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Abstract

Let D be the open unit ball in a complex Banach space X. We provide necessary
and sufficient conditions for a holomorphic mapping f: D → X to be semi-complete.

Let D be a convex subset of a Banach space X and let f: D̄ → X be a continuous
mapping on D̄, the closure of D. Then the following tangency condition of flow
invariance

lim
h→0+

dist(x− hf(x), D̄)/h = 0, x ∈ D̄ (1)

is necessary to solve the evolution equation du/dt + f(u) = 0, u(0) = x ∈ D̄. It is
known that in the above setting (1) is equivalent to F = I − f being weakly inward.

For the classes of monotone and accretive mappings, the flow invariance con-
dition (1) (or equivalently, weak inwardness) was systematically used to study the
fixed point set of the mapping F = I − f (see, for example [5], [8], [17], [19], [26]).

Accretive mappings are of much interest because of their connection with the
theory of semigroups of contraction mappings. For instance, a result of Martin [17]
shows that if D is a convex subset of X, and f: D̄ → X is a continuous accretive
mapping on D̄, then (1) is also sufficient for the existence of solutions to the Cauchy
problems 

du

dt
+ f(u) = 0

u(0) = x ∈ D̄,
(2)

which are defined on R+ = [0,∞). These solutions yield a continuous semigroup of
contraction mappings on D̄.

In this paper we will concentrate on another class of mappings. These mappings
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are holomorphic in the open unit ball D of a complex Banach space. Recall that
a mapping f: D → D̃ ⊆ Y (Y is another complex Banach space) is said to be
holomorphic in D if it is Fréchet differentiable at each point of D. The class of such
mappings will be denoted by Hol(D, D̃).

Definition. Let D be the open unit ball in a complex Banach space X. A mapping
f ∈ Hol(D,X) is said to be a semi-complete vector field on D if the Cauchy problem
(2) has a solution {u(t, x)} ⊂ D, which is well-defined on R+ for each initial datum
x ∈ D.

Note that since f ∈ Hol(D,X) is locally Lipschitzian, this solution is unique, and
Ft = u(t, ·) is a one-parameter semigroup (flow) of holomorphic self-mappings of D.

In other words, f ∈ Hol(D,X) is semi-complete if it is an infinitesimal generator
of a flow on D. In the case where this flow consists of automorphisms of D it can
be extended to a one-parameter group and the Cauchy problem (2) has a unique
solution, {u(t, x)} ⊂ D, defined on all of R = (−∞,∞) for each x ∈ D. The converse
is also true. In such a situation the mapping f is said to be a complete vector field
on D (see [4], [6], [12], [24]).

For the class of holomorphic mappings an analog of Martin’s theorem was given
in [2]; namely, if f ∈ Hol(D,X) has a uniformly continuous extension to D̄, then it
is a semi-complete vector field if and only if it satisfies the boundary flow invariance
condition (1).

Note that each holomorphic self-mapping of D is non-expansive with respect to
any metric assigned to D by a Schwarz–Pick system (see, for example [6], [7], [9],
[11]).

On the other hand, it does not seem sufficiently natural to consider a boundary
condition to characterise semi-complete vector fields because the open unit ball
itself is a complete metric space with respect to such a metric. In addition, there are
many examples of semi-complete vector fields which have no continuous extension
to D̄ (see the examples below). In particular, if F ∈ Hol(D,D), then f = I − F is
semi-complete (see [20]).

Thus the first question which arises is:

Is there an interior flow invariance condition which characterises the class of
semi-complete vector fields?

In addition, it would be desirable to find a condition from which (1) could directly
be derived in the case where f ∈ Hol(D,X) has a continuous extension to D̄. The
second question of interest is:

If f is a semi-complete factor field, what additional condition will imply that f
is actually complete?

In other words, when does the flow generated by f consist of automorphisms of D?
As we shall see below, such a condition exists. It has a purely local character

and involves the derivative of f at the origin.
We begin with the following concept.
Let X be a Banach space and let X ′ be its dual. For x ∈ X and x′ ∈ X ′ we use
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the pairing 〈x, x′〉 to denote x′(x). The duality mapping J: X → 2X
′

is defined by

J(x) := {x′ ∈ X ′: Re 〈x, x′〉 = ‖x‖2 = ‖x′‖2}
for each x ∈ X.

If D is the open unit ball in X and f maps D̄ into X, then it follows by a result
in [18] that (1) is equivalent to the condition

inf
x′∈J(x)

Re 〈f(x), x′〉 ≥ 0, x ∈ ∂D. (1′)

Following Krasnoselskii [15] we will call conditions of such a type ‘one-sided
estimates’.

For the Euclidean ball D in X = Cn, a certain condition in this direction was
established by Abate [1]. He proved that f ∈ Hol(D,Cn) is a semi-complete vector
field if and only if it satisfies the estimate

2[‖g(x)‖2 − |〈g(x), x〉|2]Re 〈g(x), x〉+ (1− ‖x‖2)2Re 〈f′(x)f(x), g(x)〉 ≥ 0, (3)

where

g(x) = (1− ‖x‖2)f(x) + 〈f(x), x〉x.
For n = 1 this condition becomes

Re f(z)z̄ ≥ −1

2
Ref′(z)(1− |z|2), (3′)

where z ∈ ∆, the open unit disk in the complex plane C, and f ∈ Hol(∆,C).
Despite the simplicity of condition (3′) it is not clear how (1′) can be derived

from (3′) when f has a continuous extension to ∆̄.
On the other hand, this condition may be useful in studying the behavior of the

derivative of a semi-complete vector field in ∆. Therefore it is natural to ask the
following question:

Can this condition be extended to a general Banach space in a form similar to
(3 ′) (instead of condition (3))?

Note also that in the one-dimensional case it follows from the maximum principle
for harmonic functions that (1′) implies the following interior condition:

Ref(z)z̄ ≥ Ref(0)z̄(1− |z|2), z ∈ ∆. (1′′)

Conversely, it is clear that (1′) results from (1′′) if f has a continuous extension
to all of ∆̄. Thus another question arises:

Are (1′′) and its Banach space analog necessary and sufficient for f to be
semi-complete?

We now state our main result. It provides affirmative answers, in any Banach
space, to all the questions raised above.

Theorem. Let D be the open unit ball in a complex Banach space X. Then f ∈
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Hol(D,X) is a semi-complete vector field on D if and only if it is bounded on each
subset strictly inside D and one of the following conditions holds:

(a) For each x ∈ D there exists x′ ∈ J(x) such that

Re 〈f(x)− f(0)(1− ‖x‖2), x′〉 ≥ 0;

(b) inf
x′∈J(x)

Re 〈2‖x‖2f(x) + (1− ‖x‖2)f′(x)x, x′〉 ≥ 0 x ∈ D;

(c) For each x ∈ D and for each x′ ∈ J(x),

Re 〈1− ‖x‖
1 + ‖x‖f

′(0)x+ (1− ‖x‖2)f(0), x′〉 ≤ Re 〈f(x), x′〉

≤ Re 〈1 + ‖x‖
1− ‖x‖f

′(0)x+ (1− ‖x‖2)f(0), x′〉 .

Furthermore, equality in one of the conditions (a), (b) or (c) holds if and only if
it holds in the other conditions and f is complete.

Note that in the one-dimensional case condition (a) reduces to (1′′) and condition
(b) becomes Abate’s condition (3′). The following corollary is a direct consequence
of the Theorem.

Corollary 1. Let f ∈ Hol(D,X) be a semi-complete vector field on D. Then the linear
operator A = f′(0) is (totally) accretive, that is

inf
y′∈J(y)

Re 〈Ay, y′〉 ≥ 0, y ∈ X. (4)

Proof. Substitute x = ty, x′ = ty′ in (b), where ‖y‖ = ‖y′‖ = 1, y′ ∈ J(y) and
t ∈ (0, 1). Letting t go to zero we get (4).

In turn (4) implies that the left-hand inequality in (c) is sharper than (a).
Moreover, it implies that (a) holds, in fact, for all x′ ∈ J(x). Thus we have that if f has
a continuous extension to D̄, then (a) yields the flow invariance boundary condition
(1′) (equivalently, (1)). Furthermore, condition (c) also leads to a characterisation
for a semi-complete vector field to be complete.

Following Krein [16] (see also Vesentini [25]), we say that a linear operator
A: X → X is conservative if, for all x ∈ X and x′ ∈ J(x),

Re 〈Ax, x′〉 = 0.

Corollary 2. Let f ∈ Hol(D,X) be a semi-complete vector field. Then f is actually
complete if and only if its derivative at zero, f′(0), is a conservative linear operator.

It is well known that a complete vector field g on the open unit ball D in a
Banach space X is a polynomial of degree at most 2 (see, for example [24] and [6]).
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More precisely, g has the form

g(x) = a+ Ax+ Pa(x), (5)

where a is an element of X, A is a conservative operator on X, and Pa is a
homogeneous form of the second degree such that Pia = iPa.

One of the consequences of this representation is an infinitesimal analog of
Cartan’s uniqueness theorem [6], [12]: If g ∈ Hol(D,X) is a complete vector field
such that g(0) = 0 and g′(0) = 0, then g ≡ 0.

Applying Corollary 2, we obtain the following extension of this theorem.

Corollary 3. If f ∈ Hol(D,X) is a semi-complete vector field on D, such that f(0) = 0
and f′(0) = 0, then f ≡ 0.

It was shown in [20] that if f ∈ Hol(D,X) has the form

f = I − F, (6)

where F is a self-mapping of D, then f is semi-complete. Thus Corollary 3 is also a
generalisation of Cartan’s uniqueness theorem (sometimes this theorem is also called
the Generalised Schwarz Lemma (see [10]).

Note also that the linear space H1,∞(D,X) of all holomorphic mappings on D

with radius of boundedness equal to 1 (f ∈ H1,∞(D,X) if and only if it is bounded
on each subset strictly inside D; see, for example [7]) is a locally convex space with
the topology of local uniform convergence over D (see also [12]).

By using the above Theorem, we obtain the following corollary (cf. [21]).

Corollary 4. The set G of all semi-complete vector fields on D is a closed real cone
in H1,∞(D,X). Actually, G is the closure in the topology of local uniform convergence
over D of the set {f ∈ Hol(D,X): f = αg, α ≥ 0}, where g is of the form (6).

Suppose now that a complex Banach space X is a so-called JB∗ triple system.
This is the same as saying that its open unit ball D is a homogeneous domain, that
is for each pair x, y ∈ D there exists a holomorphic automorphism of D such that
F(x) = y (see, for example [6], [24]). Then it is well-known that for each a ∈ X
there exists a homogeneous polynomial Pa(x) such that Pia = iPa and the mapping
g: D → X defined by

g(x) = a− Pa(x) (7)

is a complete vector field on D, which is called a transvection of D. Using this fact
and Corollary 4 we get the following representation theorem (cf. [13]).

Corollary 5. Let X be a JB∗ triple system and let D be its open unit ball. Then the
cone G of semi-complete vector fields on D admits the decomposition

G = G0

⊕G+, (8)
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where G0 is the real Banach subspace of H1,∞(D,X) consisting of transvections and
G+ is the subcone of G such that for each h ∈ G+,

inf
x′∈J(x)

Re 〈h(x), x′〉 ≥ 0, for all x ∈ D.

In other words, f ∈ G admits a unique representation

f = g + h, (9)

where g = f(0)− Pf(0)(x) is complete, h ∈ G+ and h(0) = 0.
The natural examples of JB∗ triple systems are a complex Hilbert space H , the

space of bounded linear operators L(H) on H , and its subspaces J such that A ∈ J
if and only if AA∗A ∈ J (such subspaces are usually called J∗-algebras). In the latter
case the general form of transvections on D is

g(x) = a− xa∗x,
where a ∈ J and a∗ is its conjugate. Thus each semi-complete vector field on the
open unit ball of a J∗-algebra has the form

f(x) = f(0)− xf∗(0)x+ h(x), (10)

where h ∈ G+ and h(0) = 0.
In particular, when X = C is the complex plane and D = ∆ is the open unit disk

in C, (10) becomes

f(z) = f(0)− f(0)z2 + zp(z), (10′)

where p(z) ∈ Hol(∆,C) and

Re p(z) ≥ 0, z ∈ ∆. (11)

That is, p(z) is a function in the class of Carathéodory. Using the Riesz–Herglotz
integral characterisation of this class (see, for example [3]) we deduce the following
conclusion:

f ∈ Hol(∆,C) is a semi-complete vector field if and only if it admits the representa-
tion

f(z) = a+ ibz − āz2 + z

∫
∂∆

1 + ζ̄z

1− ζ̄z dµ(ζ), (12)

where a ∈ C, b ∈ R and µ is a positive measure on ∂∆.

As a matter of fact, this representation is the key to proving our theorem because
we will partially use a reduction to the one-dimensional case. We will also get (10′)
with (11) (respectively (12)) by an independent method.

We will also need two preliminary results for a general Banach space.
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Proposition 1. [22]. Let D be a bounded domain in a complex Banach space X and let a
family {Ft}t≥0 be a continuous one-parameter semigroup of holomorphic self-mappings
of D, that is Ft ∈ Hol(D,D), t ≥ 0, Ft ◦ Fs = Ft+s, t, s ≥ 0, and the strong limit

lim
t→0+

Ft(x) = x, x ∈ D. (13)

Then the following assertions are equivalent:
(i) The convergence in (13) is locally uniform;
(ii) For each x ∈ D the vector-valued function u(t, x) = Ft(x): R+ → D is right-

differentiable at zero, that is there exists the strong limit

lim
t→0+

1

t
(x− u(t, x)) = f(x), x ∈ D;

(iii) The family {ft}t>0 of difference approximations ft = 1
t
(I − Ft) ∈ Hol(D,X) is

uniformly bounded on each subset strictly inside D.

Again let D be the open unit ball in a Banach space X (real or complex).
Following Kobayashi and Oharu [14] we will say that a mapping f: D → X is
locally (totally) accretive on D if for each r ∈ (0, 1) there exists ω = ω(r) ∈ R, such
that

inf{Re 〈f(x)− f(y), (x− y)′〉: (x− y)′ ∈ J(x− y)} ≥ ω‖x− y‖2 (14)

whenever x and y belong to the level set D̄r = {x ∈ X: ‖x‖ ≤ r < 1}.

Proposition 2. [23]. Let D be the open unit ball in a Banach space X, and let f: D → X

be a continuous locally (totally) accretive mapping. Suppose that there is an increas-
ing continuous function α on the interval [0, 1] such that α(0) · α(1) ≤ 0, α is left
differentiable at 1, and for all x ∈ D, the following condition holds:

Re 〈f(x), x′〉 ≥ α(‖x‖) · ‖x‖, (15)

where x′ is an element of J(x). Then f generates a one-parameter semigroup {Ft}, t ≥
0, which is locally Lipschitzian on D:

‖Ft(x)− Ft(y)‖ ≤ eωt‖x− y‖
whenever x, y ∈ D̄r .

Proof of the Theorem. Let f be a semi-complete vector field on the open unit
ball D of a complex Banach space X. Then the Cauchy problem (2) has a unique
solution {u(t, x)} ⊂ D on R+ × D. The uniqueness of this solution implies that the
family, {Ft}t≥0, Ft = u(t, ·), is a one-parameter continuous semigroup of holomorphic
self-mappings of D. In addition, it is obvious that condition (ii) of Proposition 1
holds. Then by (iii), ft = (I − Ft)/t, and hence f is uniformly bounded on each
subset strictly inside D.



100 Mathematical Proceedings of the Royal Irish Academy

Now we will prove that condition (a) of the theorem is satisfied. Indeed, fix any
x ∈ D and x′ ∈ J(x), and set u = x/‖x‖, u′ = x′/‖x‖. Consider the holomorphic

function f̂ on the unit disk ∆ ⊂ C defined as follows:

f̂(λ) = 〈f(λu), u′〉, λ ∈ ∆. (16)

Similarly we define a family {F̂t}t≥0 of holomorphic self-mappings of ∆:

F̂t(λ) = 〈Ft(λu), u′〉, λ ∈ ∆, t ≥ 0. (17)

It is clear that F̂0(λ) = λ and that there exists the limit

lim
t→0+

1

t
(λ− F̂t(λ)) = f̂(λ). (18)

Now let Mb denote the Möbius transformation on ∆ defined by

Mb(λ) =
λ− b
1− λb̄ , b ∈ ∆.

Consider the family {Ht}t≥0 of holomorphic self-mappings of ∆ defined by:

Ht(λ) =MF̂t(0)(F̂t(λ)), λ ∈ ∆, t ≥ 0.

Note that since Ht(0) = 0 for all t, it follows by the Schwarz Lemma that

|Ht(λ)| ≤ |λ| for all λ ∈ ∆ and t ≥ 0. (19)

Now by simple calculations and (18) one can conclude that for each λ ∈ ∆ the
curve Ht(λ): R

+ → ∆ is right-differentiable at zero and

lim
t→0+

λ−Ht(λ)

t
= f̂(λ)− f̂(0) + f̂(0)λ2 := h(λ), λ ∈ ∆. (20)

It follows now by (19) and (20) that for all λ ∈ ∆:

Re h(λ)λ̄ ≥ 0 (21)

and

h(0) = 0. (22)

But (21) means that

Ref̂(λ)λ̄ ≥ Re f̂(0)λ̄(1− |λ|2). (23)

Setting λ = ‖x‖ we have by (16)

Re 〈f(x), x′〉 ≥ Re 〈f(0), x′〉(1− ‖x‖2).
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Since x and x′ ∈ J(x) are arbitrary, this proves the following implication: if f ∈ G,
then f satisfies (a).

Now we will show that (a) is equivalent to (b). To do this we return again to the
function

f̂(λ) = f̂(0)− f̂(0)λ2 + h(λ) (24)

defined by (16), where h(λ) satisfies (20) and (21). But these conditions are equivalent
to the conditions

h(λ) = λ · p(λ), λ ∈ ∆, (25)

with

Re p(λ) ≥ 0. (26)

So (23) is equivalent to (25) for f̂ of the form (24). Now, in the same terms, we
translate condition (b). If we define f̂ as above by (16), then (b) implies

Re [2f̂(λ)λ̄+ f̂′(λ)(1− |λ|2)] ≥ 0. (27)

If we substitute f̂ here in the form (24) with h(λ) = λp(λ) we see that (27) is
equivalent to the condition:

Re [λp′(λ) +
1 + |λ|2
1− |λ|2 p(λ)] ≥ 0, λ ∈ ∆. (28)

We intend to show that (28) is equivalent to (26). Again setting λ = ‖x‖ in (16) and

(27) and noting that f̂′(λ) = 〈f′(λu)u, u′〉 = 〈f′(x)x, x′〉 1
‖x‖2 for x 6= 0, we will then

get, by continuity, the equivalence of conditions (a) and (b) of the Theorem.
So, let p ∈ Hol(∆,C) satisfy (26). Define F = (p− 1)(p+ 1)−1. Since the mapping

w = z−1
z+1

maps the right half-plane into ∆, F is a self-mapping of ∆. Applying the
Schwarz–Pick Lemma to F , we obtain∣∣∣∣(p− 1

p+ 1

)′∣∣∣∣ =
2|p′|
|1 + p|2 ≤

|p+ 1|2 − |p− 1|2
|p+ 1|2(1− |λ|2)

or

|p′(λ)| ≤ 2Re p(λ)

1− |λ|2 .
This implies

Re (−λp′(λ)) ≤ |λp′(λ)| ≤ 2|λ|Re p(λ)

1− |λ|2 ≤ 1 + |λ|2
1− |λ|2 Re p(λ),

which is equivalent to (28).
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In the opposite direction, (28) implies (26), we prove the following more general
fact:

Let p ∈ Hol(∆,C) and suppose that there is a positive function ψ: [0, 1) → R+

such that the following condition holds:

Re (λp′(λ) +ψ(|λ|)p(λ)) ≥ 0, λ ∈ ∆. (28′)

Then Re p(λ) ≥ 0 everywhere on ∆. Setting λ = reiθ we have

λp′(λ) = r
∂p

∂r
,

and (28’) becomes

Re (r
∂p

∂r
) + ψ(r)Re p(λ) ≥ 0, λ = reiθ ∈ ∆.

Assume now that there exists λ0 = r0e
iθ0 in ∆ such that

Re p(λ0) < 0.

Since (28′) implies that Re p(0) ≥ 0, there exist r1 and r0 with 0 ≤ r1 < r0 such that
Re p(r1e

iθ0 ) = 0 and Re p(r0e
iθ0 ) < 0. Thus one can find r2 ∈ (r1, r0) such that

Re p(r2e
iθ0 ) < 0

and

Re
∂p

∂r
(r2e

iθ0 ) < 0.

This implies

Re (r2
∂p

∂r
) + ψ(r2)Re p(r2e

iθ0 ) < 0,

a contradiction. Thus Re p(λ) ≥ 0 for all λ ∈ ∆ and we are done. In other words,
conditions (a) and (b) are equivalent.

To obtain (c) we now represent f̂(λ) = 〈f(λu), u′〉 in the form (12):

f̂(λ) = a+ ibλ− āλ2 + λ

∫
∂∆

1 + ζ̄λ

1− ζ̄λdµ(ζ),

and we calculate:

Re
1 + ζ̄λ

1− ζ̄λ =
1− |λ|2
|1− ζ̄λ|2 =

1− |λ|
1 + |λ|

(1 + |λ|)2

|1− ζ̄λ|2 =
1 + |λ|
1− |λ| ·

(1− |λ|)2

|1− ζ̄λ|2 .

Since |ζ| = 1, this equality shows that

1− |λ|
1 + |λ| ≤ Re

1 + ζ̄λ

1− ζ̄λ ≤
1 + |λ|
1− |λ| . (29)
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Noting that p(0) = f̂′(0) (see (24) and (25)), we obtain from (12) and (29):

Re f̂(0)λ̄(1− |λ|2) + |λ|2 1 + |λ|
1− |λ| f̂

′(0) ≥ Ref̂(λ)λ̄ ≥ Ref̂(0)λ̄(1− |λ|2) + |λ|2 1− |λ|
1 + |λ| f̂

′(0).

Once again, setting λ = ‖x‖ we get from the last inequality condition (c).
Since by (b), Re 〈f′(0)x, x′〉 ≥ 0, it is clear that (c) is stronger than (a).
Now let f ∈ Hol(D,X) be bounded on each subset strictly inside D and satisfy

condition (a) of the Theorem. Then on each level set, D̄r = {x ∈ X : ‖x‖ ≤ r < 1},
f is Lipschitzian, that is

‖f(x)− f(y)‖ ≤ Lr‖x− y‖,
where

x, y ∈ D̄r, Lr ≥ sup
x∈D̄r
‖f′(x)‖.

Therefore f is locally (totally) accretive with ω = −Lr (see (14)).
In addition, the function α(r) = −‖f(0)‖(1 − r2) is increasing and differentiable

on [0, 1], and satisfies all the other conditions of Proposition 2. Hence f is semi-
complete.

Acknowledgements

We are grateful to Mark Elin for several useful conversations. In particular, he
gave another proof of the equivalence of conditions (a) and (b) of the Theorem in
the one-dimensional case. The research of D. Aharonov and S. Reich was partially
supported by the Fund for the Promotion of Research at the Technion.

References

[1] M. Abate, The infinitesimal generators of semigroups of holomorphic maps, Annali di Matematica

Pura ed Applicata 161 (1992), 167–80.

[2] L. Aizenberg, S. Reich and D. Shoikhet, One-sided estimates for the existence of null points of

holomorphic mappings in Banach spaces, Journal of Mathematical Analysis and Applications

203 (1996), 38–54.

[3] I. Alexandrov, Parametric continuations in the theory of univalent functions, Nauka, Moscow, 1976.

[4] J. Arazy, An application of infinite dimensional holomorphy to the geometry of Banach spaces, in

J. Lindenstrauss and V.D. Milman (eds), Lecture Notes in Mathematics, vol. 1267, Springer,

Berlin, 1987, pp 122–50.

[5] H. Brezis, On a characterization of flow-invariant sets, Communications on Pure and Applied Math-

ematics 23 (1970), 261–3.

[6] S. Dineen, The Schwarz lemma, Clarendon Press, Oxford, 1989.

[7] T. Franzoni and E. Vesentini, Holomorphic maps and invariant distances, North-Holland, Amsterdam,

1980.

[8] K. Goebel and W.A. Kirk, Topics in metric fixed point theory, Cambridge University Press, 1990.

[9] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry and nonexpansive mappings, Marcel

Dekker, New York and Basel, 1984.

[10] L.A. Harris, Schwarz’s lemma in normed linear spaces, Proceedings of the National Academy of

Science, USA 62 (1969), 1014–17.

[11] L.A. Harris, Schwarz–Pick systems of pseudometrics for domains in normed linear spaces, in J.A.

Barroso (ed.), Advances in holomorphy, North-Holland, Amsterdam, 1979, pp 345–406.



104 Mathematical Proceedings of the Royal Irish Academy

[12] J.M. Isidro and L.L. Stacho, Holomorphic automorphism groups in Banach spaces: an elementary

introduction, North-Holland, Amsterdam, 1984.

[13] V. Khatskevich, S. Reich and D. Shoikhet, Complex dynamical systems on bounded symmetric

domains, Electronic Journal of Differential Equations 19 (1997), 1–9.

[14] Y. Kobayashi and S. Oharu, Semigroups of locally Lipschitzian operators in Banach spaces, Hi-

roshima Mathematica Journal 20 (1990), 573–611.

[15] M.A. Krasnoselskii, On a boundary problem, Izvestia Academii Nauk—Seriia Matematitcheskaia 20

(1956), 241–52.

[16] S.G. Krein, Linear differential equations in Banach spaces, AMS, Providence, RI, 1971.

[17] R.H. Martin, Jr., Differential equations on closed subsets of a Banach space, Transactions of the

American Mathematical Society 179 (1973), 399–414.

[18] S. Reich, Minimal displacement of points under weakly inward pseudo-Lipschitzian mappings, Atti

Accademia Nazionale dei Lincei Classe di Matematica e Applicazioni 59 (1975), 40–4.

[19] S. Reich, On fixed point theorems obtained from existence theorems for differential equations,

Journal of Mathematical Analysis and Applications 54 (1976), 26–36.

[20] S. Reich and D. Shoikhet, Generation theory for semigroups of holomorphic mappings in Banach

spaces, Abstract and Applied Analysis 1 (1996), 1–44.

[21] S. Reich and D. Shoikhet, Semigroups and generators on convex domains with the hyperbolic metric,

Atti Accademia Nazionale dei Lincei Classe di Matematica e Applicazioni 8 (1997), 231–50.

[22] S. Reich and D. Shoikhet, Metric domains, holomorphic mappings and nonlinear semigroups,

Abstract and Applied Analysis 3 (1998), 203–28.

[23] S. Reich and D. Shoikhet, An interior flow invariance condition for nonlinear semigroups on convex

domains in Banach spaces, Numerical Functional Analysis and Optimization 20 (1999), 333–9.

[24] H. Upmeier, Jordan algebras in analysis, operator analysis and quantum mechanics, CBMS Regional

Conference Series in Mathematics, vol. 67, AMS, Providence, RI, 1987.

[25] E. Vesentini, Conservative operators, in P. Marcellini, G.T. Talenti and E. Vesentini (eds), Partial

differential equations and applications, Marcel Dekker, New York, 1996, 303–11.

[26] J.R.L. Webb, Zeros of weakly inward accretive mappings via A-proper maps, in A.G. Kartsatos (ed.),

Theory and applications of nonlinear operators of accretive and monotone type, Marcel Dekker,

New York, 1996, 289-97.


