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theoretical results for the equations—the existence and uniqueness of solutions, the
existence of periodic solutions, and the stability of the zero solution—are obtained.
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© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of differential equations with piecewise constant argument (EPCA) of type

dx(t)
dt
= f (t, x(t), x([t])), (1)

where [.] stands for the greatest integer function, was initiated in [1,2], and has been developed for the last three decades
using the method of reduction to discrete equations by many researchers [3–15]. Applications of these equations for
problems of biology, mechanics, and electronics can be seen in papers [1,16–18]. The theoretical depth of investigation
of these equations was established by papers [1,2], where the reduction to discrete equations had been chosen as the main
instrument of study.
In [19,20] we introduced differential equations with piecewise constant argument of generalized type (EPCAG) of type

dx(t)
dt
= f (t, x(t), x(β(t))), (2)

where β(t) = θi if θi ≤ t < θi+1, i integer, is an identification function, and θi is a strictly increasing sequence of real
numbers.
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The equations were extended in papers [21,22] to systems with advanced and delayed argument

dx(t)
dt
= f (t, x(t), x(γ (t))), (3)

where γ (t) = ζi if t ∈ [θi, θi+1) and ζi, i ∈ Z, is a sequence such that θi ≤ ζi ≤ θi+1.
Differential equations of another type were proposed in [23]:

dx(t)
dt
= A(t)x(t)+ f (t, x(θσ(t)−p1), x(θσ(t)−p2), . . . , x(θσ(t)−pm)), (4)

where σ(t) = i if θi ≤ t < θi+1, i = · · · − 2,−1, 0, 1, 2, . . ., is an identification function, θi is a strictly ordered sequence
of real numbers, unbounded on the left and on the right, pj, j = 1, 2, . . . ,m, are fixed integers.
All of these equations are reduced to equivalent integral equations such that one can investigate many problems which

have not been properly solvable by using discrete equations—for instance, existence and uniqueness of solutions, stability,
differentiable and continuous dependence of solutions on parameters [19–26].
In this paper we generalize Eqs. (2) to a new type of system, differential equations with state-dependent piecewise

constant argument (ESPA), where intervals of constancy of the independent argument are not prescribed and they depend
on the present state of a motion. The method of analysis for the equations was initiated in [19–23]. We are confident that
introduction of these equations will provide new opportunities for the development of theory of differential equations and
for applications [27,16,28–34]. Eqs. (3) and (4) can also be extended to ESPA. One must say that the present results build
on the rich experience accumulated for dynamical systems with discontinuities [35–41] and are strongly influenced by
theoretical concepts developed for equations of a different type with discontinuities [42–46].
Our paper consists of two main parts. In Section 2 we introduce the most general—for the present time—form of the

equations. Some basic properties of ordinary differential equations, constancy switching surfaces, are defined, which give us
a start in the investigation. One of them is called the extension property. The definition of the solutions is given. In the rest
of the work we realize the general concepts for equations of a particular type, namely, quasilinear systems. Existence and
uniqueness theorems, periodicity, and stability of the zero solution are discussed.

2. Generalities

Let N,R,Z be the sets of all natural and real numbers, and integers, respectively. Denote by ‖.‖ the Euclidean norm in
Rn, n ∈ N.
Let I = (a, b) ⊆ R andA ⊆ Z be nonempty intervals of real numbers and integers, correspondingly. Let G ⊆ Rn be an

open connected region. Denote by C(G, I) and C1(G, I) the sets of all continuous and continuously differentiable functions
from G to I, respectively. Fix a sequence of real valued functions {τi(x)} ⊂ C(G, I), where i ∈ A.
We introduce the following assumption.

(A1) There exist two positive real numbers θ and θ̄ such that θ ≤ τi+1(x)− τi(y) ≤ θ̄ for all x, y ∈ G and i ∈ A.

Set the surfaces Si = {(t, x) ∈ I × G : t = τi(x)}, i ∈ A, in I × G, and define the regions Di = {(t, x) ∈ I × G : τi(x) ≤
t < τi+1(x)}, i ∈ A, and Dr = {(t, x) ∈ I × G : τr(x) ≤ t} if maxA = r < ∞. Because of (A1), one can see that the Di’s,
i ∈ A, are nonempty disjoint sets.
We consider the equation

dx(t)
dt
= f (t, x(t), x(β(t, x))), (5)

where t ∈ I, x ∈ G, and β(t, x) is a functional such that if x(t) : I→ G is a continuous function, and (t, x(t)) ∈ Di for some
i ∈ A, then β(t, x) = ηi, where ηi satisfies the equation η = τi(x(η)). From the description of functions τ , this implies that
one can call surfaces t = τi(x) constancy switching surfaces, since the solution’s piecewise constant argument changes its
value at the moment of meeting one of the surfaces.
We call system (5) a system of differential equations with state-dependent piecewise constant argument, ESPA.
Let us introduce the following conditions, which are necessary for defining a solution of Eq. (5) on I.

(A2) For a given (t0, x0) ∈ I× G, there is an integer j ∈ A such that t0 ≥ τj(x0), and j ≥ k if t0 ≥ τk(x0), k ∈ A.

One can see that the functional β(t, x) ≤ t for all t ∈ I, x ∈ G. Indeed, to define system (5), the point (t, x) must be in Dj
for some j ∈ A.
Consider the ordinary differential equation

dy(t)
dt
= f (t, y(t), z), (6)

where z is a constant vector in G.
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Fig. 1. A solution of a differential equation with state-dependent argument.

We impose the following assumption.

(B0) For a given (t0, x0) ∈ I × G, solution y(t) = y(t, t0, x0) of Eq. (6) exists and is unique in any interval of existence, and
it has an open maximal interval of existence such that any limit point of the set (t, y(t)), as t tends to the endpoints of
the maximal interval of existence, is a boundary point of I× G.

Let us recall that condition (B0) is valid, if, for example, the function f is continuous in t , and satisfies the local Lipschitz
condition in y.
We shall need the following conditions:

(A3) for a given (t0, x0) ∈ I × G satisfying (A2), there exists a solution y(t) = y(t, t0, x0) of Eq. (6) such that ηj = τj(y(ηj))
for some j ∈ A, and ηj ≤ t0;

(A4) for each z ∈ G and j ∈ A the solution y(t, τj(z), z) of Eq. (6) does not meet the surface Sj if t > τj(z);
(A5) for a given (t0, x0) ∈ I× G belonging to Sj, j ∈ A, there exist a surface Sj−1 ⊂ I× G and a solution y(t) = y(t, t0, x0)

of Eq. (6) such that ηj−1 = τj−1(y(ηj−1)) for some ηj−1 < t0.

If a point (t0, x0) ∈ I× G satisfies (A2) and (A3), then we say that this point has the extension property.
Let us introduce the definition of a solution of (5).

Definition 2.1. A function x(t) is said to be a solution of Eq. (5) on an interval J ⊆ I if:

(i) it is continuous on J,
(ii) the derivative x′(t) exists at each point t ∈ Jwith the possible exception of the points ηi, i ∈ A, for which the equation

η = τi(x(η)) is satisfied, where the right derivative exists,
(iii) the function x(t) satisfies Eq. (5) on each interval (ηi, ηi+1), i ∈ A, and it holds for the right derivative of x(t) at the

points ηi.

Fix (t0, x0) ∈ I × G. Assume that it has the extension property. We shall consider the problem of global existence of a
solution x(t) = x(t, t0, x0) of (5).
Let us investigate the problem for increasing t . Either the point (t0, x0) is in Sj, or there is a ball B((t0, x0); ε) ⊂ Dj for

some real number ε > 0, and j ∈ A. The solution x(t) is defined on an interval [ηj, t0], ηj ≤ t0 by the extension property,
and satisfies the initial value problem (IVP)

y′(t) = f (t, y(t), y(ηi)),
y(ηi) = x(ηi), (7)

such that ηi = τi(x(ηi)) for i = j (see Fig. 1). By using (A4) and (B0), there exists a solution ψ(t) = ψ(t, ηj, x(ηj)) of (7)
defined on the right maximal interval of existence, [t0, β). Ifψ(t) does not intersect Sj+1, or the constancy switching surface
Sj+1 does not exist, then the right maximal interval of x(t) is [t0, β), β > t0. Otherwise, there is some ξ ∈ I such that
t0 < ξ < β , and ξ = τj+1(ψ(ξ)). Then by defining ηj+1 = ξ , we define the solution x(t) as ψ(t) on [t0, ηj+1]. Now, one can
apply the above discussion for (t0, x0) to the point (ηj+1, x(ηj+1)).
Proceeding in this way, we may come to the case where for some k ∈ A, k > j, the solution ψ(t) = ψ(t, ηk, x(ηk)) has

a right maximal interval [ηk, γ ) and this solution does not meet Sk+1, and then [t0, γ ), γ > ηk, is the right maximal interval
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of existence of x(t). If there is no such k, then either x(t) is continuable to+∞ if the setA is unbounded from above, or the
solution achieves the point (ηr , x(ηr)), ηr = τr(x(ηr)) and then x(t) has the right maximal interval [t0, κ), κ > ηr where
[ηr , κ) is the right maximal interval of solution ψ(t) of Eq. (7) for i = r.
On the basis of the above discussion we can conclude that if the extension property for (t0, x0) and conditions (A4) and

(B0) are valid, then solution x(t, t0, x0) of Eq. (5) has a right maximal interval of existence, and it is open from the right.
Now consider decreasing t . Assume, again, that (t0, x0) satisfies the extension property. Let us consider first (t0, x0) ∈ Sj.

If condition (A5) is not valid, then the solution x(t, t0, x0) does not exist for t ≤ t0. Otherwise, it is continuable to ηj−1 such
that ηj−1 = τj−1(x(ηj−1)), and satisfies Eq. (7) for i = j− 1. Then, again, as for (ηj, x(ηj)), we may have the same discussion
for the point (ηj−1, x(ηj−1)). Finally, we may conclude that either there exists ηk, k ≤ j, such that the left maximal interval
of x(t) is [ηk, t0] (it is true also if there exists k = minA) or the solution is continuable to−∞. Let us now consider the case
where (t0, x0) is an interior point of Dj, and satisfies the extension property. Then, it is continuable to the left up to Sj, and
then, we can repeat the above discussion. So, we can draw the conclusion that the left maximal interval of existence of x(t)
is either a closed interval [ηk, t0], k ∈ A, or an infinite interval (−∞, t0]. By combining the left and right maximal intervals,
we define the solution x(t) on the maximal interval of existence.

3. Quasilinear systems

In this section, we investigate the existence and uniqueness of solutions of quasilinear ESPA.
Let I = R,G = Rn andA = Z. Fix a sequence of real numbers {θi} ⊂ R such that θi < θi+1 for all i ∈ Z. Take a sequence

of functions ξi(x) ∈ C(Rn,R). Set τi(x) = θi + ξi(x). Define the constancy switching surfaces Si = {(t, x) ∈ R × Rn : t =
θi + ξi(x)}, i ∈ Z, and the regions Di = {(t, x) ∈ R× Rn : θi + ξi(x) ≤ t < θi+1 + ξi+1(x)}, i ∈ Z.
Let us now consider the following quasilinear differential equation:

x′(t) = A(t)x(t)+ F(t, x(t), x(β(t, x))), (8)

where t ∈ R, x ∈ Rn, and β(t, x) is a functional such that if x(t) : R → Rn is a continuous function, and (t, x(t)) ∈ Di for
some i ∈ Z, then β(t, x) = ηi, where ηi satisfies the equation η = θi + ξi(x(η)).
Fix H ∈ R,H > 0, and define KH = {x ∈ Rn : ‖x‖ < H}. We introduce the following assumptions:

(Q1) there exist positive real numbers c, d such that c ≤ θi+1 − θi ≤ d, i ∈ Z;
(Q2) there exists l ∈ R, 0 ≤ 2l < c , such that |ξi(x)| ≤ l, i ∈ Z, for all x ∈ KH ;
(Q3) the functions A : R→ Rn×n and F : R× Rn × Rn → Rn are continuous;
(Q4) there exists a Lipschitz constant L1 > 0 such that

‖F(t, x1, y1)− F(t, x2, y2)‖ ≤ L1 [‖x1 − x2‖ + ‖y1 − y2‖]

for t ∈ R and x1, y1, x2, y2 ∈ KH;
(Q5) supt∈R ‖A(t)‖ = κ <∞;
(Q6) supt∈R ‖F(t, 0, 0)‖ = N <∞;
(Q7) there exists a Lipschitz constant L2 > 0 such that

|ξi(x)− ξi(y)| ≤ L2‖x− y‖

for all x, y ∈ KH and i ∈ Z.

One can see that conditions (Q1) and (Q2) imply (A1) with θ = c − 2l and θ̄ = d + 2l. Also, Eq. (6) for system (8) has the
form

y′(t) = A(t)y(t)+ F(t, y(t), z), (9)

where z ∈ Rn is a constant vector. Hence, under conditions (Q1)–(Q4), it is not difficult to see that (A2) and (B0) are valid
for the last equation.
Let X(t) be a fundamental matrix solution of the homogeneous system, corresponding to Eq. (9),

x′(t) = A(t)x(t), (10)

such that X(0) = I , where I is an n × n identity matrix. Denote by X(t, s) = X(t)X−1(s), t, s ∈ R, the transition matrix of
(10). For the transition matrix X(t, s), one can obtain the following inequalities:

m ≤ X(t, s) ≤ M, (11)

‖X(t, s)− X(t̄, s)‖ ≤ κM|t − t̄|, (12)

wherem = exp(−κθ̄) andM = exp(κθ̄) if t, t̄, s ∈ [θj − l, θj+1 + l] for some j ∈ Z.
Let us fix (t0, x0) ∈ R×Rn. The following lemma is the main auxiliary result of this paper. A similar assertion for EPCAG

is proved in [20].
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Lemma 3.1. Suppose that (Q1)–(Q3) are fulfilled. Then, x(t) is a solution of Eq. (8) with x(t0) = x0 for t ≥ t0, if and only if it
satisfies the equation

x(t) = X(t, t0)x0 +
∫ t

t0
X(t, s)F(s, x(s), x(β(s, x)))ds. (13)

Proof. Necessity. Assume that x(t) is a solution of Eq. (8) such that x(t0) = x0, (t0, x0) ∈ Dj for some j ∈ Z. Define

φ(t) = X(t, t0)x0 +
∫ t

t0
X(t, s)F(s, x(s), x(β(s, x)))ds. (14)

Assume that (t, x(t)) ∈ Dj \ Sj. Then, there exists a moment ηj ∈ R such that β(s, x) = ηj for all (s, x(s)) ∈ Dj. Also, we
have

φ′(t) = A(t)φ(t)+ F(t, x(t), x(ηj)),

and

x′(t) = A(t)x(t)+ F(t, x(t), x(ηj)).

Hence,

[φ(t)− x(t)]′ = A(t)[φ(t)− x(t)].

Calculating the limit values at ηj, j ∈ Z, we can find that

φ′(ηj ± 0) = A(ηj ± 0)φ(ηj ± 0)+ F(ηj ± 0, x(ηj ± 0), x(β(ηj ± 0, x(ηj ± 0)))),
x′(ηj ± 0) = A(ηj ± 0)x(ηj ± 0)+ F(ηj ± 0, x(ηj ± 0), x(β(ηj ± 0, x(ηj ± 0)))).

Consequently,

[φ(t)− x(t)]′|t=ηj+0 = [φ(t)− x(t)]
′
|t=ηj−0.

Thus, [φ(t) − x(t)] is a continuously differentiable function defined for t ≥ t0 satisfying (10) with the initial condition
φ(t0)− x(t0) = 0. Using uniqueness of solutions of Eq. (10) we conclude that φ(t)− x(t) ≡ 0 for t ≥ t0.
Sufficiency. Suppose that x(t) is a solution of (13) for t ≥ t0. Fix j ∈ Z and consider the region Dj. If (t, x(t)) ∈ Dj \ Sj, then

by differentiating (13) one can see that x(t) satisfies Eq. (8). Moreover, considering (t, x(t))→ Sj, and taking into account
that x(β(t, x)) is a right-continuous function, we find that x(t) satisfies Eq. (8) in Dj. The lemma is proved. �

The following example shows that for even simple linear ESPA we have difficulties with the uniqueness of solutions.

Example 3.1. Consider the equation

x′(t) = −2x(β(t, x)), (15)

where β(t, x) is defined by using the sequences θj = 2j and ξj(x) = cos x/4, j ∈ Z. Fix (t0, x0) ∈ R × Rn, that satisfies the
equation t = (cos x)/4. Then solution x(t)of (15)with x(t0) = x0 is of the form x(t) = (1−2(t−cos x0/4))x0 for t ∈ [t0, 5/4).
In particular, for (t0, x0) = (1/4, 0) and (1/4, 2π), the corresponding solutions are x1(t) = 0 and x2(t) = π(3− 4t), each
of which passes through the point (3/4, 0). Hence, uniqueness does not hold.

Denote M̃ = 2L1H + N . From now on we need the following assumption:

(Q8) 2M θ̄L1 < min{1− 2(κH +MM̃)L2, 1− N θ̄M/H}.

Let h ∈ R, 0 < h <
(
1−2ML1 θ̄
M H − N θ̄

)
. The following lemma imposes sufficient conditions for Eq. (8) to satisfy the

extension property.

Lemma 3.2. Suppose that conditions (Q1)–(Q8) are fulfilled, and (t0, x0) ∈ Dj for some j ∈ Z such that ‖x0‖ < h. Then
there exists a solution y(t) = y(t, t0, x0) of Eq. (8) such that ηj = θj + ξj(y(ηj)) for some ηj ≤ t0, and y(t) ∈ KH for all
t ∈ [θj − l, θj+1 + l].

Proof. If (t0, x0) ∈ Sj, then by taking ηj = t0 we can conclude the result directly. Suppose that (t0, x0) ∈ Dj \ Sj. Let us
construct the following sequences. Take η0 = θj, y0(t) = X(t, t0)x0, and define

ηk+1 = θj + ξj(yk(ηk)), (16)

yk+1(t) = X(t, t0)x0 +
∫ t

t0
X(t, s)F(s, yk(s), yk(ηk))ds (17)

for all k ∈ Z, k ≥ 0.
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Let ‖.‖0 = maxt∈[θj−l,θj+1+l] ‖.‖. It is straightforward to see that

‖yk+1‖0 ≤ M‖x0‖ +
∥∥∥∥∫ t

t0
‖X(t, s)‖‖F(s, yk(s), yk(ηk))‖ds

∥∥∥∥
0

≤ Mh+ NM θ̄ + 2ML1θ̄‖yk‖0

≤
1− (2ML1θ̄ )k+2

1− 2ML1θ̄
(Mh+ NM θ̄ ).

Using (Q8), we see that yk(t) ∈ KH for all t ∈ [θj − l, θj+1 + l], k ∈ Z, k ≥ 0.
Now, we will show that the sequence {yk(t)} is uniformly convergent. Eqs. (16) and (17) imply that

|ηk+1 − ηk| = |ξj(yk(ηk))− ξj(yk−1(ηk−1))|
≤ L2‖yk(ηk)− yk−1(ηk−1)‖,

‖yk+1 − yk‖0 ≤ max
t∈[θj−l,θj+1+l]

∣∣∣∣∫ t

t0
M‖F(s, yk(s), yk(ηk))− F(s, yk−1(s), yk−1(ηk−1))‖ds

∣∣∣∣
≤ ML1θ̄

[
‖yk − yk−1‖0 + ‖yk(ηk)− yk−1(ηk−1)‖

]
,

‖yk+1(ηk+1)− yk(ηk)‖ ≤
∥∥X(ηk+1, t0)− X(ηk, t0)∥∥ ‖x0‖ + ∣∣∣∣∫ ηk+1

ηk

‖X(ηk+1, s)F(s, yk(s), yk(ηk))‖ds
∣∣∣∣

+

∣∣∣∣∫ ηk

t0
‖X(ηk+1, s)F(s, yk(s), yk(ηk))− X(ηk, s)F(s, yk−1(s), yk−1(ηk−1))‖ds

∣∣∣∣
≤ (κh+ M̃(1+ κθ̄))M|ηk+1 − ηk| +ML1θ̄

[
‖yk − yk−1‖0 + ‖yk(ηk)− yk−1(ηk−1)‖

]
≤ M

(
L2(κh+ M̃(1+ κθ̄))+ L1θ̄

)
[‖yk − yk−1‖0 + ‖yk(ηk)− yk−1(ηk−1)‖]

≤
(
L2(κH +MM̃)+ML1θ̄

)
[‖yk − yk−1‖0 + ‖yk(ηk)− yk−1(ηk−1)‖].

Then,

|ηk+1 − ηk| ≤
[
2
(
L2(κH +MM̃)+ML1θ̄

)]k−1
θ̄MM̃, (18)

‖yk+1(ηk+1)− yk(ηk)‖ ≤
[
2
(
L2(κH +MM̃)+ML1θ̄

)]k
θ̄MM̃, (19)

‖yk+1 − yk‖0 ≤
[
2
(
L2(κH +MM̃)+ML1θ̄

)]k
θ̄MM̃. (20)

Thus, there exist a unique moment ηj and a solution y(t) of Eq. (8) with y(t0) = x0 such that ηj = θj + ξj(y(ηj)), and ηk
and yk converge as k→∞, respectively. The lemma is proved. �

In what follows, we will consider differential equations of type (8) such that the solutions intersect each constancy
switching surface not more than once. In the previous section this assumption coincides with (A4). The following lemma
defines the sufficient condition for this property.
From now on we shall need the following condition:

(Q9) L2
[
κMH +MM̃

]
< 1.

Lemma 3.3. Suppose that(Q1)–(Q7), (Q9) hold. Then every solution x(t) ∈ KH of Eq. (8)meets any constancy switching surface
not more than once.
Proof. Suppose the contrary. Then, there exist a solution x(t) ∈ KH of (8) and a surface Sj, j ∈ Z, such that x(t)meets this
surfacemore than once. Let the first intersection be at t = t0 and another intersection at t = t∗, sowe have t0 = θj+ξj(x(t0))
and t∗ = θj + ξj(x(t∗)) for t0 < t∗. Then, we have

|t∗ − t0| ≤ L2‖X(t∗, t0)x(t0)+
∫ t∗

t0
X(t, s)F(s, x(s), x(β(s, x)))ds− x(t0)‖

≤ L2
[
κMH +MM̃

]
|t∗ − t0|,

which contradicts (Q9). The lemma is proved. �

From the above lemmas we conclude the following theorem.

Theorem 3.1. Assume that conditions (Q1)–(Q9) are fulfilled, and (t0, x0) ∈ Dj for some j ∈ Z such that ‖x0‖ < h. Then there
exists a unique solution x(t) = x(t, t0, x0) of (8) on [ηj, ηj+1] such that ηj = θj + ξj(x(ηj)), ηj+1 = θj+1 + ξj+1(x(ηj+1)), and
x(t) ∈ KH .
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4. Periodic solutions

In this section, we investigate periodic solutions of quasilinear ESPA of type (8).
Let ω and p be a fixed positive real number and integer, respectively. We shall introduce the following assumptions:

(Q10) the functions A(t) and F(t, x, y) are ω-periodic in t;
(Q11) the sequence θi + ξi(x) satisfies (ω, p)-periodicity, i.e. θi+p = θi + ω and ξi+p(x) = ξi(x) for all i ∈ Z and x ∈ Rn;
(Q12) det(I − X(ω)) 6= 0; that is, system (10) does not have any ω-periodic solution.

We define, if (Q12) is fulfilled, the function

G(t, s) =
{
X(t)(I − X(ω))−1X−1(s), 0 ≤ s ≤ t ≤ ω,
X(t + ω)(I − X(ω))−1X−1(s), 0 ≤ t < s ≤ ω,

(21)

which is called Green’s function [47]. Let maxt,s∈[0,ω] ‖G(t, s)‖ = K .
We need the following lemma to prove the main theorem. This lemma can be proved using Lemma 3.1.

Lemma 4.1. Suppose that (Q1)–(Q12) are fulfilled. Then the solution x(t) of Eq. (8) is ω-periodic if and only if it satisfies the
integral equation

x(t) =
∫ ω

0
G(t, s)F(s, x(s), x(β(s, x)))ds. (22)

Let ‖.‖ω = maxt∈[0,ω] ‖.‖. Denote by Φ the set of all continuous and piecewise continuously differentiable ω-periodic
functions on R such that if φ ∈ Φ then ‖φ(t)‖ω < H, ‖

dφ(t)
dt ‖ω < N + (2L1 + κ)H.

We introduce the following assumption to prove the next theorem:

(Q13)

(2KL1ω − 1)H + NKω < 0;
L2(N + (2L1 + κ)H) < 1;
KL1(2− L2(N + (2L1 + κ)H))ω + 2KHL1L2p+ L2(N + (2L1 + κ)H) < 1.

Theorem 4.1. Suppose that (Q1)–(Q13) hold. Then Eq. (8) has a unique ω-periodic solution φ(t) such that φ(t) ∈ KH .

Proof. Suppose that for all x ∈ KH and k = j, . . . , j + p − 1, for some j ∈ Z and p > 1, we have 0 ≤ θk + ξk(x) ≤ ω. The
other cases are similar. Define an operator T onΦ as

T [φ] =
∫ ω

0
G(t, s)F(s, φ(s), φ(β(s, φ)))ds. (23)

Using (Q13), it is easy to see that ‖T [φ]‖ω < H and ‖
dT [φ]
dt ‖ω < N + (2L1 + κ)H . That is, T [φ] ∈ Φ.

Now, we will show that the operator T is contractive on Φ . Let φ1, φ2 ∈ Φ . One can see that using (Q13), the function
φi(t) intersects any constancy switching surface Sk exactly once at t = ηik for all i = 1, 2 and k = j, . . . , j+ p− 1. Without
loss of generality suppose that η1k ≤ η

2
k .

Also, one can show, using the mean value theorem and (Q13), that the inequality

‖φ1(η
1
k)− φ2(η

2
k)‖ ≤

1
1− L2(N + (2L1 + κ)H)

‖φ1 − φ2‖ω (24)

is satisfied.
Using (23) and (Q11), we write

T [φi(t)] =
∫ ηij

0
G(t, s)F(s, φi(s), φi(ηij+p−1))ds+

j+p−2∑
k=j

∫ ηik+1

ηik

G(t, s)F(s, φi(s), φi(ηik))ds

+

∫ ω

ηij+p−1

G(t, s)F(s, φi(s), φi(ηij+p−1))ds

for i = 1, 2.
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Fig. 2. A solution (x(t), y(t)) of ESPA that approaches the 1-periodic solution as time increases.

Then, using (24), we obtain

‖T [φ1] − T [φ2]‖ω ≤ K
[∫ η1j

0
‖F(s, φ1(s), φ1(η1j+p−1))− F(s, φ2(s), φ2(η

2
j+p−1))‖ds

+

j+p−2∑
k=j

∫ η1k+1

η2k

‖F(s, φ1(s), φ1(η1k))− F(s, φ2(s), φ2(η
2
k))‖ds

+

∫ ω

η2j+p−1

‖F(s, φ1(s), φ1(η1j+p−1))− F(s, φ2(s), φ2(η
2
j+p−1))‖ds

+

j+p−1∑
k=j

∫ η2k

η1k

‖F(s, φ1(s), φ1(β(s, φ1)))− F(s, φ2(s), φ2(β(s, φ2)))‖ds
]

≤

[
KL1ω(2− L2(N + (2L1 + κ)H))+ 2KHL1L2p

1− L2(N + (2L1 + κ)H)

]
‖φ1 − φ2‖ω.

Hence, T is contractive. Because of Lemma 4.1, we see that the fixed point is an ω-periodic solution of Eq. (8). The theorem
is proved. �

Let us apply the last theorem to the following example.

Example 4.1. Consider the equation

x′(t) = −x(t)− a sin(2π t + y(β(t, x, y)))
y′(t) = −2y(t)+ a sin(2π t + x(β(t, x, y))), (25)

where t, x, y ∈ R, and a is a positive real number. Here, β(t, x, y) is defined by θj = j, ξj(x, y) = −a cos(x + y). The
corresponding parameters in the conditions of Theorem 4.1 are L1 = a

√
2, L2 = a, θ̄ = 1 + 2a, κ = 2,N = a

√
2,M =

e2+4a, M̃ = (2H + 1)a
√
2, ω = 1, p = 1, K = e2(1 − e−1)−1. One can show that conditions (Q1)–(Q13) are satisfied

for a = e−4,H = 1. Hence, by Theorem 4.1, we ensure that there is a 1-periodic solution of (25). Fig. 2 shows a solution
(x(t), y(t)) of (25) with an initial condition (x(−e−4), y(−e−4)) = (0.02,−0.02) that approaches this periodic solution.

5. Stability of the zero solution

In this section we give sufficient conditions for stability of the zero solution.
Let us introduce the following conditions:

(Q14) F(t, 0, 0) = 0 for all t ∈ R;
(Q15) M

[
(1+ θ̄L1)(eML1 θ̄ − 1)+ L1θ̄

]
< 1.
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Define

K(L1, θ̄ ) =
M

1−M
[
(1+ θ̄L1)(eML1 θ̄ − 1)+ L1θ̄

] .
The following lemma plays a significant role in this paper. Using the technique in [20] and like in [24, Lemma 1.2], the

following lemma can be proved.

Lemma 5.1. Suppose that (Q1)–(Q9), (Q14), (Q15) are fulfilled. Then, every solution x(t) of Eq. (8) satisfies the inequality

‖x(β(t, x))‖ ≤ K(L1, θ̄ )‖x(t)‖ (26)

for all t ∈ R.

Proof. Fix t ∈ R. Let x(t) be a solution of (8). Then, there are k ∈ Z and ηk ∈ R such that (t, x(t)) ∈ Dk and β(t, x) = ηk.
Using Lemma 3.1, we have

x(t) = X(t, ηk)x(ηk)+
∫ t

ηk

X(t, s)F(s, x(s), x(ηk))ds.

Then,

‖x(t)‖ ≤ M‖x(ηk)‖ +ML1

∫ t

ηk

(‖x(s)‖ + ‖x(ηk)‖) ds

≤ M(1+ θ̄L1)‖x(ηk)‖ +ML1

∫ t

ηk

‖x(s)‖ds.

Hence, using the Gronwall–Bellman Lemma, we obtain

‖x(t)‖ ≤ M(1+ θ̄L1)eML1(t−ηk)‖x(ηk)‖.

Moreover,

x(ηk) = X(ηk, t)x(t)−
∫ t

ηk

X(ηk, s)F(s, x(s), x(ηk))ds.

Then,

‖x(ηk)‖ ≤ M‖x(t)‖ +ML1

∫ t

ηk

(‖x(s)‖ + ‖x(ηk)‖)ds

≤ M‖x(t)‖ +M
[
(1+ θ̄L1)(eML1 θ̄ − 1)+ L1θ̄

]
‖x(ηk)‖.

Thus, for (t, x(t)) ∈ Dk, we have ‖x(ηk)‖ ≤ K(L1, θ̄ )‖x(t)‖. The lemma is proved. �

Definition 5.1. The zero solution of (8) is said to be uniformly stable if for any ε > 0 and t0 ∈ R, there exists a δ = δ(ε) > 0
such that ‖x(t, t0, x0)‖ < ε whenever ‖x0‖ < δ for t ≥ t0.

Definition 5.2. The zero solution of (8) is said to be uniformly asymptotically stable if it is uniformly stable, and there is
a number b > 0 such that for every ζ > 0 there exists T (ζ ) > 0 such that ‖x0‖ < b implies that ‖x(t, t0, x0)‖ < ζ if
t > t0 + T (ζ ).

Theorem 5.1. Suppose that (Q1)–(Q9), (Q14), (Q15) hold. If the zero solution of Eq. (10) is uniformly asymptotically stable,
then for sufficiently small Lipschitz constant L1, the zero solution of Eq. (8) is uniformly asymptotically stable.

Proof. Suppose that the zero solution of (10) is uniformly asymptotically stable. Then, there exist positive real numbers α
and σ such that for t > s,

‖X(t, s)‖ ≤ αe−σ(t−s). (27)

Let x(t) be a solution of (8) with the initial condition x(t0) = x0 such that ‖x0‖ ≤ h. We have for t ≥ t0,

‖x(t)‖ =
∥∥∥∥X(t, t0)x(t0)+ ∫ t

t0
X(t, s)F(s, x(s), x(β(s, x)))ds

∥∥∥∥
≤ αe−σ(t−t0)‖x0‖ + L1

∫ t

t0
αe−σ(t−s)(1+ K(L1, θ̄ ))‖x(s)‖ds.
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Fig. 3. A solution (x(t), y(t)) of ESPA that approaches the zero solution as time increases.

Then,

eσ t‖x(t)‖ ≤ αeσ t0‖x0‖ + αL1(1+ K(L1, θ̄ ))
∫ t

t0
eσ s‖x(s)‖ds.

Hence, using the Gronwall–Bellman Lemma, we have

‖x(t)‖ ≤ αe(αL1(1+K(L1,θ̄ ))−σ)(t−t0)‖x0‖.

Since for sufficiently small L1, we have αL1(1+ K(L1, θ̄ ))− σ < 0, the theorem is proved. �

The following example validates the last result.

Example 5.1. Consider the equation

x′(t) = −x(t)− a sin2(y(β(t, x, y)))
y′(t) = −2y(t)+ a sin2(x(β(t, x, y)))

(28)

where t, x, y ∈ R, and a is a positive real number. Here, β(t, x, y) is defined by θj = j and ξj(x, y) = −a cos(x + y). The
corresponding parameters in the conditions of Theorem 5.1 are L1 = 2

√
2a, L2 = a, θ̄ = 1 + 2a, κ = 2,N = 0,M =

e2+4a, M̃ = 4
√
2aH . One can show that conditions (Q1)–(Q9), (Q14), (Q15) are satisfied for a = e−4,H = 1. Hence, by

Theorem 5.1, the zero solution is uniformly asymptotically stable. Fig. 3 shows a solution (x(t), y(t)) of (28) with initial
condition (x(−e−4), y(−e−4)) = (0.02,−0.02) that approaches the zero solution.
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