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1. Introduction

IN 1931 H. Cartan [4] proved the following uniqueness theorem: Let D ⊂ Cn be
a bounded domain and let f : D → D be a holomorphic mapping. Then f is
the identity on D if it has a "xed point a ∈ D at which the Jacobian f ′(a) is the
identity matrix. Another way of expressing this is as follows: In the space of all
holomorphic mappings D → D a biholomorphic mapping f is uniquely deter-
mined by the "rst two terms f (a), f ′(a) of its power series expansion about a.
Cartan's proof uses an iteration argument that can immediately be extended to
bounded domains in complex Banach spaces (clearly the Jacobian f ′(a) has to be
interpreted as linear operator�the Fréchet derivative d f (a) of f at a). In "nite as
well as in in"nite dimensions Cartan's uniqueness theorem has been the key for
many important results.
In the present paper we study holomorphic mappings f : B → D between

domains in complex Banach spaces that are rigid at a ∈ B in the following sense:
f = g for every holomorphic mapping g : B → D with f (a) = g(a) and
d f (a) = dg(a). Our main interest is concentrated to the special case where B, D
are the open unit balls of the complex Banach spaces E , F and where a = 0 is
the origin. Then, if f : B → D with f (0) = 0 is rigid at the origin it necessarily
must be of the form f = L|B for a linear operator L : E → F with ‖L‖ = 1.
Such linear operators L we also call rigid.
The paper is organized as follows:
In Section 2 we present the basic background for holomorphic mappings be-

tween domains U , V in complex Banach spaces as needed later for the linear
case. In particular, for every m ∈ N and every holomorphic mapping f : U → V
we de"ne f to be m-rigid at the point a ∈ U if f is uniquely determined within
the space of all holomorphic mappings U → V by all derivatives of order < m
at a. This, in case m = 2, is just what occurs for biholomorphic f in Cartan's
uniqueness theorem. We also introduce the more general notion of in"nitesimal
m-rigidity at a in case f is uniquely determined within families of holomorphic
mappings gt : U → V depending holomorphically on a one-dimensional param-
eter t . Using a theorem of Kakutani we show that every biholomorphic automor-
phism of a bounded domain is in"nitesimally 1-rigid, and is even in"nitesimally
0-rigid if U is the open unit ball of a complex Banach space.
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In Section 3 we study linear operators L : E → F with ‖L‖ = 1 and call L
rigid if the induced map between the open unit balls is 2-rigid at the origin. In
the case of Hilbert spaces E , F for instance, L is rigid if and only if L is a (not
necessarily surjective) isometry.
In Section 4 we introduce for every given linear operator L : E → F of norm 1

and every m ∈ N numerical invariants αm ∈ [0, 1] that measure the non-rigidity
of L in connection with homogeneous polynomials of degreem. It turns out that L
is a complex extreme point of the unit ball in the Banach space of all polynomials
E → F of degree 6 m if and only if αm vanishes. Furthermore, (αm)m∈N is
an increasing sequence, and L is rigid if and only if αm = 0 for all m (i.e. the
limit α∞ vanishes). Besides the invariants αm we also introduce invariants πm
that measure certain eccentricities.
In Section 5 we determine the invariants αm and estimate πm for some spe-

cial examples. Also, in the case of contractive projections L we relate rigidity
properties of L with smoothness properties of the unit spheres.
In Section 6 we introduce various types of tangent spaces and correlate them to

the rigidity problem.
In Section 7 we apply the methods to JB∗-triples. These are generalizations

of operator algebras where the algebra product is replaced by a certain ternary
product, the Jordan triple product. Our main result�Theorem 7.14�solves com-
pletely the rigidity problem for w∗-closed inner ideals in JBW∗-triples, the triple
generalizations of W∗-algebras.

NOTATION . Throughout, E and F are complex Banach spaces with open unit
balls B ⊂ E and D ⊂ F . The notation E ⊂ F means that E carries the induced
norm from F , i.e. B = D ∩ F . By L(E, F) we denote the Banach space of
all bounded linear operators E → F . Furthermore L(E) := L(E, E) is the
Banach algebra of all continuous endomorphisms and E∗ := L(E,C) is the
dual of E . The group of all invertible operators in L(E) is denoted by GL(E).
The `p-sum of E and F will be denoted by E ⊕p F , that is E ⊕ F with norm
satisfying ‖(z, w)‖ = max(‖z‖, ‖w‖) if p = ∞ and ‖(z, w)‖p = ‖z‖p + ‖w‖p
if 1 6 p < ∞. For complex Hilbert spaces we denote the inner product always
by (z|w) where the conjugate linear variable is w.
The boundary of B (the unit sphere in E) is denoted by ∂B. The subset of

all extreme boundary points of B is denoted by ∂eB and ∂ecB is the set of all
complex extreme boundary points of B. Always 1 := {t ∈ C : |t | < 1} is the
open unit disc and T := ∂1 is the circle group. The set N of natural numbers
always includes 0.

2. Rigid holomorphic mappings

For an open subset U of the Banach space E a mapping f : U → F is called
holomorphic if for every a ∈ U the Fréchet-derivative d f (a) ∈ L(E, F) exists.
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Then it is known that the derivative d f : U → L(E, F) again is holomorphic
and the second derivative d2 f = d d f takes values in L(E,L(E, F)), which as
Banach space can be identi"ed in a natural way with the space of all bounded
bilinear mappings E2 → F . More generally, the n-th derivative dn f (a) exists as
a bounded symmetric n-linear mapping En → F for every n ∈ N (by de"nition
d0 f = f ).
For arbitrary subsets S ⊂ E and T ⊂ F a mapping f : S → T is called

holomorphic if there exists an open subset U ⊂ E and a holomorphic mapping
h : U → F with S ⊂ U and f = h|S. The space of all holomorphic mappings
S → T will be denoted by Hol(S, T ). With Aut(S) ⊂ Hol(S, S) we denote the
group of all biholomorphic automorphisms of S. For every point a ∈ S denote by

◦a( f ) = sup{n ∈ N : ‖ f (z)‖ = O(‖z − a‖n) as z→ a}
the vanishing order of the holomorphic mapping f : S → T at a. For any pair
f, g ∈ Hol(S, T ) then ◦a( f, g) := ◦a( f − g) is the order of contact at a. In case
a is an inner point of S the condition ◦a( f, g) > m is equivalent to dn f (a) =
dng(a) for all n < m.

DEFINITION 2.1. A subset A ⊂ E is called a set of determinacy in E if
for every open connected neighbourhood U ⊂ E of A the restriction operator
Hol(U,C)→ Hol(A,C) is injective.

The following statement is an easy consequence of the Hahn�Banach theorem.

LEMMA 2.2. Let f : U → F be a holomorphic mapping for a domain U ⊂
E . Let furthermore R ⊂ F be a closed linear subspace and A ⊂ U a set of
determinacy in E . Then f (U ) ⊂ R if f (A) ⊂ R.

Proof. Fix λ ∈ F∗ with λ|R = 0. Then the holomorphic function λ◦ f vanishes
on A.

LEMMA 2.3. Let A ⊂ E be a balanced set of determinacy in E . Then also
A ∩ B is a set of determinacy in E .

Proof. Let U be an open connected neighbourhood of A ∩ B and "x a holo-
morphic function f : U → C vanishing on A ∩ B. We have to show that f = 0.
Since A ∩ B contains the origin we may assume without loss of generality that
U = B. Expand f into a series

∑
fn , where every fn : E → C is homogeneous

of degree n (compare Section 4). Every fn vanishes on A ∩ B and hence also
on A, i.e. fn = 0 for all n.
DEFINITION 2.4. Let S ⊂ E and T ⊂ F be connected subsets, let m > 0 be

an integer and let 1 ⊂ C be the open unit disc. Then f ∈ Hol(S, T ) is called
m-rigid at a ∈ S if the equality g = f holds for every g ∈ Hol(S, T ) with
◦a( f, g) > m. If f is m-rigid at every point of S we call f m-rigid every where.
The mapping f is called in"nitesimally m-rigid at a ∈ S if gt ≡ f holds for
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every family (gt )t∈1 in Hol(S, T ) satisfying the following properties: (i) g0 = f ,
(ii) ◦a( f, gt ) > m for all t ∈ 1 and (iii) gt depends holomorphically on t , i.e. the
mapping 1× S → T de"ned by (t, s) 7→ gt (s) is holomorphic, where 1× S is
considered as a subset of C× E .

Clearly, stronger versions of in"nitesimal rigidity could be introduced by re-
quiring for instance that (gt ) depends real analytically or only Cr on the parame-
ter t . Our main interest however is in the case of linear operators where all these
notions are equivalent to simple rigidity (at least if m > 2, compare 4.3).
All degrees of rigidity may occur: f ∈ Hol(1,1) de"ned by f (z) = zm ,

m ∈ N, is m + 1-rigid but not m-rigid at 0 ∈ 1.
We start with some trivial statements

REMARK 2.5. Suppose that f : S → T is a holomorphic mapping and g :
T → T̃ , h : S → S̃ are biholomorphic mappings. Then for every a ∈ S, every
integer m > 0 and f := g ◦ f ◦ h−1 : S̃→ T̃ the following holds

(i) f is (in"nitesimally, resp.) m + 1-rigid at a if f is (in"nitesimally, resp.)
m-rigid at a.

(ii) f is (in"nitesimally m-rigid at a if f is m-rigid at a.
(iii) f̃ is (in"nitesimally, resp.) m-rigid at h(a) if f is (in"nitesimally, resp.)

m-rigid at a.

REMARK 2.6. Suppose that the holomorphic mappings fi : S → Ti are (in-
"nitesimally, resp.) m-rigid at a ∈ S for i = 1, 2. Then also f = ( f1, f2) : S →
T1 × T2 is (in"nitesimally, resp.) m-rigid at a.
As a consequence of Liouville's theorem every holomorphic mapping E → T

is 1-rigid everywhere if T ⊂ F is bounded. Also, every biholomorphic mapping
f : U → V is 2-rigid everywhere as a consequence of Cartan's uniqueness
theorem if U ⊂ E is a bounded domain. We even have

PROPOSITION 2.7. Suppose that f : U → V is a biholomorphic mapping
where U ⊂ E is a bounded domain. Then f is in"nitesimally 1-rigid everywhere.

Proof. We may assume that U = V and that f is the identity on U . Fix a ∈ U
and consider on E the Carathéodory norm ν de"ned by

ν(v) = sup{|d f (a)v| : f ∈ Hol(U,1), f (a) = 0}
for all v ∈ E . Then V := (E, ν) also is a complex Banach space. Now sup-
pose that (gt ) is a family in Hol(U,U ) depending holomorphically on t ∈ 1
with gt (a) ≡ a and g0 = f . Then t 7→ dgt (a) de"nes a holomorphic mapping
1 → L(V ) with ‖dgt (a)‖ 6 1 for all t . But dg0(a) = id is an extreme point
of the unit ball in the Banach algebra L(V ) by a result of Kakutani and hence
dgt (a) = id for all t ∈ 1�compare [9] p. 74 and p. 69. But then Cartan's
uniqueness theorem gives gt = f for all t ∈ 1.



HOLOMORPH I C R I G I D I TY O F L I N EAR OP ERATOR S 253

For the open unit balls of Hilbert spaces Proposition 2.7 can be generalized, com-
pare also 3.6.

EXAMPLE 2.8. Suppose that E ⊂ F are complex Hilbert spaces with open
unit balls B ⊂ D. Then the canonical injection f : B ↪→ D is 2-rigid everywhere.
Also, f is in"nitesimally 1-rigid everywhere.

Proof. Denote by H the orthogonal complement of E in F and suppose that
◦a( f, g) > 2 for g ∈ Hol(B, D) and some a ∈ B. Then there are holomorphic
maps ϕ : B → B, h : B → H with g = ϕ+h. From ◦a( f, ϕ) > 2 we derive ϕ =
f . But then limz→∂B h(z) = 0 implies h = 0. That f is in"nitesimally 1-rigid at
a = 0 ∈ B follows as in the proof of 2.7 since the canonical injection E ↪→ F
is an extreme point of the unit ball in L(E, F). The statement for arbitrary a ∈ B
then is a consequence of 2.5 since there are h ∈ Aut(B) and g ∈ Aut(D) with
a = h(0) and f = g ◦ f ◦ h−1.
For certain domains Cartan's uniqueness theorem can be strengthened. The "rst

part of the following statement is due to Harris [13], compare also the more gen-
eral Proposition 6.8.

PROPOSITION 2.9. Let B be the open unit ball of the complex Banach space E
and let f : B → B be a holomorphic mapping with d f (0) = id. Then also
f (0) = 0 holds and hence f is the identity on B. Furthermore, f is in"nitesimally
0-rigid everywhere on B.

Proof. Put c := f (0) and start with the special case B = 1. Then Schwarz
lemma applied to the function g(z) := ( f (z)−c)/(c f (z)−1) inHol(1,1) gives
1 = f ′(0) 6 (1−cc) and hence c = 0. In the general case choose a ∈ ∂B and λ ∈
E∗ in such a way that ‖c‖a = c and ‖λ‖ = 1 = λ(a) holds. Then h ∈ Hol(1,1)
de"ned by h(z) = λ ◦ f (za) satis"es h′(0) = 1 and hence ‖c‖ = h(0) = 0.
Finally, suppose that (gt ) is a family in Hol(B, B) depending holomorphically on
t ∈ 1 with g0 = f . Then by Cauchy's inequalities ‖dgt (0)‖ 6 1 holds and as
before we derive gt = id for all t . But then also gt (0) = 0 holds, i.e. gt = f for
all t .

EXAMPLE 2.10. Let E be a complex Hilbert space of "nite dimension > 1.
Let B ⊂ E be the open unit ball and let S := ∂B be the unit sphere of E .
Suppose that f : S → S is a holomorphic mapping and that a ∈ S is a given
point. Then it is known that f extends to a holomorphic mapping f : B → B.
Therefore, if f is not constant, its restriction to B is a proper holomorphic map
B → B. But then by [1] f |B is already an automorphism of B. But it is known
that every f ∈ Aut(B) is linear fractional and is uniquely determined by the three
derivatives f (a), d f (a) and d2 f (a) within Aut(B). From this we get: Either f
is constant, and then f is 1-rigid on S everywhere, or f ∈ Aut(B), and then f is
3-rigid everywhere�but not 2-rigid in any point of S. For more general situations
of this type compare [23].
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PROPOSITION 2.11. Suppose that the holomorphic mapping f : U → V
is m-rigid at a ∈ U and that Q is an arbitrary domain. Then the mapping
g : U × Q → V de"ned by g(z, w) = f (z) is m-rigid at every point
(a, q) ∈ U × Q, provided the bounded holomorphic functions on U separate
the points (this happens for instance if U is a bounded domain).

Proof. Fix q ∈ Q and assume that the holomorphic mapping h : U × Q → V
satis"es ◦(a,q)(h, g) > m. We have to show that g = h. Consider

Ä := {(z, w) ∈ U × Q : ∃ϕ ∈ Hol(U, Q) with ϕ(a) = q, ϕ(z) = w}
and "x (z, w) ∈ Ä together with a corresponding ϕ. Then γ ∈ Hol(U, V ) de"ned
by γ (t) = h(t, ϕ(t)) satis"es ◦a(γ, g) > m, i.e. γ = f and hence g(z, w) =
h(z, w) for all (z, w) ∈ Ä. Let X ⊂ U be an open non-void subset that can be
separated from a via bounded holomorphic functions on U (for instance X =
U \ {a}). To every x ∈ X there is a neighbourhood Y ⊂ Q of q with (x, y) ∈ Ä
for all y ∈ Y . This implies by the identity theorem for holomorphic functions
that h coincides with g on X × Q and hence on all of U × Q.

The condition on U in 2.11 cannot be omitted as the following counter ex-
ample shows: Every holomorphic map C → 1 is constant and hence m-rigid
everywhere while no constant map C×1→ 1 is m-rigid at any point.

COROLLARY 2.12. Let U be a bounded domain. Then for every domain Q
the canonical projection U × Q → U is 2-rigid everywhere.

COROLLARY 2.13. Suppose that Ui is a bounded domain and that the holo-
morphic mapping fi : Ui → Vi is m-rigid at ai ∈ Ui for i = 1, 2. Then also
f1 × f2 : U1 ×U2→ V1 × V2 is m-rigid at a = (a1, a2).

3. Rigid linear operators

In the following let B ⊂ E and D ⊂ F always be the open unit balls. We
are mainly interested in holomorphic maps f : B → D with f (0) = 0. Then
the derivative L := d f (0) satis"es ‖L‖ 6 1. Therefore, if f is 2-rigid at 0 ∈ B
we must have f = L|B and ‖L‖ = 1. It is clear that f never can be 1-rigid
at 0 although it may be in"nitesimally 1-rigid at 0. This motivates the following
de"nition for the linear case.

DEFINITION 3.1. The linear operator L ∈ L(E, F) is called rigid if the in-
duced map B → r D is 2-rigid at 0 ∈ B where r = ‖L‖, that is, if for every
holomorphic mapping f : B → r D with f (0) = 0 and d f (0) = L necessarily
f = L|B follows. We call L strictly rigid if for every holomorphic f : B → r D
the conclusion f = L|B already from the only assumption d f (0) = L follows. In
case E ⊂ F is a subspace we call E (strictly) rigid in F if the canonical injection
E ↪→ F has this property.
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Clearly, the study of rigidity of linear operators L always can be reduced to
the case ‖L‖ = 1. The slightly more general situation in 3.1 avoids complicated
constants sometimes. Rigidity in our sense is closely related to the vector valued
Schwarz lemma in the following form: Suppose f : B → D with f (0) = 0 is
holomorphic. Then the derivative L = d f (0) has norm 6 1 and ‖ f (z)‖ 6 ‖z‖
holds for all z ∈ B. The question then is: Under what conditions can f = L|B be
concluded? Many authors studied this question under the additional assumption
that L is isometric. It is clear that in case L isometric the Banach space E can
without loss of generality be identi"ed with a subspace E ⊂ F via L . To simplify
notation we will frequently do so.
We start with the simple situation dim E = 1, compare also 5.1 for a more

quantitative statement and also 7.2 for a generalization to higher dimensional E .

LEMMA 3.2. Let L : C → F be a linear operator with a : L(1) ∈ ∂D.
Then L is rigid if and only if a is a complex extremal boundary point of D. Also,
L is strictly rigid if and only if a is a (real) extremal boundary point of D.

Proof. Put f := L|B and assume that a is not complex extremal. Then there
is a vector v ∈ F with v 6= 0 and a + 1v ⊂ ∂D. But then g(z) = z(a + zv)
de"nes a holomorphic map g : 1 → D with dg(0) = L , i.e. L is not rigid.
Assume on the contrary that a ∈ ∂B is complex extremal and that g : 1 → D
is a holomorphic mapping with g(0) = 0 and dg(0) = L . Then h(z) := g(z)/z
de"nes a holomorphic function h : 1→ D with h(0) = a, i.e. h ≡ a and hence
f = g, compare [9] p. 69 or [21]. Now assume that a ∈ ∂B is not extremal.
Then there is a vector v ∈ E with v 6= 0 and ‖a ± v‖ = 1. For every α, β ∈ C
then 2(αa + βv) = (α + β)(a + v) + (α − β)(a − v) implies 2‖αa + βv‖ 6
|α+β|+|α−β|. De"ne g : 1→ F with dg(0) = L by 2g(z) = 2za+(1+z2)v.
Then ‖4g(z)‖ 6 |1+z|2+|1−z|2 = 2(1+zz) < 4 for all z ∈ 1 shows g(1) ⊂ D,
i.e. L is not strictly rigid. It remains to show that a ∈ ∂eD implies strict rigidity
of L . But this follows from [12] p. 27�28 and also from Théor>eme 3.6 in [18].

COROLLARY 3.3. Suppose that E is arbitrary and that A ⊂ ∂B is a set of
determinacy in E . Then every L ∈ L(E, F) with ‖L‖ = 1 and L(A) ⊂ ∂ecD
is rigid. If in addition L(a) ∈ ∂eD holds for some a ∈ A then L is even strictly
rigid. In particular, in case ∂D = ∂eD every linear isometry L : E → F is
strictly rigid.

In case of dim E = 2 the situation is already much more complicated as the
following example indicates. In particular, rigid linear operators of norm 1 need
not be isometric even if they are bijective. Notice that by 2.9 every surjective
linear isometry between complex Banach spaces is strictly rigid.

EXAMPLE 3.4. Let I be an arbitrary set of cardinality > 1. For 1 6 p <
q 6∞ "xed consider E := `p(I ) and F := `q(I ). Then the canonical injection
L : E → F is not rigid if q = ∞. In case that I is "nite, the inverse operator
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L−1 : F → E however always is rigid. In case p > 1 the operator L−1 is strictly
rigid.

Proof. Write every z ∈ B as tuple z = (z(i)), "x j ∈ J and let v = e j
(i.e. v(i) = δi j for all i ∈ I ) in the following. Choose furthermore an integer
m > 2 together with a constant c > 0 such that (1 − t p) 6 (1 − ctm)p holds
for all t ∈ [0,1]. Then g(z) = L(z) + c(z(k))mv de"nes a holomorphic mapping
g : B → D with ◦0( f, g) = m > 2 for every k 6= j in I if q = ∞. Now suppose
that I is of "nite cardinality n and put S := (r L)−1 for r := n(1/p−1/q) = ‖L−1‖.
Then A = {z ∈ ∂D : |z(i)| = |z( j)| for all i ∈ I } is a set of determinacy in F .
By 3.3 therefore L−1 is rigid since S(A) ⊂ ∂ec(B).
LEMMA 3.5. Suppose that E ⊂ F is a closed linear subspace and that A is

a set of determinacy in E . Suppose that for every a ∈ A there is a closed linear
subspace Ea ⊂ E containing the point a such that Ea is rigid in F . Then also E
is rigid in F .

Proof. Let f : B → D be a holomorphic mapping with ◦0( f, g) > 2 for the
canonical injection g : B ↪→ D. For every a ∈ A then f (a) = g(a) since Ea is
rigid in F . But then f = g by 2.2.

PROPOSITION 3.6. Let H , K be complex Hilbert spaces and let L ∈ L(H, K )
have norm 1. Then L is rigid if and only if L is a (not necessarily surjective)
isometry.

Proof. Assume that L is rigid and let L = V |L| be the polar decomposition,
where |L| = (L∗L)1/2 and V ∈ L(H, K ) is a partial isometry with ker(V ) =
ker(L). Let {E(dλ)} be the spectral measure of |L|, so

|L| =
∫
[0,1]

λE(dλ).

We claim that |L| = id, that is E([0, α]) = 0 for all α < 1. Indeed, if E([0, β]) 6=
0 for some β < 1, choose a unit vector a ∈ H "xed under the projection P :=
E([0, β]) and denote by Q := id − P the complementary projection. De"ne a
holomorphic map h : B → B by h(z) = (1 − β)(z|a)2a where B ⊂ H is the
open unit ball. Since V ∗V (a) = a holds and V ∗ is an isometry on V (H) = L(H)
we have for all z ∈ B
‖L(z)+ V (h(z))‖2 = ‖|L|(z)+ h(z)‖2

= ‖P|L|(z)+ (1− β)(P(z)|a)2a‖2 + ‖Q|L|(z)‖2
6 ‖P|L|(z)‖2 + (1− β)2‖P(z)‖4
+ 2(1− β)‖P|L|(z)‖ · ‖P(z)‖2 + ‖Q|L|(z)‖2
6 (β2 + (1− β)2)‖P(z)‖2 + 2β(1− β)‖P(z)‖2 + ‖Q(z)‖2
= ‖P(z)‖2 + ‖Q(z)‖2 = ‖z‖2 < 1.
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This is a contradiction to the rigidity of L since V (h(a)) 6= 0. Therefore |L| = id
and L = V is an isometry. The converse statement follows from 2.8.

COROLLARY 3.7. Suppose that H , K are complex Hilbert spaces. Then a lin-
ear operator L : H → K is a surjective isometry if and only if L and L∗ are
rigid.

COROLLARY 3.8. Suppose that E is a complex Hilbert space of "nite dimen-
sion and that a ∈ B is a given point. Then a holomorphic mapping f : B → B is
rigid at a if and only if f ∈ Aut(B).
Proof. Suppose that f is rigid at a. Since Aut(B) acts transitively on B we

may assume that a = 0. But then f = L|B for some linear isometry of E by 3.6.
Because of "nite dimension L must be surjective, i.e. f ∈ Aut(B)
A projection P ∈ L(F) is called contractive if ‖P‖ 6 1 holds and P is called

bicontractive if in addition also id− P is a contractive projection. Furthermore, a
contractive projection P from F onto E ⊂ F is called neutral if ‖P(z)‖ = ‖z‖
always implies z ∈ E for all z ∈ F . Neutrality is not invariant under `∞-sums,
more precisely, suppose that Pi is a neutral projection on the complex Banach
space Fi with range Ei for i = 1, 2. Then P := P1×P2 is a contractive projection
on F = F1 ⊕∞ F2 with image E = E1 ⊕∞ E2, but in general P is not neutral.
However, it is easily seen that A := {(x, y) ∈ E : ‖x‖ = ‖y‖} is a set of
determinacy in E and that P is almost neutral in the following sense.

DEFINITION 3.9. We call a contractive projection P from F onto E almost
neutral if there exists a set of determinacy A in E such that z ∈ E for every z ∈ F
with ‖P(z)‖ = ‖z‖ and P(z) ∈ A.
A nontrivial example for an almost neutral projection is obtained as follows

(compare also 7.11). Let H ⊂ K be complex Hilbert spaces with H 6= K and
dim(H) > 2. Let furthermore p : K → H be the orthogonal projection. Then
P(z) = p ◦ z de"nes a contractive projection from L(H, K ) onto L(H) that is
not neutral. With A ⊂ L(H) the unitary group we see that P is almost neutral.
PROPOSITION 3.10. Suppose that there exists an almost neutral projection P

from F onto E . Then E is rigid in F .

Proof. Choose A ⊂ E as in de"nition 3.9. Then we may assume that A is
balanced and hence that A ⊂ B holds by 2.3. Let f : B → D be a holomorphic
mapping with ◦0( f, g) > 2 for the canonical injection g : B ↪→ D. Then g =
P ◦ f holds by Cartan's uniqueness theorem. By Schwarz lemma we have for all
z ∈ B

‖z‖ = ‖g(z)‖ = ‖P f (z)‖ 6 ‖ f (z)‖ 6 ‖z‖
and hence ‖P f (z)‖ = ‖ f (z)‖, i.e. f (z) ∈ E for all z ∈ A. This implies f (z) ∈ E
for all z ∈ B by 2.2 and thus f = g.
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A little more can be said in 3.10 if the projection P is strongly neutral in the
following sense: For every sequence (zn) in F with lim ‖P(zn)‖ = lim ‖zn‖ <
+∞ always lim ‖zn − P(zn)‖ = 0 holds. Then it is not dif"cult to see that the
canonical injection B ↪→ D is rigid everywhere. As an example of this situation
we may take for every 1 6 p <∞ any `p-sum F = E ⊕p W with the canonical
projection P : F → E along W .

4. Quantitative study of rigidity

As before, let E, F be complex Banach spaces with open unit balls B, D. We
call a continuous mapping f : E → F a homogeneous polynomial of degree n if
there is a symmetric n-linear mapping q : En → F with f (z) = q(z, z, . . . , z)
for all z ∈ E�or equivalently�if f is holomorphic and satis"es f (t z) = tn f (z)
for all z ∈ E and all t ∈ C. The n-linear map q is uniquely determined by f and
can be recovered from f with the polarization formula

q(z1, z2, . . . , zn) = (2nn!)−1
∑

ε∈{±1}n
ε1ε2 · · · εn f (ε1z1 + ε2z2 + · · · + εnzn).

Also dn f (a) = n!q holds for every a ∈ E . Put
Pn : = Pn(E, F) := {homogeneous polynomials E → F of degree n}
Pn : = Pn(E, F) := {polynomials E → F of degree 6 n} =

⊕
k6n
Pk

for every n ∈ N and denote by H∞(B, F) the Banach space of all bounded holo-
morphic functions f : B → F with norm ‖ f ‖ = supz∈B ‖ f (z)‖. Then Pn as
well as Pn can be considered as closed linear subspaces of H∞(B, F) for every
n ∈ N and every f ∈ H∞(B, F) has a unique expansion

f =
∞∑
n=0

fn with fn ∈ Pn for all n ∈ N,

converging uniformly on every subball sB ⊂ B, s ∈ 1. Every fn : E → F is
given by

fn(z) =
∫
T
(r t)−n f (r tz) dt

with z ∈ E and r > 0 satisfying rz ∈ B and dt the (normalized) Haar measure
on T. In particular, f 7→ fn de"nes a contractive projection Pn from H∞(B, F)
onto Pn for every n ∈ N.
In the following let E := { f ∈ H∞(B, F) : f (0) = 0} and denote by B the

closed unit ball of E . For every t ∈ 1 de"ne the commutation operator Ct ∈ L(E)
by f (z) 7→ f (t z)/t if t 6= 0 and by f 7→ d f (0) ∈ P1 if t = 0.
LEMMA 4.1. t 7→ Ct de"nes a semigroup homomorphism 1 → L(E) with
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‖Ct‖ = 1 for all t . For every f = ∑∞
n=1 fn ∈ E with fn ∈ Pn the family (gt )

in E with

gt := Ct ( f ) =
∞∑
n=1

fnt
n−1

depends holomorphically on t ∈ 1 and t 7→ gt de"nes a holomorphic curve
1→ E . In case ‖ f ‖ = ‖ f1‖ also ‖gt‖ = ‖ f1‖ holds for all t .
Proof. Fix f ∈ B. Then by Schwarz lemma we have ‖ f (z)‖ 6 ‖z‖ for all

z ∈ B and hence ‖Ct‖ 6 1. From P ⊂ Fix(Ct ) we thus get ‖Ct‖ = 1. The last
statement follows from g1 = f, g0 = f1 and ‖gs‖ 6 ‖gt‖ if |s| 6 |t |.
Fix an operator L ∈ L(E, F) with ‖L‖ = 1 in the following. We introduce

some numerical invariants that measure the size of non-rigidity of L: Let A =
A(L) be the set of all f ∈ E with d f (0) = 0 and ‖L + f ‖ 6 1. Then L is rigid
if and only if A = 0. It is easily seen that A is closed convex in E and also is
invariant under every operator Ct . From 4.1 we see that L +A is contained in the
boundary ∂B of B. For every m > 2 let

Am := A ∩ Pm, αm := sup
f ∈Am

‖ f ‖ and πm := sup
f ∈A
‖Pm( f )‖,

where Pm is the projection operator
(∑

n fn
) 7→ fm as de"ned above. Then

clearly αm 6 πm 6 1 holds and every Am is a balanced subset of B, that is
Am = { f ∈ Pm : ‖L + t f ‖ 6 1 for all t ∈ 1}.

We may use this equation to de"ne Am together with αm also for the remaining
cases m = 0 and m = 1.
LEMMA 4.2. αm 6 αm+1 for all m ∈ N and in particular, the limit α∞ :=

limαm 6 1 exists.

Proof. Fix f ∈ Am and let 3 be the unit ball of E∗. For every λ ∈ 3, z ∈ B
and t ∈ 1 we have

‖L(z)+ tλ(z) f (z)‖ 6 1,
that is, λ · f is contained in Am+1. Then the Hahn�Banach theorem implies

‖ f ‖ = sup
λ∈3
‖λ · f ‖,

which proves the statement.

The operators Ct may be generalized in the following way. Let µ be a regular
complex Borel measure on 1 with "nite total variation and put

µ̂(k) :=
∫
1

t−k dµ(t)
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for every integer k 6 0. Then the operator Cµ :=
∫
1
Ct dµ(t) ∈ L(E) satis"es

‖Cµ‖ 6 ‖µ‖ and for f =
∑∞

n=1 fn as before we have

Cµ( f ) =
∞∑
n=1

µ̂(1− n) fn .

In particular, if µ is a probability measure on 1, we have ‖Cµ‖ = 1 = µ̂(0) and

‖L + Cµ( f )‖ =
∥∥∥∥∫
1

Ct (L + f ) dµ(t)

∥∥∥∥ 6 ∫
1

‖L + f ‖ dµ(t) 6
∫
1

dµ(t) = 1

for every f ∈ A, i.e. Cµ maps the spaces A and Am into themselves for every
m ∈ N. In the following proposition we use measures µ that are concentrated on
T ⊂ 1.
PROPOSITION 4.3. For every m > 2 and every s ∈ C with |s| 6 1/2 the

operator sPm maps A into Am . In particular, αm 6 πm 6 2αm holds and for
every "xed m > 2 the factor 2 in this estimate is the best constant valid for all
operators L uniformly.

Proof. Consider dµ(t) = Re(1 + 2st1−m) dt , where dt is the Haar measure
on T. Then µ is a probability measure on T with µ̂(1 − n) = 0 for all n > 2
except µ̂(1 − m) = s. This implies sPm( f ) = Cµ( f ) ∈ Am for all f ∈ A. The
last claim will be veri"ed in example 5.2.

PROPOSITION 4.4. The following conditions are equivalent for every L ∈
L(E, F) with ‖L‖ = 1.

(i) L is a complex extreme point of the unit ball in H∞(B, F),
(ii) L is rigid,
(iii) αm = 0 for all m (i.e. α∞ = 0).

Proof. (i) H⇒ (ii) Suppose that L is not rigid. Then there is f = ∑
fn ∈ B

with f 6= f1 = L . Since gt := Ct ( f ) depends holomorphically on t ∈ 1 we get
‖L + s(gt − g0)‖ = 1 for all s ∈ C and t ∈ 1 with |2st | 6 1 − |t | by [9] p. 68.
Then gt 6= g0 = L for t 6= 0 implies that (i) does not hold.
(ii) H⇒ (iii) is trivial.
(iii) H⇒ (i) Suppose that (i) does not hold. Then there is a non-zero holomor-

phic map f : B → D with ‖L + t f ‖ 6 1 for all t ∈ 1. After replacing f by
the function z 7→ λ(z)2 f (z) for a suitable λ ∈ E∗ we may assume that f ∈ A.
By 4.3 there is an m > 2 with αm > 0. Finally, Lemma 4.2 implies α∞ > 0.

The equivalence of (i) and (ii) in 4.4 is already contained in [12] p. 25, compare
also [6] p. 75. In [12] it also has been shown that L (using our language) is strictly
rigid if it is a (real) extreme point of the unit ball in H∞(B, F).
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DEFINITION 4.5. For every m > 1 the linear operator L ∈ L(E, F) is called
m-extreme if L is an extreme point of the unit ball in Pm(E, F). In case of a
complex extreme point we call L complex m-extreme.

LEMMA 4.6. For every m > 2 the conditions `m-extreme', `complex m-
extreme' and `αm = 0' are equivalent. Furthermore, `α1 = 0' is equivalent to
`complex 1-extreme'.

The setA ⊂ E is convex and contains the origin. In general,A it is not circular
(compare 5.2 for an example).

LEMMA 4.7. Suppose that A is circular. Then the projection Pm maps A
onto Am and in particular, αm = πm holds for every m > 2.

Proof. Fix f ∈ A. Then
‖L(z)+ t−m f (t z)‖ = ‖L(t z)+ t1−m f (t z)‖ 6 1

holds for all t ∈ T and z ∈ B. This implies

‖L(z)+Pm f (z)‖ =
∥∥∥∥∫T(L(z)+ t−m f (t z)) dt

∥∥∥∥ 6 ∫T ‖L(z)+ t−m f (t z)‖ dt 6 1
and hence Pm( f ) ∈ Am .

5. Some numerical estimates

In the following, for given L ∈ L(E, F) with ‖L‖ = 1, the spaces A, Am
and the numerical invariants αm , πm have the same meaning as in the preceding
section. We want to get estimates on these invariants in the special situation where
one of the spaces E , F has dimension 1. We start with the case E = C and a
quantitative version of Lemma 3.2.

LEMMA 5.1. Let L : C→ F be a linear operator with ‖L‖ = 1. Then
αm = α0 = sup{‖v‖ : v ∈ F, ‖a + tv‖ 6 1} for all t ∈ 1

for all m ∈ N where a := L(1) ∈ ∂D.
Proof. Suppose that f ∈ Am . Then f (z) = zmv for some v ∈ F with ‖a +

tv‖ 6 1 for all t ∈ T. This shows v ∈ A0 and thus αm 6 α0.
EXAMPLE 5.2. Let K be a locally compact Hausdorff space and F := C0(K ).

Fix a function a ∈ F with ‖a‖ = 1 and put r := ‖1 − |a|‖. Let L : C → F be
de"ned by L(z) = za. Then by 3.2 the operator L is rigid if and only if r = 0
holds. For v ∈ F the condition ‖a + tv‖ 6 1 for all t ∈ 1 is equivalent to
|a| + |v| 6 1 which implies αm = 1− r for all m ∈ N. We claim that in general
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the invariants πm differ from αm , i.e. the set A is not circular. To see this, de"ne
for every c ∈ D the holomorphic mappings gc : 1→ D by

gc(z) := c + z
1+ zc = c + (1− cc)

∞∑
m=1

(−c)m−1zm,

where every z ∈ C is identi"ed with the constant function ≡ z on K . Then for all
0 < s, t < 1 and z ∈ 1 we have

‖gsa(z)− gta(z)‖ =
∥∥∥∥ (s − t)(a − z2a)
(1+ sza)(1+ t za)

∥∥∥∥ 6 2(1− |z|)−2|s − t |.
This implies that the local uniform limit

g := lim
s↗1

gsa ∈ Hol(1, D)

exists. Now consider the F-valued function f on 1 de"ned by

f (z) := zg(z)− L(z) = (1− aa)
∞∑
m=2

(−a)m−2zm .

Then f is contained in A and hence

πm > rm−2(1− r2) for all m > 2.

In particular, π2 > α2 holds if 0 < r < 1. Consequently, A is not circular in
this case. Also, because of limr→1 rm−2(1− r2)/(1− r) = 2 the example shows
that for every "xed m > 2 the estimate πm 6 2αm in Proposition 4.3 cannot be
improved with a universal constant < 2.

Next we consider the case F = C, that is, when L is a linear form on E . For every
pair of vectors a, v ∈ E with ‖a + tv‖ > ‖a‖ for all t ∈ C put

δa(v) := lim sup
t→0

log(‖a + tv‖ − ‖a‖)
log |t | ∈ [1,+∞],

where t runs in C∗. Then δa(sv) = δa(v) holds for all s ∈ C∗ and also δa(0) =
+∞.
Now let L : E → C be a linear form with ‖L‖ = 1 in the following. Assume

that there exists a unit vector a ∈ E with L(a) = 1. Then every z ∈ E can be
uniquely written as z = (u, v) with u = L(z) and v = z−ua ∈ V := ker(L). We
would like to relate rigidity properties of L to smoothness properties of the unit
sphere of E at the point a = (1, 0).
PROPOSITION 5.3. For every integer m > 2 and δ := infv∈V δa(v) we have

(i) L is m-extreme (i.e. αm = 0) if m < δ,
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(ii) L is notm-extreme ifm > δ and V has the following property: To everyw ∈
V there is a non-zero linear form λ ∈ V ∗ such that (u, v) 7→ (u, λ(v)w)
de"nes a linear operator of norm 1 on E . This condition is always satis"ed
if E has dimension 2.

Proof. (i) Suppose that h ∈ A is homogeneous of degree m. For every (u, v) ∈
B and every t ∈ T we have |u + th(u, v)| 6 ‖(u, v)‖ and hence

|u| + |h(u, v)| 6 ‖(u, v)‖.
Fix 0 < u < 1 in the following and put w := v/u. Dividing by u then gives

|um−1h(1, w)| 6 ‖(1, w)‖ − 1
for all w ∈ V near 0 ∈ V . Fix an arbitrary vector v ∈ V and put p(t) :=
um−1h(1, tv) for all t ∈ C. Then p is a polynomial of degree 6 m in t . Choose
β > m together with a sequence (tn) in 1 \ {0} satisfying

log(‖(1, tnv)‖ − 1)
log |tn| > β for all n

and lim tn = 0. This implies
‖(1, tnv)‖ − 1 6 |tn|β and hence |p(tn)| 6 |tn|β

for all n big enough. Since p has degree < β this implies p = 0 and hence
h(1, v) = 0 for all v ∈ V . But this means h = 0.
(ii) Because of m > δ there exists r > 0 and a non-zero vector w ∈ V with
|t |m 6 ‖(1, tw)‖ − 1 for all t ∈ r1. Choose λ ∈ V ∗ as above. We may assume
that |λ(v)| < 1 holds for all (u, v) ∈ B. There exists c > 0 such that

2c 6 1 and 1+ c|t |m 6 ‖(1, tw)‖ if 0 6 |t | 6 2.
Consider the homogeneous polynomial h(u, v) = cλ(v)m of degree m on E . We
claim that h ∈ Am , i.e. |u + h(u, v)| 6 1 for all (u, v) ∈ B. Indeed, in case
|λ(v)| < 2|u| we have

|u + cλ(v)m | 6 |u|(1+ c|um−1λ(v/u)|m) 6 |u|(1+ c|λ(v/u)|m)
6 |u| · ‖(1, λ(v/u)w)‖ = ‖(v, λ(v)w)‖ < 1.

In case |λ(v)| > 2|u| we have |u + cλ(v)m | 6 |λ(v)/2| + c < 1, which proves
the claim.

PROPOSITION 5.4. Let V be a complex Banach space and put E := C⊕p V
for "xed 1 6 p 6 +∞. Let L : E → C be the canonical projection and a =
(1, 0). Then for every v ∈ V ⊂ E with v 6= 0 we have δa(v) = p. In particular,
L is m-extreme if m < p. Since V satis"es the condition in 5.3.ii, the operator L
is not m-extreme if m > p. Actually, we have αm > 1/p if m = p and αm = 1 if
m > p. In case V = C and p = 2 the equality α2 = 1/2 holds.
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Proof. Fix a linear form λ ∈ V ∗ with ‖λ‖ = 1 and de"ne the homogeneous
polynomial h : E → C by h(u, v) := cλ(v)m for c > 0 to be determined.
Then ‖h‖ = c is clear. By elementary calculus we see: h ∈ Am if m > p and
c = 1 or if m = p and c = 1/p. In case V = C and p = 2 one shows that
A2 = {(u, v) 7→ cv2 : |c| 6 1/2}.

6. Tangent spaces

We start with an example that motivates the following de"nitions.

EXAMPLE 6.1. Let E be a complex Hilbert space with open unit ball B and
let F := E ⊕ E with norm

‖(z, w)‖ = sup
t∈R
‖((cos t)z + (sin t)w)‖.

Denote by P the projection on F de"ned by P(z, w) = (z, 0) and identify E with
P(F) in the obvious way. The projection P is bicontractive but not almost neutral.
Indeed, Re(z|w) = 0 and ‖w‖ 6 ‖z‖ implies ‖(z, w)‖ = ‖z‖. Our methods so
far do not guarantee that E ⊂ F is rigid. To get this, suppose that f : E → E is
a homogeneous polynomial of degree m > 2 satisfying

‖(z, f (z))‖ 6 1 for all z ∈ B.
This is easily seen to be equivalent to Re( f (z)|z) = 0 for all unit vectors z ∈ E
and hence for all z ∈ E since f is homogeneous. Geometrically this means that
every vector f (z) is tangent at z to the sphere with radius ‖z‖ about the origin.
The same holds for i f in place of f , i.e.

( f (z)|z) = 0 for all z ∈ E .
But then polarization gives ( f (z)|w) = 0 for all z, w ∈ E , i.e. f = 0 and
therefore E is rigid in F by Proposition 4.4. It can be shown that F is isometri-
cally isomorphic to the complex Banach space of all R-linear operators X → E ,
where X is a real Hilbert space of real dimension 2.

Let F be a an arbitrary complex Banach space with open unit ball D. For every
a ∈ F denote by Sa the set of all λ ∈ F∗ with λ(a) = ‖λ‖ · ‖a‖ and ‖λ‖ = ‖a‖.
Then Sa is a non-void convex subset of F∗ with Sta = t Sa for all t ∈ C and hence
also Sa(v) := {λ(v) : λ ∈ Sa} is convex in C for every v ∈ F . Put

TRa := {v ∈ F : Sa(v) ⊂ iR} and Ta := {v ∈ F : Sa(v) = {0}}.
Then the R-linear subspace TRa for a 6= 0 may be considered as the real tangent
space at a to the sphere {v ∈ F : ‖v‖ = ‖a‖}a and Ta = TRa ∩ iTRa is called
the complex tangent space at a. We call a ∈ F a smooth point if Sa consists of a
single functional or equivalently if F = Ca + Ta . For every smooth a ∈ F denote
by sa the unique functional in Sa . For instance, if F is a complex Hilbert space,
then every a ∈ F is smooth and sa(v) = (v|a) holds for all a, v ∈ F .
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Our de"nition of tangent space implies in particular T0 = F for the origin. This
simpli"es later notations and also means that for Ta only the case a 6= 0 counts.
The following characterization of tangent spaces in terms of differentiability con-
ditions seems to be known.

REMARK 6.2. For every 0 6= a ∈ F the vector v ∈ F is in TRa (in Ta respec-
tively) if and only if

lim
t→0
‖a + tv‖ − ‖a‖

t
= 0

holds where t runs in R (in C respectively).
Simple examples show that {(a, v) ∈ F2 : v ∈ Ta} is not closed in F2 in gen-

eral. Therefore, denote by Ca the set of all v ∈ F such that there exist sequences
(an), (vn) in F with a = lim an , v = lim vn and vn ∈ Tan for all n. Then Ca is a
closed complex cone in F with Ta ⊂ Ca . For every subset A ⊂ F we put

TA :=
⋂
a∈A

Ta and CA :=
⋂
a∈A

Ca .

To indicate the dependence on F we also write Ta(F), TA(F) and CA(F) instead
of Ta , TA and CA. For arbitrary complex Banach spaces E ⊂ F ⊂ R the identity
TE (F) = F ∩TE (R) is clear by the Hahn�Banach theorem. For every contractive
projection P from F onto E and every a ∈ E we have P(Ta(F)) = Ta(E). Also,
for every a ∈ F and every skew-hermitian operator δ ∈ L(F), i.e. ‖ exp(tδ)‖ = 1
for all t ∈ R, the vector δ(a) belongs to the tangent space TRa .
LEMMA 6.3. For every closed linear subspace E ⊂ F the space TE is a

closed linear subspace of F with E ∩ TE = 0. Furthermore, R := E + TE is
closed in F and the projection R→ E along TE is contractive.

Proof. For every a ∈ E and v ∈ Ta we have ‖a + v‖ > ‖a‖. In particular,
a = 0 if a + v = 0, i.e. E ∩ TE = 0. The projection P : R → E along TE
is contractive. This implies for every Cauchy sequence (zn) in R that also (Pzn)
and (zn − Pzn) are Cauchy sequences in E and TE , respectively. Therefore (zn)
converges in R and thus R is closed in F .

We call the linear subspace E ⊂ F smooth in F if F = E + TE .
EXAMPLE 6.4. Let K be a locally compact Hausdorff space and F := C0(K ).

For every unit vector a ∈ F put
6a := {s ∈ K : |a(s)| = 1}.

Then Sa is the space of all linear forms

f 7−→
∫
6a

f (s)a(s) dµ(s)
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where µ > 0 is a regular Borel measure on 6a with µ(6a) = 1. In particular, if
E ⊂ F is a closed linear subspace and

Ä := {s ∈ K : |a(s)| = 1 for some unit vector a ∈ E}
then TE (F) = { f ∈ F : f |Ä = 0}. Therefore, TE (F) = 0 if and only if Ä is
dense in K . Also, a ∈ F is smooth if and only if Ta = Ca holds. The subspace E
is smooth in F if and only if the restriction operator E → C0(Ä) is surjective and
then in particular E has to separate the points of Ä.

DEFINITION 6.5. The complex Banach space E is called a JB∗-triple if the
group Aut(B) acts transitively on the unit ball B ⊂ E . More generally, for an
arbitrary complex Banach space F with open unit ball D a closed linear subspace
E ⊂ F is called a JB∗-subtriple of F if the group {g ∈ Aut(D) : g(B) = B} acts
transitively on B. Then clearly E is a JB∗-triple by itself.
The name JB∗-triple comes from the fact that for every JB∗-subtriple E ⊂ F

there is a natural triple product mapping {} : F × E × F → F such that {zaw}
is symmetric bilinear in (z, w) ∈ F2, antilinear in a ∈ E and such that for every
a ∈ E the polynomial a − {zaz} ∈ P2(F, F) is a complete holomorphic vector
"eld on D tangent to the subspace E ⊂ F , compare [3] and [15].

EXAMPLE 6.6. Let F be a C∗-algebra or more generally a JB∗-algebra with
unit e, compare [11]. Then F is also a JB∗-triple. Furthermore, the self-adjoint
part J := {z ∈ F : z∗ = z} is a JB-algebra and TRe (F) = i J = {z ∈ F :
z∗ = −z} (compare 7.8). In particular, TE (F) = 0 holds for every closed linear
subspace E ⊂ F with e ∈ E .
DEFINITION 6.7. We say that the pair E ⊂ F of complex Banach spaces

satis"es

(i) Property P if f (E) ⊂ TE (F) holds for every holomorphic mapping f :
E → F satisfying f (z) ∈ Tz(F) for all z ∈ E .

(ii) Property Q if there exists a complex Banach space R ⊃ F such that E is a
JB∗-subtriple of R.

The assumptions in 6.7 may be weakened in several ways: From the power series
expansion of holomorphic functions it is clear that in 6.7.i instead of arbitrary
holomorphic mappings f only homogeneous polynomials f have to be checked.
Also, the condition f (z) ∈ Tz only has to be assumed for all z ∈ A where A is
some set of determinacy in E . Clearly, E is a JB∗-triple if Property Q holds.

PROPOSITION 6.8. Suppose that E ⊂ F are complex Banach spaces and
denote by L : E ↪→ F the canonical injection. Suppose furthermore that
f : B → D is a holomorphic mapping with d f (0) = L . Then f (0) ∈ TE (F) and
g(z) ∈ Tz(F) holds for all z ∈ B and g := f − L . In particular, if TE (F) = 0
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and E ⊂ F satis"es Property P, we have f = L|B and hence E is strictly rigid
in F .

Proof. For every a ∈ ∂B and λ ∈ Sa consider the function h ∈ Hol(1,1)
de"ned by h(t) = λ ◦ f (ta). Then h′(0) = 1 implies h(t) = t and hence
λ(g(ta)) = 0 for all t . This means g(z) ∈ Tz for all z ∈ B and in particular
f (0) = g(0) ∈ TE (F). Now suppose that TE (F) = 0 holds and that E is not
rigid in F . Then we may assume that g 6= 0 is a homogeneous polynomial of
degree m > 2 by Proposition 4.3. Clearly, g(z) ∈ Tz holds for all z ∈ E by
homogeneity and hence Property P cannot be satis"ed.

Obviously every linear subspace E ⊂ F of dimension 1 satis"es Property P.
Further examples are obtained in the following way.

LEMMA 6.9. Suppose that P is a contractive projection from F onto E . Let
f ∈ Hol(E, F) satisfy f (z) ∈ Tz(F) for all z ∈ E . Then f (E) ⊂ ker P .
Proof. g := P ◦ f satis"es g(z) ∈ Tz(E) for all z ∈ E which implies g = 0

by the special case E = F of the following proposition.

PROPOSITION 6.10. The pair E ⊂ F satis"es Property P if E is smooth in F .

Proof. Because of 6.3 and 6.9 we only have to consider the special case E =
F . Fix a holomorphic map f : E → E with f (a) ∈ Ta for all a ∈ ∂B. Then f
is a complete holomorphic vector "eld on the unit ball B ⊂ E by [19], compare
also [20], p. 28. But i f has the same property and hence is also complete on B,
i.e. f = 0.
COROLLARY 6.11. Let E , W be arbitrary complex Banach spaces and F =

E ⊕p W the `p-sum for 1 6 p 6∞. Then the pair E ⊂ F satis"es Property P.

Proof. Let f ∈ Hol(E, F) satisfy f (z) ∈ Tz(F) for all z ∈ E and denote
by P : F → E the canonical projection along W . In case p = 1 we have
Tz(F) = Tz(E) for all z ∈ E and the statement follows by 6.10. In case p > 1
the subspace E is smooth in F .

For every measure space (X, µ) and every p with 2 6 p <∞ proposition 6.10
applied to E = F = Lp(X, µ) gives f = 0 for every holomorphic function
f : E → E satisfying ∫

X
f (z)z|z|p−2 dµ = 0

for all z ∈ E . In case p = 2 this is trivial (compare the reasoning in 6.1) and for
p > 2 a direct proof also can be obtained by taking real derivatives with respect
to z and then considering their complex linear as well as their complex antilinear
parts. Notice that every a ∈ E is smooth and that for a 6= 0 the corresponding
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supporting functional sa is given by

sa(v) = ‖a‖2−p
∫
X
va|a|p−2 dµ.

All these considerations remain valid for 1 < p < 2 if for every a ∈ E the
function a|a|p−2 on X is interpreted in an appropriate way.
Property P does not always hold.

EXAMPLE 6.12. Let E , W be complex Banach spaces and let A ∈ L(E) with
‖A‖ = 1 be an operator such that E1 := {z ∈ E : ‖Az‖ = ‖z‖} is a linear
subspace with 0 6= E1 6= E . Let F be the Banach space E ⊕ W with norm given
by

‖(z, w)‖ = max(‖z‖ · ‖Az‖ + ‖w‖)
for all z ∈ E and w ∈ W . Then for all z ∈ E ⊂ F we have

Tz(F) =
{
Tz(E) z ∈ E1 \ {0}
Tz(E)⊕W otherwise.

Therefore, if 0 6= λ ∈ E∗ satis"es λ(E1) = 0 and 0 6= v ∈ W is a given vector,
then f (z) := λ(z)v ∈ Tz(F) de"nes a holomorphic map f : E → F with
f (E) 6⊂ TE (F) = {0}, but clearly f (E) ⊂ CE (F) holds.

PROPOSITION 6.13. Suppose that E ⊂ F satis"es Property Q and that f :
B → F is a holomorphic mapping with

lim
z→a

λ ◦ f (z) = 0
for every a ∈ ∂B, λ ∈ Sa and z running over the open unit ball B of E . Then
f (B) ⊂ TE (F).

Proof. Because of TE (F) = F ∩ TE (R) for every JB∗-triple R ⊃ F we may
assume without loss of generality that F is a JB∗-triple containing E as a sub-
triple. Fix a ∈ ∂B and λ ∈ Sa . Then we also have limz→a λ ◦ f (t z) = 0 for
all t ∈ T. Therefore, if we put g(s) := λ ◦ f (sa) for s ∈ 1, the holomorphic
function g : 1→ C satis"es lim|s|→1 g(s) = 0, i.e. g ≡ 0 and hence f (sa) ∈ Ta
for all s ∈ 1. This shows f (0) ∈ TE := TE (F). Fix an arbitrary point c ∈ B.
Then there exists a complete holomorphic vector "eld Xα := (α − {zαz}) on the
open unit ball D of F with g(0) = c, g(B) = B, dg(0) = exp(L) and L(E) ⊂ E
for g := exp(Xα) ∈ Aut(D) and a certain hermitian operator L ∈ L(F), com-
pare [17] Proposition 2.6. For every real t the isometry exp(i t L) ∈ GL(F) leaves
the subspaces E and TE invariant. This implies that also L and consequently also
dg(0) leaves TE invariant. De"ne the holomorphic mapping f̃ : B → F by
f (g(w)) := dg(w) f̃ (w) for all w ∈ B. Because of f (c) = dg(0) f̃ (0) we only
have to show that also f̃ satis"es the assumptions of the proposition since then
f̃ (0) ∈ TE by the above reasoning. For this "x b ∈ ∂B and µ ∈ Sb. By [16] g ex-
tends to a biholomorphic mapping g : U → V for suitable open neighbourhoods
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U, V of D in F . Consider a := g(b) ∈ ∂B and λ := µ ◦ dg(b)−1 ∈ F∗.
Then S := {g(z) : z ∈ U, µ(z) = 1} is a complex-analytic hypersurface
of V with S ∩ D = ∅. Therefore also the corresponding tangent hyperplane
{z ∈ F : λ(z) = λ(a)} at a ∈ S does not intersect D, i.e. λ ∈ CSa and thus

lim
w→b

µ ◦ f̃ (w) = lim
w→b

µ ◦ dg(w)−1 ◦ f (g(w)) = lim
z→a

λ ◦ f (z) = 0.
COROLLARY 6.14. Property Q implies Property P.

THEOREM 6.15. Suppose that E ⊂ F are complex Banach spaces satisfying
Property P and TE (F) = 0. For B, the open unit ball of E , let F be the space of
all holomorphic mappings f : B → F with f (a) ∈ TRa (F) for every a ∈ ∂B.
Then F ⊂ Hol(B, F) is an R-linear subspace with F ∩ iF = 0 and every f ∈ F
is a polynomial of degree at most 2. Every f is uniquely determined in F by f (0)
and d f (0).

Proof. Fix f ∈ F and expand it on B into the uniformly convergent series
f =∑ fn with fn ∈ Pn(E, F) for every n ∈ N. Fix a ∈ ∂B, λ ∈ Sa and de"ne
cn := λ ◦ fn(a) ∈ C for all n. Then we also have Re(tλ ◦ f (ta)) = 0 for every
t ∈ T and hence

∞∑
n=0
(tn−1cn + t1−ncn) = 2Re(tλ ◦ f (ta)) = 0

for all t ∈ T. Since the coef"cients of a Fourier series are uniquely determined
we get

(∗) c0 + c2 = c1 + c1 = 0 and cn = 0 for all n > 3.
On the other hand, for every f ∈ Hol(B, F), condition (∗) for every a ∈ ∂B,
λ ∈ Sa and ck = λ ◦ fk(a) is also suf"cient for f to be in F , i.e. fn = 0 for
all n > 3 as a consequence of Property P and hence f = f0 + f1 + f2 is a
polynomial of degree at most 2. In particular F ∩ iF = 0 follows. In case f0 = 0
the quadratic function f2 is in F ∩ iF , i.e. every f ∈ F is uniquely determined
by f0 and f1.

Suppose that E ⊂ F is a JB∗-subtriple. For every a ∈ E the polynomial
h : F → F de"ned by h(z) = a − {zaz} is a complete holomorphic vector
"eld on D and therefore the restriction f = h|B is in the space F . The proof of
Proposition 6.15 therefore gives the decomposition F = K⊕ P where

K = { f ∈ F : f (0) = 0} = F ∩ L(E, F) and
P = { f ∈ F : d f (0) = 0} = {z 7→ a − {zaz} : a ∈ E}.

7. The JB∗-triple case
Property P together with TE (F) = 0 is suf"cient but by no means necessary for

the rigidity of E ⊂ F . For instance, if F is a complex Hilbert space and E 6= F is
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an arbitrary closed linear subspace, then E is rigid in F as a consequence of 3.3
or of 3.10. On the other hand, E ⊂ F satis"es Property P as a consequence
of 6.14 and TE (F) 6= 0 is the orthogonal complement of E in the Hilbert space F .
Therefore, the tangent spaces Ta(F) and TE (F) still seem to big for some rigidity
questions.
For every a ∈ F denote by 2a = 2a(F) ⊂ F the smallest closed linear

subspace containing every v ∈ F with ‖a + tv‖ = ‖a‖ for all t ∈ C with
|t | 6 ‖a‖. Then 2a is a linear subspace of Ta with 20 = F and 2sa = 2a for
all s ∈ C∗. Clearly, a ∈ ∂D is a complex extreme boundary point of D if and
only 2a = 0. In case E ⊂ F also 2a(E) = 2a(F) ∩ E holds for all a ∈ E . The
following result is well known, compare also Théor>eme 3.1 in [18].

LEMMA 7.1. LetU be a domain in a complex Banach space and suppose that
f : U → F is a holomorphic mapping with f (U ) ⊂ D. Then f (U ) is contained
in the af"ne subspace (a +2a) for every a ∈ f (U ) ∩ ∂D.
Proof. We may assume that U = 1 and a = f (0) ∈ ∂D. Fix an arbitrary

c ∈ 1 \ {0} and consider

v := 1− |c|
2|c| ( f (c)− a) ∈ F.

Then [9], p. 68, implies a +1v ⊂ D and hence a +1v ⊂ ∂D, i.e. ( f (c)− a) ∈
2a .

PROPOSITION 7.2. Let E ⊂ F be arbitrary complex Banach spaces and sup-
pose that the balanced set

A := {a ∈ E : 2a(E) = 2a(E) = 2a(F) or a = 0}
is a set of determinacy in E . Then E is rigid in F .

Proof. Let f : B → D be a holomorphic mapping with f (0) = 0 and d f (0) :
E ↪→ F the canonical injection. Fix an arbitrary unit vector a ∈ A and consider
h(t) = f (ta)/t ∈ D for all t ∈ 1. Then h(t) ∈ (a +2a(F)) ⊂ E for all t 6= 0
by 7.1, i.e. f (z) ∈ E for all z ∈ A ∩ B. Since A is balanced in E we derive
f (B) ⊂ B by 2.3 and 2.2. But then Cartan's uniqueness theorem implies that f
is linear.

Proposition 7.2 for the special case of "nite dimensions and A dense in E essen-
tially already occurs in [22], compare Théor>eme 5.2. The proof is different from
ours and does not extend to in"nite dimensions. In the following we want to get
rigidity also in cases where the set A in Proposition 7.2 is not a set of determinacy
(even where A = {0}, compare the discussion at the end of this section).
As before in the case of the tangent spaces we put

2E := 2E (F) :=
⋂
a∈E

2a(F)
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for every closed linear subspace E ⊂ F . Then 2E (F) ⊂ TE (F) is a closed
linear subspace and the following analogue of Proposition 6.13 holds. The proof
is similar to the one of 6.13.

PROPOSITION 7.3. Suppose that E ⊂ F satisfy Property Q. Let f : B → F
be a holomorphic mapping with

lim
z→a

λ ◦ f (z) = 0

for every a ∈ ∂B and every λ ∈ F∗ with λ(2a) = 0. Then f (B) ⊂ 2E (F).

COROLLARY 7.4. Let f : E → F be a holomorphic mapping with f (a) ∈
2a for all a ∈ E . Then f (E) ⊂ 2E (F) if E ⊂ F satisfy Property Q.

For the rest of the section let F be a JB∗-triple with triple product {abc}. By the
symmetry in the outer variables the triple product is uniquely determined by all
triple products of the form {aba}. For every a, b ∈ F denote by a2b ∈ L(F) the
operator z 7→ {abz}. Then 2 can be understood as an operator-valued positive-
de"nite hermitian product on F , compare [15] for details. In particular, we write
a ⊥ b if a2b = 0 or�equivalently�if b2a = 0. For every subset A ⊂ F call
A⊥ := {z ∈ F : z ⊥ A} the annihilator of A in F .
Examples of JB∗-triples are for instance all Hilbert spaces with triple product

given by {zaz} = (z|a)z or more generally all spaces L(H, K ) with triple product
{zaz} = za∗z where H , K are arbitrary complex Hilbert spaces and ∗ is the usual
adjoint of operators. The class of subtriples of all L(H, K ) includes in particular
the class of all C∗-algebras.
For every JB∗-triple F and every a ∈ F the smallest closed subtriple of F

containing a is isometrically isomorphic to a space C0(K ) with K ⊂ (0,∞) ⊂ R
and K ∪ {0} compact. For the study of rigidity and tangent spaces in JB∗-triples
therefore the following example is helpful.

EXAMPLE 7.5. Let F = C0(K ), the linear subspace E ⊂ F and Ä ⊂ K
be as in Example 6.4. Then F is a JB∗-triple and it is seen easily that 2E (F) is
the closure of { f ∈ F : Ä ∩ support( f ) = ∅} in F , i.e. 2E (F) = TE (F) by
Stone�Weierstraß.

PROPOSITION 7.6. For every closed linear subspace E ⊂ F and every unit
vector a ∈ F we have

(i) (u − {aua} + {vwa} − {wva}) ∈ TRa (F) for all u, v, w ∈ F ,
(ii) E⊥ ⊂ 2E (F).

Proof. (i) The polynomial f (z) = u − {zuz} + {vwz} − {wvz} is a complete
holomorphic vector "eld on the open unit ball D of F , compare [15]. Therefore
the solution g : R → F of the initial value problem g′(t) = f (g(t)), g(0) = a
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satis"es g(R) ⊂ ∂D and hence Re(λ◦g) has a critical value in 0 for every λ ∈ Sa ,
i.e. g′(0) = f (a) ∈ TRa .
(ii) Follows from the fact that v ⊥ w implies ‖v + w‖ = max(‖v‖, ‖w‖).
COROLLARY 7.7. Ker(E) := {z ∈ F : Q(E)z = 0} ⊂ TE (F) for every

linear subspace E ⊂ F .

The element e ∈ F is called a tripotent if {eee} = e holds. Every tripotent e
induces a direct sum decomposition F1 ⊕ F1/2 ⊕ F0 (the Peirce decomposition
with respect to e), where Fk = Fk(e) is the k-eigenspace of the operator e2e in F .
Every Peirce space Fk is a JB∗-subtriple and the canonical projection F → Fk is
contractive. For k = 1/2 the Peirce projection is even bicontractive.
A special r�ole is played by the conjugate linear operators Q(a) on F de"ned by

z 7→ {aza}. These satisfy the fundamental formula Q(Q(a)b) = Q(a)Q(b)Q(b).
For every tripotent e ∈ F the operator Q(e) splits F into real subspaces F =
F1 ⊕ F−1 ⊕ F0 where Fk is the k-eigenspace of Q(e). Then F1 = F1 ⊕ F−1,
F−1 = i F1 and F0 = F1/2 ⊕ F0.

LEMMA 7.8. TRe (F) = F−1 ⊕ F0, Te(F) = F0 and 2e(F) = F0 for every
tripotent e ∈ F .
Proof. Proposition 7.6 implies F0 ⊂ 2e, F−1 ⊕ F1/2 = {{eve} − {vee} : v ∈

F} ⊂ Te and hence also F−1⊕F0 ⊂ TRe . Now consider a vector v ∈ TRe ∩F1 and
denote by V ⊂ F the closed (complex) subtriple generated by v and e. Then V
coincides in the JB∗-algebra F1(e) with the closed complex subalgebra generated
by the unit e and the self-adjoint element v. In particular, V is a unital associative
JB∗-algebra and hence isometrically isomorphic to C(K ) for some compact subset
K ⊂ R in such a way that e(s) = 1 and v(s) = s > 0 for all s ∈ K . But then∫
K v(s) dµ(s) = 0 for every Borel measure µ > 0 implies K = {0} and hence
TRe = F−1⊕ F0 as well as2e ⊂ Te = F0. The proof will be "nished if we show
that w ∈ F0 for all w ∈ 2e. For this we may assume that w ∈ F1/2 and e+1w ⊂
∂D holds. Consider the complete holomorphic vector "eld f (z) = {zez}−e on D
and denote by t 7→ gt (z) for every z ∈ D the solution of ∂gt (z)/∂t = f (gt (z))
to the initial value g0(z) = z. Then gt ∈ Hol(D, D) for all t ∈ R. Furthermore,
f (e) = 0 and d f (e) = 2e2e imply gt (e) = e and dgt (e) = exp(te2e) for all t ,
compare [17] p. 210. For every t de"ne ht ∈ Hol(1, F) by ht (s) = gt (e+ sw) ∈
∂D. Then {ht : t ∈ R} is a bounded family of holomorphic mappings. Therefore
also the set of all derivatives {h′t (0) = etw : t ∈ R} must be bounded in F , i.e.
w = 0.
LEMMA 7.9. For every tripotent e ∈ F and every closed linear subspace E ⊂

F1(e) we have (i) F0(e) ⊂ TE (F), (ii) F0(e) ⊂ 2E (F).

Proof. For every unit vector a ∈ E and every u ∈ F0(e) we have u = u −
{aua} ∈ F0(e) by 7.6.i, proving (i). The second statement follows from E ⊥ F0.
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LEMMA 7.10. Suppose that E ⊂ F is a JB∗-subtriple with the following prop-
erty: To every v 6= 0 in F there exists a tripotent e ∈ E with {eve} 6= 0 (i.e. the
Peirce-1-component of v with respect to the tripotent e does not vanish). Then
TE (F) = 0 and hence E is rigid in F .

Proof. Suppose that v 6= 0 for a vector v ∈ TE (F). Choose a tripotent e ∈ E
with {eve} 6= 0. Then v ∈ F0(e) by 7.8, a contradiction.
As an application of 7.10 we see for instance that for F = L(H, K ) the sub-

space K(H, K ) of all compact operators is a rigid subspace of F for every pair of
complex Hilbert spaces H , K .

PROPOSITION 7.11. Let e be a tripotent in the JB∗-triple F and denote by
P = Q(e)2 the Peirce projection from F onto E := F1(e). Then the following
conditions are equivalent.

(i) F0(e) = 0,
(ii) P is almost neutral,
(iii) E is rigid in F .

Proof. (i) H⇒ (ii) E is a JB∗-algebra with unit e in the product a ◦ b = {aeb}
and the involution a∗ = {eae}. The selfadjoint part V := F1(e) is a JB-algebra
and Ä := exp(V ) is an open convex cone in V . The generalized unit circle
A := exp(iV ) is a set of determinacy in E . This follows from the fact that
the real analytic mapping ϕ : V → E de"ned by v 7→ exp(iv) has real dif-
ferential dϕ(0) : V → E given by v 7→ iv. Every a ∈ A is a tripotent with
F1/2(a) = W := F1/2(e). Indeed, a = exp(2iv) holds for some v ∈ V and
λ := exp(i(v2e + e2v)) ∈ GL(F) is a triple automorphism with λ(c) = a and
λ(W ) = W . Therefore it is enough to show that ‖e + w‖ = 1 for w ∈ W implies
w = 0. Suppose on the contrary that w 6= 0 holds. Then c := {eww} ∈ Ä and
c 6= 0, compare [16] p. 183. But this is not possible�the closed real subalgebra
of V generated by e and c can be realized as C(K ,R) in such a way that e is the
function ≡ 1 on the compact space K and c > 0.
(ii) H⇒ (iii) Follows from Proposition 3.10.
(iii) H⇒ (i) Is trivial because of e⊥ = F0(e).

For every tripotent e ∈ F the Peirce spaces F1(e) and F0(e) are inner ideals
of F�by de"nition, a closed linear subspace J ⊂ F is called an inner ideal if
{J F J } ⊂ J holds. Every inner ideal J ⊂ F is a subtriple of F and with every
tripotent e ∈ J also the whole Peirce space F1(e) is contained in J . By [7] the
inner ideals of F can be uniquely characterized in the class of all closed subtriples
E ⊂ F by the unique norm preserving extension property of linear functionals:
To every λ ∈ E∗ there exists a unique σ ∈ F∗ with ‖λ‖ = ‖σ‖ and σ |E = λ.The
following proposition is a characterization of inner ideals within the bigger class
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of all closed linear subspaces of F in terms of holomorphic automorphisms of the
open unit ball D of F .

PROPOSITION 7.12. Let E with open unit ball B be a closed linear subspace
of the JB∗-triple F with open unit ball D. Then E is an inner ideal of F if and
only if g(B) is convex in F for every g ∈ Aut(D).
Proof. Fix an arbitrary c ∈ D. Then ‖z2c‖ < 1 holds for all z ∈ D and there

exists an automorphism g ∈ Aut(D) such that
(∗) g(z) = c + λ(1+ z2c)−1z
for λ = dg(0) ∈ GL(F) and all z ∈ D, compare [15] p. 132. Therefore, if E
is an inner ideal in F , the function f (z) := (1 + z2c)−1z maps B into E and
hence g(B) ⊂ (A ∩ D) fo rthe af"ne subspace A := c + λ(E). By the implicit
function theorem g(B) is a neighbourhood of c in A, therefore g−1 maps the
domain (A ∩ D) ⊂ A into E , i.e. g(B) = A ∩ D. In particular, g(B) is convex
in F . Any other automorphism g̃ ∈ Aut(D) with g̃(0) = c is of the form g̃ = gk
for some k ∈ Aut(D) ∩ GL(F). Then k respects the triple product and hence
Ẽ := k(E) is also an inner ideal of F , i.e. also g̃(B) is convex. On the contrary,
suppose that g(B) is convex in F for all g ∈ Aut(D). Fix an arbitrary c ∈ D
and choose g as in (∗). Then f (z) = λ−1(g(z) − c) = z − {zcz} + o(‖z‖2)
de"nes a holomorphic mapping f : D → F with f (0) = 0, d f (0) = id and
f (B) convex. By the implicit function theorem f (B) must be contained in E .
This implies {zcz} = − limt→0 t−2( f (t z)− t z)) ∈ E for all z ∈ B and all c ∈ D.
Therefore E is an inner ideal in F .

A JB∗-triple F is called a JBW∗-triple if F as a Banach space is the dual of
another Banach space, compare [14] and [10]. This predual is uniquely deter-
mined by F and is denoted by F∗. It is known [2] that the triple product on every
JBW*-triple is separately w∗-continuous. For every JB∗-triple E the bidual E∗∗
is a JBW∗-triple with triple product extending the one of E ⊂ E∗∗, compare [5].
The advantage of JBW∗-triples is that they contain many tripotents. By [8] a linear
subspace E of the JBW∗-triple F is a w∗-closed inner ideal if and only if E is the
range of a structural projection P in F (structural means Q(P(a)) = P ◦Q(a)◦P
for all a ∈ F�such a projection is automatically contractive andw∗-continuous).
EXAMPLE 7.13. Let F := L(H, K ) for complex Hilbert spaces H , K1, K2

and K := K1⊕2 K2. Then every z ∈ F can be realized as a pair z = (z1, z2) with
zk ∈ L(H, Kk) for k = 1, 2 and P(z1, z2) = (z1, 0) de"nes a structural projection
onto a w∗-closed inner ideal E with E⊥ = 0. In general, the projection P is not
almost neutral and also E is not the Peirce-1-space of a tripotent, compare the
matrix example at the end.

THEOREM 7.14. Let E be a w∗-closed ideal in the JBW∗-triple F and let P
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be the corresponding structural projection from F onto E . Then

TE (F) = ker(P) = {z ∈ F : Q(E)z = 0} and
2E (F) = E⊥ = {z ∈ F : (E2E)z = 0}.

Furthermore, E is rigid in F if and only if 2E (F) = 0.

Proof. Fix v ∈ TE (F) and a ∈ E . Then there is a tripotent e ∈ E with
a ∈ F1(e). This implies Q(a)v = 0 because of v ∈ F0(e) and hence TE (F) ⊂
Ker(E). The opposite inclusion follows with 7.7. But Ker(E) = ker(P), com-
pare [8]. The statement concerning2E (F) follows by a similar argument. Finally,
E⊥ = 0 is necessary for E being rigid in F . Let us therefore assume conversely,
that E⊥ = 0 holds. Consider a homogeneous polynomial f : E → F of degree
m > 2 with z + f (z) ∈ D for all z ∈ B and "x c ∈ B. We have to show that
f (c) = 0. Because of 7.4 it is enough to show that f (c) ∈ 2c(F). Choose a
tripotent e ∈ E with c ∈ U := F1(e) and put Z := F0(e). Then ‖e + t f (e)‖ 6 1
for all t ∈ 1 implies f (e) ∈ Z by 7.1. Now let the selfadjoint part V of the
JB∗-algebra U and A = exp(iV ) be as in the proof of Proposition 7.11. Every
a ∈ A has the same Peirce spaces as e and therefore also f (a) ∈ Z by the above
reasoning. Since A is a set of determinacy in U this implies f (c) ∈ Z ⊂ 2c(F)
as a consequence of 2.2 and 7.9.

As an example consider the case of an arbitrary W∗-algebra F . Then F is also
a JBW∗-triple and a w∗-closed linear subspace E ⊂ F is an inner ideal if and
only if E = eFc for (Hermitian) projections e, c ∈ F having the same central
support, compare [8] p. 59. Then TE (F) = (1 − e)F + F(1 − c) and 2E (F) =
(1− e)F(1− c).
We close with a "nite dimensional illustration of Theorem 7.14: For "xed

integers 1 6 p 6 n and 1 6 q 6 m with n 6 m the matrix space
F := Cn×m = L(Cn,Cm) is a JBW∗-triple of dimension nm and rank n. Write
every matrix z ∈ F in block form z = (abcd), where a, b, c, d are rectangular ma-
trices of sizes p×q, p× (m−q), (n− p)×q and (n− p)× (m−q) respectively.
P(z) = (a0

00

)
de"nes a structural projection onto an inner ideal E of F . Then

E ≈ Cp×q is the Peirce-1-space of a tripotent e ∈ F if and only if E has square
size, i.e. p = q. Under the assumption E 6= F the projection P is neutral if and
only if n = 1, that is, if F is a Hilbert space. Furthermore, P is neutral if and only
if q > p = n holds, that is, if E and F have the same rank. E is rigid in F if and
only if p = n or q = m. Finally, for the set A of Proposition 7.2 the following
conditions are equivalent: (i) A 6= {0}, (ii) A is a set of determinacy in E , (iii) E
and F have the same rank. Also, A is dense in E if and only if E = F or F is a
complex Hilbert space. In particular, E may be rigid in F in the case A = {0}.
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