=g¢*(z). It is known that
- .
the Fischer inner product is given by

2

r.9)=cf p()9@e " av(z) = "7%&‘ [ p@a@ e az

where dV (z) is the usual Lebesgue’s volume measure and {z| is the unique K-in-
variant inner product on Z, normalized so that the norm of a minimal tripotent is 1.
The Fischer inner product is called the “Fock inner product” by some authors.
In particular, the Fischer inner product is K-invariant:

(pok, gok)r = (p, )r; k€K

Let S={k(e); k€K} be the Shilov boundary of D and let do be the unique
K-invariant probability measure on S. The Hardy space H2(S) is the completion
of the space P=P(Z) of analytic polynomials with respect to the inner product of
L3(S, o).

A signature is an r-tuple m= (ml, My, ..., m,) of integers satisfying m,=
my=...=m,=0. The conical polynomial associated with the signature m is

Nu(z) = N{"2="2(2) N3 ="3(z)... Ny (2).

E,:= span {N,0k; kcK}.
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It is known (sée [S] and [U1]) that the spaces {Pm}m are precisely the irreducible
K-orbits in the space P of analytic polynomials on D. Moreover, P admits a direct
sum decomposition

P= 3, ,®F5, (sum over all signatures),

called the “Peter—Weyl decomposition”, see [U1], which is orthogonal with respect

to the Fischer inner product.
Let L={kcK; k(e) e}. For each signature m consider the spherzcal poly-

nomial

on(2) = [, Nn (l(z)) dl

(dl is the Haar measure of L). @w is the unique L-invariant polynomial in Pn sat-

isfying om(e)=1.
For A€C and a signature m we define

W= [T, I J‘l(i—}-v (G=1) ]
It is known [FK, Theorem 3.6] that
ay .
lonlt = (2], /im B,

The Bergman kernel K(z, w) is the reproducing kernel of the space LZ(D) of
analytic functions in L2(D)=L2(D, dV). Notice that K(z,0)=1 for all zéD. The
Wallach set W(D) of D is the set of all 0=/ so that K(z, w)*/? is positive definite,
ie. > j=1 48, z;, z)"P=0 for all finite sequences {z;}}., in D and {a;}}_,
in C.Itis known (see [FK]) that the Wallach set consists of a discrete part Wy(D)=
{v—-1)3)Y,~, and a continuous part W, (D)= (—1) 5, ). For A€W (D) one
defines an inner product (-,-); on #”:=span {K(-, w)*/" ; weD} via

(K(-, W2, K(-, 27%), = K(z, w)?

and let 3, denote the completion of #®. Define an action U® of G on analytic
functions on D by

UB(@) f = (fop) (Jo)'*

where (Jo)(z)=det (¢’(z)) is the complex Jacobian of ¢ at z, p=(r—1)a+2 is
the genus of D and we used the principal branch of the power functlon By the
transformation rule : :

To@ K (@), 000) Toh) = K(z, w); 2, weD, 6€G
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one sees that for each ¢€G, U®(p) is a unitary operator on ;. Unless Ap is
an integer the map ¢~—~U®(gp) is not continuous, nor is it an anti-homomor-
phism. There is however a natural way to extend U™ to an anti-representation of
the covering group G of G (see for instance [B], [U2]). This yields the important
formula

UP (oY) = c(p, ¥, ) - UPW)UX(0), o, Y€G,

where ¢(p, ¥, 4) is a unimodular number. Clearly, UP(id)=I where “id” is the
identity function on D. '

The classification of the irreducible bounded symmetric domains up to bi- .

holomorphic isomorphism, due to E. Cartan, is the following.
D) = {z€M, ,(C); zz* <1}, 1=n=m;
DAL) = {zeD(,,,); 2" = -z}, S=n;
DI, = {zeD(1,,); z¥ = 2}, 2=mn;
D(IV,) = {z€C% (o, P~ |, A < 1= 30 ), 5=
D(V) = {z€My,5(0); |z} < 1};
D(V]) = {zeM, 5(0); z* = z, ||z| < 1}.

Here z” is the transpose of the matrix z, O-is the complex 8-dimensional Cayley
algebra. The domains of types I—IV are classical. D(V) and D(VI) are the excep-
tional 16 and 27 dimensional domains. The domains of fube type are D(1, ), D(IL)
for n even, D(IIL,), D(IV,,), and D(VI). The parameters of these domains are given
in the following table:

f / type | I o, - 111, . 1V, VI
parameter mn (6=n even) 2=n) (4=n)
d=division n? nn—-172 nn+10/2 n 27
r=rank . n - nf2 . n 2 3
a=dim Z,; , 2, if 2=n
Isi=j=r |0, if n=1 4 ) 1 "—2‘ 8
p=genus 2n 2(n—-1) n+1 n 18

Acknowledgement. The author benefited from several conversations with H. Up-
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for sending him their unpublished results ([Y] and [K] respectively) after the first
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§2. Analysis of the differential operator dy.
Proposition 1. N(k(z))=x(k)N(z), k€K, where x: k=T is a multiplicative
homomorphism.
This is well-known.
Notation. m"=(my, My, ..., Mu_1, 0).
If m is a signature and /is a non-nega’give integer, we denote
m+1 = (m+1, my+1, ..., m+I).
Proposition 2. Let m be any signature, 1=0. PnN I=P_,£+1 . In particular, PwN l=
P +1- :
Proof. :
Piyt1,...m+1) = Span {((NEN’)ok): k€K}
= span {(Nnok) N"; k€K), by Proposition 1
= span {N,ok; k€K}- N
= B,N . i

Lemma 3. Oy(Nm N)EPp N1

Proof. Clearly, f=8y(Nm N)EZ, the space of homogeneous polynomials of
degree s, where s=|m'|+(I—1)r=23""1 m;+(—1)r. Let gc2,. Then 9,f is con-
stant and so .

0, f = 3gN(N_,,1,N') = Ogx (N N)(0) = (gN, N Nz

If g=2|£[=3ggs ggepsg then
(ggNs NE'NI)F = O
unless g=(m+I1—1, ..., m_;+I—1,1-1).

So ‘
- 1-1
fEP(m1+l—1,...,m,._1+l—-1,l—1) = Pn_z_'N . l

Notation. d5(Nw N')=Fy,t N*=*, Fi',1€ P

In the proof of Lemma 4 below we use the fact that N*=N and that for every
polynomials p, ¢

1) (P’k »9")r = (4, D)r
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and
(-H-) (aNp’ q)l‘ = (pa Nq)F

The first formula follows easily from the integral form of the Fischer inner product,
while the second follows from the definition (i.e. the differential form of the Fischer
inner product).

kemma 4. 8N(gok)=((3Ng)ok)x(k) kEK.

N g k) *

(3h (On(gok))) = Oun(gok)(0)
= (gok, * N)g, by (),
= (g, (WFok Y N)py(k), by K-invariance,
= (Ong H* ok px(k), by (1),
= ((Ong)ok, *)py(k), by K-invariance:
= 0, (On(&)ok) x(k), by (1)
Hence dy(gok)=(0x(8))ok-x(k) as desired. J

Lemma 5. Oy ((Nyok) N')=(Fp,,0k)N'=* for any keK.
Proof. Oy(Nyol)N') = By (N N0k
= (O (N NY)ok)[x(k)'"=%, by Lemma 4,
= (B, 10k)N'1, ]
We define linear operators {T};2,, T;: Pw—Pm, as follows.
T( 2, es(Nwoky)) = X, ¢, Fy 10k,

and extend 7; to the space #(Z) i=2m @®Pm of harmenic polynomials by line-
arity. By Lemma 5, for every harmonic polypomlal qeaf’ 2)

Ti(q) = Oy(gN)IN'-2,
Lemma 6. Let g€ #(Z), I=1. Then T;(gok)=T,(q)ok; VkeK.
Proof. Let g€Py . Then
Ti(gok) = dx((gok) N')[N'=* = Oy ((@N')o k) [(N'~2 - (k)

_ (On@NY)ok)- x(k Oy (gN?
= NN’"lx(kg’ = =( I;\;?—l))"k =L@k 1
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Corollary 7. There are numbers Cw, such that
E(Q) - C'm 19 fO?‘ CJEP

Proof T;: Pu—~Pn commutes with the action of the group K. However P
is K-irreducible. So by Schur’s lemma in representation theory 7| 1P =Cm Nt/ B |

Lemma 8.
. a
w = Vo N'13/low V218 = IT;.. [ rmtl-1-G-13)

where a=dim (Z;;) for 1=i<j=r, (m,=0).

Proof. Since N is L-invariant and N(e)=1, for every signature m, ¢mN t=
(DE.H. Also

3N(€0ﬂ'+z) = aN((Pm'Nz) = Cln_,zfl’le’l = Cow 1 Qw1 Prr+141°

Hence )
Cm1 = On(@u+1s Co+1408 /@ 4i-allE = 1@+ 113/ 10m +1-1llF

by (11) above. But
loalt = (2], [aim &

(see Section 1) and dim (P +1)=dim (P’ +1-1)=dim (Pn;) by Proposition 2. Thus

o= (el [P = L (Frmr1-1-0-03)

Corollary 9. Let m be any signature with m,=1. Let

- d . a
en= [y (7+mj—1——(]~ 1) —é-).
Let cn=0if m,=0. Let f=2'm fm be analytic in a neighborhood of D, fu€Pn. Then
IS =05 (Sutu) = Zmazr nfulN.

Proof. If m.=1 and fEPm, then f=gN™, with g€Fp, _m, ..m
Lemma 8

—~m,,0)* By

-1

aNf= c(ml—m,,,...,m,.,1—m,-,0)m,.f/N = Cﬂf/N

If m,=0 then P, consists of harmonic polynomials, and hence dy f=0 for all
JE€Pxn (see [U]).

Corollary 10. For every non-negative integer s

NsaN’ Zﬂfﬂ = Zm,.as bﬂ,sfln_
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With bﬁ,s‘——cm .

Comy=1, coymo=1) *++ Clmy—s.41, =5 4+1) = for m,=s and bm,s=0

if m,<s.

Proof. Since dy.=(9y)*, we get by Corollary 9 for any signature m with m, =5
and fm€P,

3N‘fg = (8N)sfﬂ
= cm(On) 7 ful N, With fo/NEPop_1, . o1y
= Cm Cm=1,..,my- 1)) T2 (fu/N?) With f,/N?€ P, s

5 eens My 2)

= cﬂ * c(mr"l; veas Mp—=1) e c(m1-s+1, vy Mp—5+1) (fm/Ns)

If my<s then bﬁ,sr-O and the same proof yields

aN“fﬂ =0= bﬁ,s'fﬂ/Ns. I
Corollary 10’,

s S r d . .
N aNs(meﬂ) = ZmrES -lIi=1 Hj:l (7+m1—l—(_]— 1) —g—]fm.
§»3. Characterization of the invariant inner products on the highest ”
quotients by integration over the Shilov boundary

Fix A=1,=(—- Dg,v=12,..,r, be a point in W;(D). For a signature m
let (4, m) be the multlphclty of 4 as a root of the polynomial

O = 1T, 175" 41~ G- 2)

(We set g(1, m)=0 if A is not a root of (Q_) Set g(A)=supm g(4, m). Clearly
g(A)=r. More precisely

r—v--1; a even

q(d) = [r;v]+1: a=1, D= D(II,)
1 D = D(IV,), nodd;

Consider the action U™ of G on analytic functions on D defined by

UP(0) f = (foo)(Jp)*~.
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Let P(l)%span {UP () P; ¢€G). For j=0,1,...,q(1) define
MP = {fePP; f= 2 fm= Su€ B}

q(4, m) s]

Clearly, '

©) 0} § M S MP S... G MP, =P,

According to [FK] (see also [@] for the special case of domain of type I, ,) the spaces
MJ”) are UP-invariant and the quotients M®/M P, are irreducible (where
M*,:=1{0}). Thus (*) is a composition series of P Ttis not hard to see that in fact

every UM-invariant subspace of P is one of the spaces in (*). Moreover, if we
define for ¢€C and f, g¢ P®

(f2 8)é:= Zm (fns 8mel(Om
and for f,ge M we define
(fs g);.,j = él_{ri (¢ —/1)’. (fs g)g
then (-,-);; is a UP-invariant Hermitian form on M{” with

{feM®; (g f)i; =0, YeeMP} = M{P,.

One can compute

(0s1= 2 U EnelBms

(A, my=j
where

tim —(Em r
Pmy =l 5= /1),=]Iv1 s (/1+l (=D ]

(where “J]’Ti7%” ranges over all non-zero terms). The Hermitian form (-,-),,; on
MP|M®, is definite (positive or negative) if and only if either j=0, or j=g(1)
and (r—v)< is a non-negative integer. In this case the quotient MP/M? A 1s |
said to be unitarizable, and we denote by 5, ; the completion of M (")/M (’1)1 Wlth
respect to (-,-)z, ;-

Since Z is a JB*-algebra, we get the following three possibilities.

‘Corollary 11. (1) If a is even then M)IMSQ_, is alwaps unitarizable, i.e. 5
(51,40 is definite.

(2) If D=D(UIL,) and a=1 then MM, is unitarizable if and only if
r=v (mod 2). In this case q(A)=-5-+1.

(3) If b=D(V,), nodd, then q(/l) 1, MP M is unitarizable for A==
and not unitarizable for A=0.
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The following theorem is the main result of this section.

())The(()}')em 1?. Let i=(v=1)5, 1=v=r, and assume that the highest quotient
MhIMiy_y is unitarizable. Then

1f1% 000 = v (N0 f, Frxs)
where s.= (r—=v)g+1=%—~2, and y=]]_, I em (=0 &+1), the product
rangef over non-zero terms. Consequently, 3, ., is identified with the space of analytic
Junctions f on D for which (N*0y)"? fe H2(S).
Proof. Let f=Zw fm be analytic in a neighborhood of D. Then

1% aw = Zatum=an ((%’J%
m,q(4

= Znea oo fef s I35 (0= D2 4 1= (=) ).

Also, by Coroliary 10

'S r s d .
(N ast’f)La(s) = Z"’rEs Ej=1 Ei=1 (?+’nj —1 _'(j"' 1) ';—] (fg:fgt_)m(s)

I ITy (%Jcm#—(}'—l)%) o
I ?;;1[§+l~—<j~1>—2‘i] o T

by [FK, Corollary 3.5]. Now, if m,=s then

[l I (&4 m—i- -2

T FEma—1 “d T . a
Hj=1 =0 (?+z’(j—1)“2‘)

_ , s 4 . ~1.

- []]j=1 1=0 ' (‘}‘+l”(l—1)‘;—]]

S N
<}'>21,q(11) '

= [ﬂLl o ((v—l)%w—(j—l)%]]"l - %

Hence

'Y(NsaN‘f;f)L?(S) = ”fﬂi,q(ﬁ.)‘ |
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Remark. If r=1 (and then a=0), Z=C and D={z¢C, |z|<1}, =0 and
o, is the Dirichlet space. Theorem 12 yields in this case the known result '

I f11Birichiee = f N (@PdA(z) = fﬂ ei’f’(ei")md %,

lzl=1
Corollary 13. Let A, s, y be as in Theorem 12. Then

(fs O1,a = Vs(N*Ons £, &ras)-

Thus (NSOys f> 8)pesy Is invariant under the action of G given by UP(p)f=
(fo)(Tp).

§ 4. Characterization of the invariant inner preduct in terms of integration over D

The Dirichlet semi-norm in the unit disk 4 in C,

o , 1/2
| flpisienes = (f,,_, 1/ @44 @)
can be written as

| loseiniee = (f,_, 1720 OP (@) = 1709 lzxce.aon

Here the M&bius transformation ¢,(z)=(a—2z)/(1—az) is the biholomorphic sym-
metry of 4 which interchanges 0 and a, du(a)=(1—|a|>)~2dA4(a) is the Mobius-
invariant measure on the unit disk and dg is the Haar measure of G=Aut (4)=
(Aut (4)),. ‘

In this section we study the generalizations of this formula to other tube domains
and group actions. Let D be a tube domain in C? and fix a point A=14,=(v— D3,
(1=v=r) in W(D). Recall that U™ (@)f=(fo0)(J9)*?, ¢€G.

We restrict our attention to the case where the highest quotient M {)/M ) 4
is unitarizable, ie. (r—1)§—A=(r—v)§ is a non-negative integer.

Define ’

s = 5()) = min {{cN; N¢MEy_1}-

Thus, s is the first positive integer for which

span {UP () N*; ¢€G} = M(p, = PP

It is not hard to see that in fact
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Define a differential operator D% form the analytic functions on D into the
real analytic functions on G by

D (f) (@) = Ox=(UP(9) £)(0) = (UD(p) £, N¥);.
D is invariant in the sense that
DR U@ )W) = c(@, . DDP (A V), ¢, ¥€6
where c(p, ¥, 4) is the unimodular function introduced in Section 1. Also, for keK
ReD® = 7(kyT(k}" DI = y(k)+42DP
where Rk(u)(ip):u(Wk) is the operator of right translation by .

Definition. #® is the space of all analytic functions f on D for which
DP(f)ELX(G)=L2(G, dp), with the seminorm

1A e = [DP ()llecer-
Here do is the Haar measure of G.

The main result of this section is the following

Theorem 14. Let D be a tube domain in C%, and let ), be a point in W, (D). Assume
that the highest quotient M\IMS) . is unitarizable. Then # is non-trivial if
and only if A<1, and is this case H#'P=2#, aay With proportional seminorms

IF e =] fllis, 0a

Wwhere « is a constant, independent of f

We prove the theorem in several steps, where the most substantial one deals
with the non-triviality of #® for 1<1 (i.e. that #™ contains some function with
non-zero semi-norm). Let us begin with the easier parts.

Step 1. Characterizing ™ by integration over D.
Define for an analytic function f on D

DP f(a) = IDP (f) (o)l

where @€G satisfies ¢(0)=a. The right K-invariance of D® shows that DP f(a)
is well-defined, i.e. independent of the choice of ¢ which satisfies ¢ (0)=a. Also,
DR UD (p)y=LopDP, where (L,uw)(¥) is the operator left translation. Let ¢,cG
be the symmetry which interchanges 0 and a. Then #™ consists of all analytic
functions f on D for which D (p,)fe L¥(D, u), where du(a)=K (a,a)dV (@) in the
G-invariant measure on D.
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. . - . ;_
Step 2. #'™ is invariant with respect to the isometric action U @ of G.

Indeed, for every fes#® and <G,
[UD (@) [l = IDPUP @) 2@ )
= |Lo(D¥ llzesy» by the invariance of D&M
= | D fllz2sy, by the left invariance of the Haar measure

= [l f .
. 2’ . -
Step 3. || fllew=0 if and only if f is supported on M1 ie f
Zq(ﬂ,_m)q(l)fg’ngPg- '
Indeed, let fe#™. Then | f|pw=0 if and only if (U("”((p) f, Ns).pzo for
all p¢G. This is equivalent to the orthogonality of N*® in the Fischer inner product

to span {U™ (¢) f; ¢€G}. Since the latter space is U (")—invaria.nt and t?e def:omposi-
tion series MPcMP c...cM{), exhaust all the nontrivial U "I)-l.nvana?lt sub-
spaces of P we see that 5pan{U™(¢)f; goEG}=-M.§.‘) for.a unique Jé?(l).
However N°¢ M%,,_, . Hence || f]l =0 if and only if j=q(2) (ie. f=24,m=ifm;
fm€Pn and Jj=<q ().

Step 4. If #P is non trivial, then H#'P =3, 15 with || fllecr=0W)|flx,, 0,
for all fet™,

This is the special case of the uniqueness theorem of [AF]. We sketch the

short proof for the convenience of the reader. '
Siice we assume that #® is non-trivial we get by step 3 that M) is dense
in #W and that | N¥ . =0. Moreover, by the orthogonality of the Peter—Weyl

decomposition Su @ P in both of #® and ) 4y, we get
(N5 ) = 2P (N°, )z, 000
for every function f which is analytic in a neighborhood of D, where
a(A) = [IN*[ D/ 1N, 4+
The semi-inner products of #® and 5, ,;, are UP-invariant. Thus for all
@, YEG:
(UP (@) N5, UP @) N*)pt0> = (N*, UM (o™ U D) Np

= a(AR(N* UP (@ HUPWUIN)s, s

= a(WHUP(@) N, UP W) N)e,, o0
since span {U® (@) N*; p€G} is dense in both ¥ and 5, ., We see that #(;)=

. and that
4,9(2) (f, ©p» = a(DE(f, 8)#, q>
for all f, ges#™.
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The last and the most important part of the proof of Theorem 14 characterizes
the 1’s for which s#» is non-trivial.

We begin with the transformation rule of the determinant polynomial N under
composition with automorphism of D. This is interesting in its own right.

As in [FK], let h(z,w) be the sesquiholomorphic extension of the unique
K-invariant polynomial & on Z whose restriction to spang {e;};., is given by

W(Ziatie) = N(ZL, (=1pe) = [Th_ (1—14,).

It is known that -
K(z,w) = h(z, w)™?, 2z weD.

Recall that S is the Shilov boundary of D.
Lemma 15. Let acD. Then

() N(—@,)N@) = h(a, h(u, a)"%, ucS.

(i) N(9.(2)) = N(a—z)h(z, @)=, zeD.

We sketch the proof. In the matrix tube domains (types I, ,, 11, (» even), and
III,) ¢, can be written as

@a(2) = (I—aa*)y~"2(a—z)(I—-a*z)(I— a*a)*?, zeD.
The determinant polynomial Nis very closely related to the ordinary determinant:
N(z) = det(z), in typesI,, and III,, “
N3(z) = det (2), A in type II, (n even).

The desired formulas in Lemma 15 follow now by the multiplicativity of the ordinary
determinant function, the formula

det (I—xy) = det (I—yx)
and the fact that

det (I—zw*), types 1, , and II,,
h(z, w) = {

det (I—zw*)"2, type II, (n even).
Formula (i) in Lemma 15 is proved in full generality in [Y]. Formulas (i) and (ii)

in the Lemma are equivalent. Indeed, since both sides of (ii) are analytic in z, (ii) is
equivalent to

(i) N(—@,(w)) = Nu—a)h(u, a)~%, aeD, ucs.

We claim that
N(@u—a) = Nwh(a,u), acD, ucsS.

Clearly, this establishes the equivalence of (i) and (i"). For u=e, this is well known
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(see [FK]). For u=k(e), k<K, this follows by the K-invariance of N and & and the
previous case. Since S={k(e); k€K} the proof is complete. ]

Lemma 16, Let z,a€D, then _
Jo,(2) = (=1 K(a, a)"**K(z, ).
Proof. By the transformation rule of the Bergman kernel
K(z, @) = K(¢a(0.(2); 0:(0)
= (J0.(¢(2) T0a(©)) ™ = J0u(2)/0.(0)

letting z=0, we get that Jo,(0) is real. Letting z=a, we ge? Jo, (0 2.=K(a, ;z '1:
Thus Jo,(0)=¢c(@)K(a, a)~*?, with &(@)==*1. Clearly, gla)isa cont;n.uous. u?lc
tion of a. Where a=0, ¢,=—id, so J@,(0)=(—1)% Thus e(a)=(—1)" identically.
It follows that Jo,(0)=(—1)*K(a, @)~*/*. This completes the proof. B

Remarks. (1) The above proof holds in any bounded syfnmetric domain.
(2) The argument determining £(a) is due to A. Koranyi [K].
(3) Lemma 16 is proved in [Y]*by a different method.

Lemma 17. For every a€D
| (N, U9 (90 N*)e = cK(a, a)=
where c is a unimodular constant and

B = [N}/ N*|fes) = (%)(s,s,...,sf

Proof. By the arguments in step 4 above
(N%, f)F = b(N, fluxs)

for every function f which is analytic in the neighborhood of D. Recall that the
reproducing kernel (i.e. the Szegd kernel) is

S(u, a) = K(u, a)**; ucS, aeD.
Using Lemmas 15 and 16 and the fact that s+1=p/2, we get
(N5, UD (0 ) (Nmzis) = [ N N(9a(w))* Joa)*? do )
= (1) [ h(u, @°h(a, u)=*K(a, )"/ do(u)- K(a, &)

= (—1) [ K(u, &)~/ K(a, u"*do (u) K(a, &)~ **

= (—1'K(a, ay*~*
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where

di
l=rs4+—.
> ]

Step 5. Completing the proof of Theorem 14.

Since span {U® (@) N*; peGYy=ME)=P®, it is clear that #® is not trivial
if and only if 0<| N[ 4<<o. However, by Lemma 17 and step 1 of the proof

Vo = [ (0P N, Nuf (@) = £ K (e, a7 a¥ a).

It is well known (see [FK]) that this integral is finite if and only if A<1. Thus #™®
is not trivial for all tube domains different from D(II1,) precisely when A1=0. For
D(UIL,), #™ is not trivial for 2=0 if # is odd, or for 2=1/2 if n is even. This
completes the proof. [ :

Remark. The proof yields in fact the value of the constant
o = NS/ NI,

in Theorem 14. The case where D=D(111,), n even and A=1/2 requires the com-
putation of [, h(z, 2)"2dV (z), using either [H] or formulas (3.7), (3.8) in [FK].

Corollary 18. In the context of Theorem 14, let ) <1. Then the inner product in
the highest quotient #, , 2 1S '

1
(./; g)#;,, a(a) = —a—z—(D.gl)f; ‘D.‘Sl)g)L"’(G) .

§ 5. Characterization of the invariant inner product in terms
of integration over D XD

A less well-known formula for the Dirichlet semi-norm in the unit disk 4in C is

1f bssiemee = f [, 1f@—F 0PI, (2, W) dv(2) dv(w)

where v is a very general finite measure on 4 and K, (z, w) is the reproducing kernel .

of L2(v), the space of analytic functions in L*(v). See [AFP] for the special case
dv(@=(—-1)(1-|z|»*~?d4(z) (x>1) and [AFJPI1] for the general case and ex-
tensions to other planar domains. One interpretation of this formula is that the
Hilbert—Schmidt norm of the Hankel operator

H B @) = [, (F@—=FW) hw) K, (2, w) dv(w)

is given by [|Hlls =l fllpiicmer>» independently of the measure v.
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In this section we extend these results to the context of all tube domains.
Fix a=p+(r—1)§ andlet

dp(z) = c(2) K(z, z)'~*? dV(z)
where (o)1= [p, K(z, 2)'~*?dV (z). Let L%(,) be the subspace of L2(u,) consisting

of analytic functions. Its reproducing kernel is K(z, w)*’?. G acts isometrically on

L2(n,) and L(p,) via U (@) f=(fop)(Jp)*?, p€G. .
Next, let A=(v—1)a/2 (1=v=r) be a point in the discrete part of the Wal-

lach set. Let O be the orthogonal projection on the highest quotient MJh/MQG)_;,

that is

Q(M (Zﬁfﬂ) = Zq()-m_x)=q(z)fm'
We assume in the sequel that MM, is unitarizable, ie. (r—1)a/2—1 is a
nonnegative integer. '

Definition. #® () is the space of all analytic functions f on D for which

. 1 lewen = ([, 0P UP (@) f |firwo d0)
is finite. . .

Again do is the Haar measure of G. Since Q™ commutes with the action of
the subgroup K it is clear that :

1w = [ [|0® (UD(0) £ [iewn A (@)

where du(z)=K(z, z)dV (z) is the G-invariant measure on D. Also, by Lemma 16
one obtains

. K : 2a/p ‘.
aia(9:09) = [pa O ) = EEITE ).
Hence, :
[ fleww = c@* [, QP TP @) 1) (@)} 1Kz, w)P/? dpty(w) diia(2)

Example. Let D=A be the unit disk in C and let A=0. Then p=2 and
Q2 (©)=/()—/(0). Hence

0O(fo0.)(9:(W)) =f(W)—f(2)

and the last formula becomes

1 Wy = c@ [, 1f@~F)I* 1Kz, )22 dpto(2) dpta(w)

which is (up to the proportionality constant) the formula for the Dirichlet semi-norm.
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Remark. If the rank r of D is 2 or more we cannot take in the definition of
#© () the projection (QPf)E=f(E)—f(0) on MP/MP. Unless f is constant,
the integral ;

ST op S @S2 K (2, W) oI dpe(2) dta ()

is infinite, because it is the Hilbert—Schmidt norm of the ordinary, Hankel operator
Hyh=(I~B)fh, heLi(u) |

where P,: L*(u,)—~L2(u,) is the orthogonal projection. It is well-known that if
r=2 no non-trivial Hankel operator H f with f analytic is compact, see [BCZ].
The projection 0@ onto M)/M,_, used in the definition of #”(a) is
much smaller than Q, yet preserves the “essential contents” of f, i.e. the com-
ponent of f in the highest quotient M{03)/M 3 _,. This observation is the key to
our definition of the generalized Hankel operator, see section 6.
 The main result of this section is the following.

Theorem 19. Let D be a tube domain and let J.€W;(D). Assume that the highest
quotient MMy _, is unitarizable. Then ' («) is non-trivial if and only if l<1

In this case 0 ()=, 41y With proportional seminorms

”f“x’(")(a) =c “f”;?;.,q(;.)

where _
¢ = N[/ IN*lss, 000 ’

As in the proof of Theorem 14, it is easy to verify that #®(«) is invariant under
the isometric action U® of G, that | f1 4w,y =0 if and only if f=Ya(i,m <a(2) fms

and that if #* (a) is not trivial then it must coincide with 5, ,;, with proportional
semi-norms. It is also"clear that' #™(«) is non-trivial if and only if N Sc # M),

where as in § 4

s = 5(A) = min {IeN; N'¢ME)_1} _—~

It remains to check when is N€¢# P (x).
Recall that for every signature m, KZ(z, w) is the reproducing kernel of B, in

the Fischer inner product.

Lemma 20. For any signature m, all z,weD and IEN,

(B ¥ T = (e

where m+l=(m1+l, my+1, ooy m+1).
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Proof. By the L-invariance of N and the definition of ¢m (see the introduction),
Pm N'= Punti-

Let t= Z r_.t;e;, ;=0 (where {eg;};_, is the fixed frame of orthogonaI minimal
tripotents). Denote 12=37_  fe;. If keK, z=k(1) then ™ N(z)=yx(k) N()=
2(k) IT;-, t; and by [FK], Lemmas 3.1, 3.2 and Theorem 3.6:

o
K*(z,2) = K20, 1) = Mﬁ—(—ﬂ—)

Fr

Thus, using Proposition 2
(4), &2 N NG = dim (B pu() N

. : d m
— dim (B ) o) = (L K252

The functions (—)m K%(z, w)N()N(w) and (£ )m 1 K2 (z, w) are analytic in z,

conjugate analytic in w and coincide for z=w. Hence they coincide for all
z,weD. |
Let S(z, u)=K(z, u)"/%, z€D, uc S, be the Szegd kernel. It admits an expansion

Sz u)=Zn (%Jﬂ K= (z, u).
Lemma 21. Let D be a tube domain and let f=Jm fn€H*(S). Then for IEN
[ f@)S@wNE N do@) = Szt fu?)

Proof. (%)m KZ%(z,4) is the reproducing kernel of P, in the norm of H2(S).

Hence

[, £6)S(z, 1) NG NG do ) = S [,70 (L), K22, ) NG WG doa)

= Zp [ S@(2),. K= 0 dow)
= 2mfm+l(z) = Zm,zlfm(z)

Corollary 22. Let f be an analyl‘lc Sunction in a nezghbar hood of D, s=¢—i=
). Then
QP = [ f@) S@z,u) NP N() do(u).
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Proof. It is obvious that 4
Mé%ﬂ).)—l = Zmr<s®Pm'

Hence, using Lemma 21 with /=s, we get for S=2m fm
QVN@D) = Sz fn(@) = [ f@) S w) N N@*do ) = ON(p,(z) - z).
Lemma 23. For all a, zD, '
QP (UP(9,) N¥)(2) = 0- N(z)* K(a, &)~ P~*2P K(z, a)"/2,
where 0 is a unimodular constant independent of a and z.
Proof. By Lemmas 15 and 16 and Corollary 22, we get
QP (UP(p,) N¥)(2)
= [ N(0.)}Jo,@)? K(z, u)* N (2 N(u)* do(u)
=0/ & @, wPh(u, a)=*K(z, u)* K (u, )*? do (u) N(2)° K (a, @) =27
=0/ K@, w)=7 S(u, a) K(z, uy**do (u) N(z)*K (a, ay~ 4
= 0-K(a, )~ C+ID K (2, )2 N(z)*
=0-K(a, a)—(ﬂfl/2P)K(Z, a)1/2N(Z)s
where O=(— 1)r5+d1/p_ - )r((p—zl)/z) -]

3

. Lemma24. Let a>p—1. Then there exists a positive constant C such that for
every fEL2(u,) | .
Clf ey = IV Fllesguy = 1 Leeo-

Proof. Let 0<e<1, then
P 1/2
(f o /@ ()

isan equ1valent norm on L2(u,). Since |N(z)|=e" on D\eD and |N (z)l =1 for all
z€D we gét the desired mequahty B

Conclusion of the proof of Theorem 19. By Lemmas 23 and 24,
N3 ~ [ K(a, a)~®=*P|K(z, 6)] du,(2) du(a)

= [ oo IK(z, a)| du,(2) K (a, a)Z/PdV(a)

We claim that there exists 1=C<o so that

1= f D"]K(z, Q) du () =C "
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for all acD. The lower estimate is trivially,
[, 1Kz @)l du(2) = | [ K(z, @) du(a)] = KO, @)| = 1.
The upper estimate follows from- [FK], Theorem 4.1 since e>p+(r—1). Thus
N3 ~ f _K(a, a7 dV (a).

The integral on the right-hand side is finite if and only if A<1. This completes
the proof. H{

Remark. It is p0551ble to compute [ N¥ 0, explicitly in terms of the Gin-
dikin’s Gamma function and the generalized hypergeometric functions, see [FK1]
for general information and Proposition 2.2 there for the actual computatmn Thxs
gives the value of the constant ¢ in Theorem 19.

§ 6. Concluding remarks and 'open problems

The most interesting problem left for future study is to extend our results to
the non-tube cases and to obtain “canonical” formulas (involving derivatives, in-
tegrals, etc.) for the invariant inner-products on the highest quotients M)/M{), ;.
This seems to require some new ideas if r>1. In the case of the unit ball B of C¢
(which is- the only Cartan domain of rank 1), W;={0} and the invariant Hilbert
space q(o)—ﬂ( )/Cl consists of all analytic functions f(z)=23,¢,2*  on
B so that | f]? Ho, gty =2 o] M, le,]? is finite, see [Z]. J. Peetre [P] obtained
integral formulas for the invariant inner product (-,-) 0 by analytic continua-
tion of the inner products of L2(B, y,), d<A. See [A] for the details. A similar
formula was obtained independently by M. Peloso [Pe] by different methods.

Both Theorems 14 and 19 provide integral formulas for the highest quotient
MM, _, only for 2=0 and the special case of D(II,) and A=1/2. It is
interesting to find the modifications of our formulas which will hold for more (or,
all) A€W;(D). In Theorem 19, it.seems that one can modify O by subtracting
terms of low degree, to improve the chance of convergence of the integrals.

What is behind the seemingly different descriptions of &, ,;, (Theorems 12,
14, and 19) is its uniqueness with respect to the isometric action U of G (see [AF]
and step 4 of the proof of Theorem 14). One can obtain many other equivalent
descriptions. For instance, let H be an auxiliary K-invariant Hilbert space of analytic
functions on D with some natural properties, and consider-the space #Y(H) of
all analytic functions f on D for which Q® (UM (p)f)€H for all p€G and

1 flewa= ([, |29 @ @)1 o)
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is finite. By Lemma 23, #)(H) is non-trivial if and only if
[ IN*K* 1% K (a, ay2dV () <o

and in this case #P (H)=2#, ,;, with proportional semi-norms. In Theorem 19 we
study the case where H=L}(4,) and a>p+(r—1)4 (thus #® (a)=#P(L2(,)).
Also, it is easy to verify that #P(H2(S)) is always trivial.

Theorems 12, 14, and 19 justify the notation

)
Bé ) = ’%,q().):

the Besov-2 space associated with the isometric action U® of G. One can define the
other Besov-p spaces associated with U® (here O<p=co, and the genus of D is
denoted by g), by either

B = {f analytic in D; [flgr:= IDP (Nzre) <o}
or

BYM (X) = { f analytic in D; || fllseoe, i= ( f G”Q(")(U"‘)((p) P& do)t <°°}

where X is an auxiliary Banach space of analytic functions on D. It is elementary to
use the proofs of Theorems 14 and 19 to characterize the non-triviality of these
spaces. Thus B and BYP(LZ(y,)) for a>Z+(r—1)& are non-trivial if and
only if A<g— 2(g D/p. It is interesting to study the spaces BY” and B{"(X) from
the usual point of views in the theory of Besov spaces, and in partlcular to establish
our conjecture that B{”=B{”(X) for interesting spaces X for which BP(X) is
non-trivial.

Motivated by our Theorem 19, and by [AFP], [AFJP1], and [AFJP2] we define
the (generalized) Hankel operator H + with an analytic symbol f as the operator
Hp: LA(p)—~L*(p,) (x>g+(r—1)5) given by

Hy 1)@ = [ 1(w) 4;(z, w) K(z, w)le dps,(w)
where

456 w) = @ Foo) @207

and Q© is the orthogonal projection on the highest quotient M /My (thus
A=0). It is easy to establish some of the usual properties of (ordinary) Hankel
operators, for instance Hyjr2(yl=0 and

UNo)H UP(p~Y) = Hroy, 0€G.

It is interesting to investigate the question of boundness, compactness, and the
membership in Schatten ideals S, of the generalized Hankel operators. Theorem 19
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says that H €S, (=Hilbert—Schmidt class) if and only if feB® and that
[Hflls, = ¢- 1. fllzg- :

We conjecture that (at least for p=>2(g—1)/g)
1 ls, ~ 1/ lag> = 1 lspa ~ (f, Vs l? du (@)

where k,=K9[| K| 1xs, is the normalized kernel and du(z)=K(z, z2)dV(z) is
the G-invariant measure on D.

~
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A reduction technique for limit theorems
in analysis and probability theory

J. Bliedtner and P. Loeb!

0. Introduction

The gist of many theorems in analysis and probability theory is that for each
measure u in a given class M, and for some reference measure o, the Radon—
Nikodym derivative du/do is equal g-almost everywhere to a limit along a directed
set J of ratios R,(u, 0), i€.#, defined in terms of u and o. In this paper, we strengthen
the main result from [6] to develop an equivalent formulation of such limit theo-
rems. The essential idea is that the desired result is established for all u€M, once
it is shown that for any measurable set E and any v€ M, with v(E)=0, lim; R;(v, 6)=0
c-almost everywhere on E. Indeed, assuming the class M, is closed with respect
to scaling, it is enough to show that lim sup; R;(v,0)=1 ¢-almost everywhere
on E. We describe the ratios R;(u, o) and the limit process with sufficient generality
to make our reduction technique applicable in quite: diverse settings. The applica- .
tions in this paper are boundary limit theorems in potential theory, the martingale
convergence theorem in probability theory, and differentiation theorems in measure
theory. Here are prototypical theorems in these three areas.

0.1 Radial and Fine Limit Theorems in Potential Theory. Let C be the bound-
ary of the unit disk D= {zEC]|z|<1} For each finite, positive Borel measure p
on C, let Py denote the harmonic function on D obtained by taking the integral
with respect to u of the Poisson kernel. Fix two positive harmonic functions h=_FPg
and g=Pu on D. By the ratio Fatou theorem (see [10]), for g-almost every z€C,

! The second author’s work was supported in part by a grant from the U.S National Science
Foundation (DMS 89—02095).




