3. A. Bikyalis and A. Zhemaitis, "Asymptotic expansions for probabilities of large deviations," Liet. Mat. Rinkinys, 16, No. 2, 202-206 (1976).
4. Sh. V. Yakshyavichyus, "Asymptotic expansions for probability distributions," Liet. Mat. Rinkinys, 23, No. 3, 197-213 (1983).
5. A. A. Borovkov, Course in Probability Theory [in Russian], Nauka, Moscow (1976).

remark on the cramer-von mises-smirnov criterion

V. Bentkus and R. Zitikis

UDC 519.21

1. Introduction and Basic Results

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent, identically distributed random variables on the segment $[0,1]$,

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} 1\left\{x_{i}<x\right\},
$$

where $l(A)$ is the indicator of the event A,

$$
\begin{aligned}
& \omega_{n}^{2}=n \int_{0}^{1}\left\{F_{n}(x)-x\right\}^{2} d x, \\
& U_{n}(x)=P\left\{\omega_{n}^{2}<x\right\}, \\
& U(x)=\lim _{n \rightarrow \infty} U_{n}(x) .
\end{aligned}
$$

Let $\alpha=n / 2-1$ if n is even, and $\alpha=(n-1) / 2$, if n is odd. We prove that the distribution function $U_{n}(x)$ is differentiable with respect to x a times, but not continuously differentiable $\alpha+1$ times. In addition, the derivatives of the distribution functions $U_{n}(x)$ as $n \rightarrow \infty$, converge uniformly in x to the corresponding derivative of the limit distribution function $U(x)$. In particular, one has uniform convergence of the densities $U_{n}^{\prime}(x)$.

In this paper we also give asymptotic expansions for the derivatives of the distribution functions $U_{n}(x)$. The estimates of the remainders depend properly on n.

The results of the paper generalize and improve the results of Smirnov [1], Anderson and Darling [2], Kandelaki [3], Sazonov [4, 5], Rosenkrantz [6], Kiefer [7], Nikitin [8], Orlov [9], Czorgo [10], Csorgo and Stacho [11], Gotze [12], Borovskikh [13], in which the convergence and rate of convergence of distribution functions $U_{n}(x)$ to $U(x)$ were studied and asymptotic expansions for $U_{n}(x)$ were also found.

We proceed to precise formulations.
We denote by C^{α} the class of functions $f: R^{1} \rightarrow R^{1}$ which have α bounded derivatives.
THEOREM 1.1. The distribution function $U_{n}(x)$ belongs to the class C^{α} but does not belong to the class $C^{\alpha+1}$, where $\alpha=n / 2-1$ if n is even, and $\alpha=(n-1) / 2$ if n is odd. Moreover, for any

$$
\begin{equation*}
\sup _{x>0}\left(1+x^{m}\right)\left|U_{n}^{(s)}(x)-U^{(s)}(x)\right| \leqq c(s, m) / n . \tag{1.1}
\end{equation*}
$$

Theorem 1.1 generalizes results of [1-13], devoted to proving (1.1) if $s=0$. The first part of Theorem 1.1 on the differentiability of the distribution function $U_{n}(x)$ somewhat improves the result of Csorgo and Stacho [11]. One should note that in [11] the question of

[^0]differentiability of the distribution function $U_{n}(x)$ was studied with the help of the representation of $U_{n}(x)$ as the Lebesgue measure of a certain set in the space R^{n} using the wellknown Bruno-Minkowsky inequality. In the present paper this question is studied with the help of a detailed analysis of the characteristic function $E \exp \left\{i \omega_{n}^{2}\right\}$.

THEOREM 1.2. For any $m \geqq 0, s=0,1, \ldots, p=1,2, \ldots, n \geqq 2(s+1)$,

$$
\begin{equation*}
\sup _{x>0}\left(1+x^{m}\right)\left|\left(\frac{d}{d x}\right)^{s}\left\{U_{n}(x)-U(x)-\sum_{k=1}^{p-1} n^{-k} A_{k} U(x)\right\}\right| \leqq c(m, s, p) / n^{p} . \tag{1.2}
\end{equation*}
$$

Explicit formulas for the Fourier-Stieltjes transforms of the functions $x \mapsto A_{k}(x)$ are given on p. 150 of [18]. It is known [4] that $U_{n}(x)$ can be represented in the form of the probability $P\left\{\|_{n} S_{n}<x\right\}$, where S_{n} is a sum of independent $L_{2}[0,1]$-valued random elements. Asymptotic expansions for the derivatives $\left(\frac{d}{d x}\right)^{k} P\left\{\left\|S_{n}\right\|^{2}<x\right\}, k=0,1, \ldots$, are constructed in [14-16]. There too, one can find rules for constructing the coefficients of the expansion. In particular, the functions $A_{k} U(x)$ are infinitely differentiable and their derivatives decrease at infinity faster than any power of x.

Theorem 1.2 generalizes the results of [10-13], where asymptotic expansions of the distribution functions $U_{n}(x)$ were studied. The proof of the theorems is based essentially on the results of [16] on asymptotic expansions in the local limit theorem in Hilbert space. It follows from the results and proofs of this paper (cf. Sec. 3 and the proof of Theorem 3.1 in [16]) that to prove Theorem 1.2 it suffices to verify the condition

$$
\begin{equation*}
\int_{1 \equiv!-\frac{\pi}{n}} t^{r}\left(\frac{d}{d t}\right)^{q} E \exp \left\{i t \omega_{n}^{2}\right\} \quad d t<\infty \tag{1.3}
\end{equation*}
$$

for certain sufficiently large $r=r(m, s, p)$ and $q=q(m, s, p)$. The analysis of the characteristic function $E \exp \left\{i t \omega_{n}^{2}\right.$) and the proof of (1.3) are given in Sec. 2. The following lemma illustrates the results of this section.

LEMMA 1.3. Let $s=0,1, \ldots, n=1,2, \ldots, t \in R^{1}$. Then for any $\mathrm{A}>0$, and for sufficiently large n one has

$$
\begin{equation*}
\left(\frac{d}{d f^{\prime}}\right)^{s} E \exp \left\{i t \omega_{n}^{2}\right\} \leqq c(s, A) n^{s} /\left(1+t^{4}\right) . \tag{1.4}
\end{equation*}
$$

A general method for estimating characteristic functions in the zone $|t| \leqq n^{1-\varepsilon}(\varepsilon>0)$ was proposed by Götze [12]. In the zone $|t| \geqq n^{1 / 2+\Sigma}(\varepsilon>0)$, for any $A>0$ and for sufficiently large n, Borovskikh [13] found the estimate

$$
\begin{equation*}
\left(\frac{d}{d t}\right)^{s} E \exp \left\{i t \omega_{n}^{2}\right\} \leqq c(s, A) / n^{A} . \tag{1.5}
\end{equation*}
$$

Lemma 1.3 improves this result.

2. Estimate of the Characteristic Function E $\exp \left\{i t \omega_{0}^{2} \perp\right.$

THEOREM 2.1. There exists an absolute constant a such that for $\mathrm{s}=0,1, \ldots, \mathrm{n}=1,2$, \ldots, in the zone $|t| \geq n^{2}$ one has

$$
\begin{equation*}
\left(\frac{d}{d t}\right)^{s} E \exp \left\{i t \omega_{n}^{2}\right\} \leqq t t^{-n / 2} n!(9 n)^{s}\{a(s+1)\}^{n} . \tag{2.1}
\end{equation*}
$$

The proof of Theorem 2.1 will be given below.
Applying the representation of Anderson and Darling for the statistic ω_{n}^{2} (cf. [2, 17])

$$
\omega_{n}^{2}=\sum_{j=1}^{n}\left(X_{j}^{*}-\dot{a}_{j}\right)^{2}+1 /(12 n),
$$

where $a_{j}=(j-1 / 2) / n$ and $X_{1}^{*}, X_{2}^{*}, \ldots, X_{n}^{*}$ are the ordered random variables $X_{1}, X_{2}, \ldots, X_{n}$, we get

$$
\left(\frac{d}{d t}\right)^{s} E \exp \left\{i t \omega_{n}^{2}\right\}=i^{s} E\left\{\sum_{j=1}^{n}\left(X_{j}^{*}-a_{j}\right)^{2}+\frac{1}{12 n}\right\}^{s} \exp \left\{i t \sum_{j=1}^{n}\left(X_{j}^{*}-a_{j}\right)^{2}+\frac{i t}{12 n}\right\}=
$$

$$
\begin{gathered}
=i^{s} n!\exp \left\{\frac{i t}{12 n}\right\} \int \ldots \int\left\{\sum_{j=1}^{n}\left(x_{j}-a_{j}\right)^{2}+\frac{1}{12 n}\right\}^{s} \times \\
\times \exp \left\{\text { it } \sum_{j=1}^{n}\left(x_{j}-a_{j}\right)^{2}\right\} d x_{n} \ldots d x_{1}
\end{gathered}
$$

where the integration is over all $x_{1} \in[0,1], x_{j} \in\left[x_{j-1}, 1\right], j=2, \ldots, n$. We make the change of variables $y_{k}=|t|^{1 / 2}\left(x_{k}-a_{k}\right), k=1, \ldots, n$, and we note that

$$
\left(x_{1}+\ldots+x_{r}\right)^{s}=\sum^{*} C_{s}\left(k_{1}, \ldots, k_{r}\right) x_{1}^{k_{1}} \ldots x_{r}^{k_{r}}
$$

where the sign $\Sigma *$ denotes summation over all $\left(k_{1}, \ldots, k_{r}\right), k_{1} \geqq 0, \ldots, k_{r} \geqq 0, k_{1}+\ldots+k_{r}=s$. We get

$$
\begin{align*}
& \left(\frac{d}{d t}\right)^{s} E \exp \left\{i t \omega_{n}^{2}\right\}=i^{s} n!|t|^{-n / 2-s} \exp \{i t /(12 n)\} \sum^{*} C_{s}\left(k_{0}, \ldots, k_{n}\right) \times \tag{2.2}\\
& \times t^{k_{n}(12 n)^{-k_{n}} \int \ldots \int y_{0}^{2 k_{0}} \exp \left\{i \Theta y_{0}^{2}\right\} \ldots y_{n-1}^{2 k_{n-1}} \exp \left\{i \Theta y_{n-1}^{2}\right\} d y_{n-1} \ldots d y_{0}}
\end{align*}
$$

where we have set $\theta=\operatorname{sgn} t$ and the integration is over all

$$
y_{n-1} \in\left[-|t|^{1 / 2}(2 n)^{-1},(n-1 / 2)|t|^{1 / 2} n^{-1}\right]
$$

and

$$
r_{p-1} \in\left[1 y_{p}^{\prime}-t 1^{1 / 2} n^{-1},(p-1 / 2)!t t^{1 / 2} a^{-1}\right], \quad p=1 . \quad ., n-1
$$

We let $\varphi(0, x)=1$

$$
\begin{equation*}
\varphi(p, y)=\int x^{2 k_{p-1}} \varphi(p-1, x) \exp \left\{i \Theta x^{2}\right\} d x, \quad p=1, \ldots, n \tag{2.3}
\end{equation*}
$$

where the integration is over the domain $\left[y-|t|^{1 / 2} / n,(p-1 / 2)|t|^{1 / 2} / n\right]$. Since $\varphi(p, y)$ also depends on k_{0}, \ldots, k_{p-1}, we shall sometimes write $\varphi_{k_{0}, \ldots, k_{p-1}}(p, y)$.

It follows quickly from (2.2) and the definition of φ (p, y) that

$$
\begin{equation*}
\left.\left(\frac{d}{d t}\right)^{s} E \exp \left\{i t \omega_{n}^{2}\right\}=i^{5} n!^{\prime} t^{-n / 2-s} \exp \{i t /(12 n)\} \times \sum^{*} C_{s}\left(k_{0}, \ldots, k_{n}\right) \right\rvert\, t_{!}^{k_{n}}(12 n)^{-k_{n}} \varphi_{k_{0}, \ldots, k_{n-1}}\left(n,!t^{1 / 2} /(2 n)\right) \tag{2.4}
\end{equation*}
$$

In estimating the sum in (2.4) we shall use the following.
LEMMA 2.2. Let $|t| \geq n^{2}$. Then there exists an absolute constant a such that for all $y \in\left(-\infty,(n+1 / 2) \mid t^{1 / 2} n^{-1}\right]$ one has

$$
\mid \varphi_{k_{0}}, \ldots, k_{n-1}(n, y) \vdots \leqq(s+1)^{n}(9|t|)^{k_{t-1}+\ldots+k_{v}} a^{n}
$$

Proof. Let $\tau=|t|^{1 / 2} n^{-1}$. Then

We set

$$
\varphi(p, y)=\int_{y-\tau}^{(p-1 / 2) \tau} x^{2 k_{p-1}} \varphi(p-1, x) \exp \left\{i \oplus x^{2}\right\} d x ; \quad p \geqq 1 .
$$

$$
\begin{equation*}
T_{p}(A, B)=\int_{A}^{B} x^{2 k_{p-1}} \varphi(p-1, x) \exp \left\{i \Theta x^{2}\right\} d x \tag{2.5}
\end{equation*}
$$

and let $\varphi(0, x) \equiv 1, \varphi(-1, x) \equiv 0, \varphi(-2, x) \equiv 0$.
First we prove the recurrence estimate

$$
\begin{align*}
& \left|T_{p}(A, B)\right| \leqq(s+1)(9|t|)^{k_{p-1}}\left\{\frac{|\varphi(p-1, A)|}{|A|}+\frac{|\varphi(p-1, B)|}{|B|}+\right. \\
& \left.+\int_{A}^{B} \frac{|\varphi(p-1, x)|}{x^{2}} d x\right\}+(s+1)\left(9 | t | ^ { k _ { p - 1 } + k _ { p - 2 } } \left\{\frac{|\varphi(p-2, A-\tau)|}{|A||A-\tau / 2|}+\right.\right. \\
& +\frac{|\varphi(p-2, B-\tau)|}{|B||B-\tau / 2|}+\int_{A}^{B}|\varphi(p-2, x-\tau)|\left(\frac{1}{x^{2}|x-\tau / 2|}+\right. \tag{2.6}\\
+\frac{1}{|x|(x-\tau / 2)^{2}} & \left.\left.+\frac{1}{|x||x-\tau / 2||x-\tau|}\right) d x\right\}+(s+1)(9|t|)^{k_{p-1}+k_{p-3}+k_{p-3}} \int_{A}^{B} \frac{|\varphi(p-3, x-2 \tau)|}{|x||x-\tau / 2|} d x .
\end{align*}
$$

$$
\begin{align*}
& F(p-1, x)=|x|^{2 k_{p-2}}|\varphi(p-1, x)| \\
& G(p-2, x)=|x|^{2 k_{p-1}}|x-\tau|^{2 k_{p-2}}|\varphi(p-2 ; x-\tau)| \tag{2.7}\\
& H(p-3, x)=|x|^{2 k_{p-1}}|x-\tau|^{2 k_{p-2}|x-2 \tau|^{2 k_{p-3}}|\varphi(p-3, x-2 \tau)| .}
\end{align*}
$$

Integrating in (2.5) by parts and applying elementary inequalities, we get

$$
\begin{align*}
& \left|T_{p}(A, B)\right| \leqq \frac{F(p-1, A)}{|A|}+\frac{F(p-1 B)}{|B|}+\left|k_{p-1}-\frac{1}{2}\right| \int_{A}^{B} \frac{F(p-1, x)}{x^{2}} d x+ \\
& \left.+\frac{G(p-2, A)}{|A||A-\tau / 2|}+\frac{G(p-2, B)}{|B||B-\tau / 2|}+k_{p-1}-\frac{1}{2} \right\rvert\, \int_{A}^{B} \frac{G(p-2, x)}{x^{2}|x-\tau / 2|} d x+ \tag{2.8}\\
+ & k_{p-2} \int_{A}^{B} \frac{G(p-2, x)}{|x| x-\tau / 2 ;|x|} d x+\int_{A}^{B} \frac{G(p-2, x)}{|x|(x-\tau / 2)^{2}} a x+\int_{A}^{B} \frac{H(p-3, x)}{|x| \mid x-\tau / 2!} d x .
\end{align*}
$$

Since $y_{p-1} \in\left[y_{p}-\tau,(p-1 / 2) \tau\right], p=1, \ldots, n, y_{n}=\tau / 2$, it is easy to verify that $y_{o} \in[-(n-1 / 2) \tau,(n-1 / 2) \tau]$ for all $p=0,1, \ldots, n-1$. Hence,

$$
\begin{equation*}
A!, B, \quad x, \quad x--, \quad x-2 \tau \leqq 3 t 1 / 2 \tag{2.9}
\end{equation*}
$$

Moreover, one has

$$
\begin{equation*}
0 \leqq k_{p} \leqq s \quad \forall p=0,1, \ldots, n . \tag{2.10}
\end{equation*}
$$

Estimating the expressions (2.7) with the help of (2.9) and (2.10), we derive (2.6) from (2.8) .

We shall estimate the $\varphi(p, y)$ by induction on p. First we consider the case $p=1$. Then

$$
\varphi(1, y)=\int_{y=1}^{-/ 2} x^{2 k_{0}} \exp \left\{i \Theta x^{2}\right\} d x
$$

We separate three subcases:
a) $y-\tau \in[1 / 2 . \tau / 2]$;
b) $y-=[-1 / 2,1 / 2]$;
c) $y \rightarrow \tau \in(-\infty,-1 / 2]$.
a) Applying (2.6) for $p=1$, we get

$$
\varphi(1, y)=\int_{y-\tau}^{\tau / 2} x^{2 k} \exp \left\{i \Theta x^{2}\right\} d x \leqq(s+1)(9|t|)^{k_{0}}\left\{\frac{1}{y-\tau!}+\frac{1}{\tau / 2}+\int_{y-\tau}^{\tau / 2} \frac{1}{x^{2}} d x\right\} \leqq(s+1)(9!t)^{k_{1}} 4
$$

b) Analogously,

$$
\begin{aligned}
& \dot{\varphi}(1, y)\left|=\int_{y-\tau}^{\tau / 2} x^{2 k_{0}} \exp \left\{i \Theta x^{2}\right\} d x\right| \leqq \mid \int_{y=-}^{1 / 2} y^{2 k_{0}} \exp \left\{i \Theta x^{2}\right\} d x+ \\
+ & \int_{1 / 2}^{\tau / 2} x^{2 k_{0}} \exp \left\{i \Theta x^{2}\right\} d x \vdots \leqq 4(s+1)(9 \mid t)^{k}+(9|t|)^{k_{0}} \leqq(s+1)(9 \mid t)^{k_{0}} 5
\end{aligned}
$$

c) Similarly,

$$
\begin{aligned}
& \varphi(1, y) \leqq \int_{y-\tau}^{-1 / 2} x^{2 k_{0}} \exp \left\{i \Theta x^{2}\right\} d x+\int_{-i / 2}^{-/ 2} x^{2 k_{0}} \exp \left\{i \Theta x^{2}\right\} d x \mid \leqq \\
& \leqq \int_{y-\tau}^{-1 / 2} x^{2 k_{0}} \exp \left\{i \Theta x^{2}\right\} d x \mid+(s+1)\left(9 t^{i}\right)^{k_{0}} 5 \leqq- \\
& \leqq(s+1)(9|t|)^{k_{0}}\left\{5+\frac{1}{|y-\tau|}+2+\int_{y-\tau}^{-1 / 2} \frac{1}{x^{2}} d x\right\}=(s+1)(9|t|)^{k_{0}} 9 .
\end{aligned}
$$

It is clear that in case c) one gets the worst estimate. Hence, for $p=1$, for all $y \in(-\infty$, $3 r / 2$] one has the estimate from the hypotheses of the lemma with a $=9$.

We proceed to estimate $\varphi(p, y)$ for $p \geq 2$. Let us assume that for $\ell=1, \ldots, p-1$ and all $y \in(-\infty,(l+1 / 2) \tau]$ one has

$$
\begin{equation*}
|\varphi(l, y)| \leqq(s+1)^{l}(9 \mid t!)^{k_{1-1}+\ldots+k_{0}} \Phi(l, t, \dot{n}) \tag{2.11}
\end{equation*}
$$

with some finite $\Phi(l, t, n), l \geqq 2$, and $\Phi(1, t, n) \equiv 9$. Without loss of generality, one can assume that $\Phi(0, t, n) \equiv 1, \Phi(-1, t, n)=\Phi(-2, t, n) \equiv 0$. First we prove that then (2.11) also holds for $\ell=$ p. We prove the estimate $\Phi(p, t, n) \leq a^{p}$ somewhat later.

It is clear from (2.5) and (2.3) that

$$
\varphi(p, y)=T_{p}(y-\tau,(p-1 / 2) \tau) .
$$

The points $-1 / 4,1 / 4, \tau / 2-1 / 4, \tau / 2+1 / 4, \tau-1 / 4, \tau+1 / 4,(p-1 / 2) \tau$ divide the half-line into seven intervals $I_{1}=(-\infty,-1 / 4), \ldots, \quad I_{7}=(\tau+1 / 4,(p-1 / 2) \tau)$. The estimation of $\varphi(p, y)$ largely repeats the estimation of $\varphi(1, y)$. Hence we consider only the most laborious case $y-\tau \in I_{1}$. Thus, let $y-r \in I_{1}$. Then

$$
\varphi(p, y)\left|=\left|T_{p}(y-\tau,(p-1 / 2) \tau)\right| \leqq T_{p}(y-\tau,-1 / 4)\right|+\sum_{i=2}^{7} \mid T_{p}\left(I_{i}\right)!\leqq
$$

(we apply (2.9), (2.10), and the assumption (2.11))

$$
\begin{equation*}
\leqq T_{p}(p-\tau,-1 / 4)+(s+1)^{p}(9 \mid t)^{k_{p-1}+\cdots+k} \Phi(p-1, t, n) 3 / 2-\sum_{t \in\{3,5,7\}} T_{p}\left(I_{i}\right) \tag{2.12}
\end{equation*}
$$

The points $0, \tau / 2, \tau$ do not belong to the intervals ($y-y,-1 / 4$) $I_{i}, i=3,5,7$. Hence, to the intervals $T_{n}(y-\tau,-1 / 4), T_{p}\left(I_{i}\right), i=3,5,7$, one can apply the reccurence estimate (2.6). Keeping (2.12) in mind, we get

$$
|\varphi(p, y)| \leqq(s+1)^{p}(9|t|)^{k_{p-3}+\ldots+k_{s}} \Phi(p, t, n),
$$

where

$$
\begin{align*}
& \Phi(p, t, n)=\Phi(p-1, t, n)\left\{3 / 2+U(y-\tau,-1 / 4)+\sum^{\prime} U\left(I_{i}\right)\right\}+ \\
& +\Phi(p-2, t, n)\left\{V(y-\tau,-1 / 4)+\sum^{\prime} V\left(I_{i}\right)\right\}+ \tag{2.13}\\
& +\Phi(p-3, t, n)\left\{W(y-\tau,-1 / 4)+\sum^{\prime} W\left(I_{i}\right)\right\},
\end{align*}
$$

the $\operatorname{sign} \Sigma^{\prime}$ denotes summation over $i=3,5,7$,

$$
\begin{gathered}
U(A, B)=\frac{1}{|A|}+\frac{1}{|B|}+\int_{A}^{B} \frac{1}{x^{2}} d x, \\
V(A, B)=\frac{1}{|A||A-\tau / 2|}+\frac{1}{|B| \mid B-\tau / 2}+\int_{A}^{B}\left\{\frac{1}{x^{2}|x-\tau / 2|}+\frac{1}{|x||x-\tau / 2||x-\tau|}+\frac{1}{|x|(x-\tau / 2)^{2}}\right\} d x, \\
W(A, B)=\int_{A}^{B} \frac{1}{|x||x-\tau / 2|} d x .
\end{gathered}
$$

It is clear that there exists an absolute constant $b \geq 9$ such that each of the expressions in curly brackets in (2.13) does not exceed b. Hence, from (2.13) for $p=1,2, \ldots$, we get

$$
\Phi(p, t, n) \leqq\{\Phi(p-1, t, n)+\Phi(p-2, t, n)+\Phi(p-3, t, n)\} b .
$$

Consequently, there exists an absolute constant a, such that $\Phi(p, t, n) \leq a^{p}$ (for example, one can take $a=2 b$).

Proof of Theorem 2.1. Estimating each summand in (2.4) in modulus, and applying the estimate of Lemma 2.2, we get

$$
\begin{gathered}
\left|\left(\frac{d}{d t}\right)^{s} E \exp \left\{i t \omega_{n}^{2}\right\}\right| \leqq n!|t|^{-n / 2-s}(s+1)^{n} a^{n} \times \\
\times \sum^{*} C_{s}\left(k_{0}, \ldots, k_{n}\right)|t|^{k_{n}}(12 n)^{-k_{n}}(9|t|)^{k_{x-1}+\ldots+k_{0}} \leqq n!|t|-n / 2-s(s+1)^{n} a^{n}(9|t|)^{s} n^{s} .
\end{gathered}
$$

The theorem is proved.
Proof of Lemma_1.3. Theorem 2.1 and the estimate (1.5) in the zone $|t| \geqq n^{1 / 2+\varepsilon}(\varepsilon>0)$, for sufficiently large n, imply

$$
\left.\left(\frac{d}{d t}\right)^{s} E \exp \left\{\text { it } \omega_{n}^{2}\right\} \right\rvert\, \leqq c(s, A) /(1+|t| A)
$$

In the zone $|t| \leqq n^{1-\varepsilon}(\varepsilon>0)$ the estimate of Lemma 1.3 is known (cf., e.g., [15, p. 37]). The lemma is proved.

3. Proofs of Theorems 1,1 and 1,2

As already noted, Theorem 1.2 follows from (1.3). The estimate of Theorem 2.1 and the above-mentioned results on estimates of characteristic functions from [12-16] guarantee that this condition holds. Theorem 1.1 is a special case (for $p=1$) of Theorem 1.2. The differentiability of the functions $U_{n}(x)$ follows from the estimate of Theorem 2.1 and the wellknown properties of the Fourier transform. It is known [19, 20] that $U_{n}(x)=0$ for $x \leq$ $1 /(12 n)$ and $U_{n}(x)=c_{n}(x-1 / 12)^{(n-1) / 2}$, for $1 /(12 n) \leqq x \leqq 1 /(12 n)+1 /\left(2 n^{2}\right)$, where $c_{n}>0$ is a constant. Hence, $U_{n} \neq C^{\alpha+1}$.

LITERATURE CITED

1. N. V. Smirnov, Probability Theory and Mathematical Statistics. Selected Works [in Russian], Nauka, Moscow (1970), pp. 60-78.
2. T. W. Anderson and D. A. Darling, "Asymptotic theory of certain 'goodness of fit' criteria based on stochastic processes," Ann. Math. Statistics, 23, No. 2, 193-212 (1952),
3. N. P. Kandelaki, "A limit theorem in Hilbert space," Trudy Vsets. Akad. Nauk GSSR, 5, No. 1, 46-55 (1965).
4. V. V. Sazonov, "On ω^{2} criterion," Sankhya. Ser. A, 30, No. 2, 205-210 (1968).
5. V. V. Sazonov, "Improvement of an estimate of a rate of convergence," Teor. Veroyatn. Primen., 14, No. 4, 667-678 (1969).
6. W. A. Rosenkrantz, "A rate of convergence for the von Mises statistic," Trans. Am. Math. Soc., 139, 329-337 (1969).
7. J. Kiefer, "Skorokhod embedding of multivariate RV's and the sample DF," Z. Wahr. Verb. Gebiete, 24, No. 1, 1-35 (1972).
8. Ya. Yu. Nikitin, "Estimates of rate of convergence in some limit theorems and statistical criteria," Dokl. Akad. Nauk SSSR, 202, No. 4, 758-760 (1972).
9. A. I. Orlov, "Rate of convergence of the distribution of von Mises-Smirnov statistics," Teor. Veroyatn. Primen., 19, No. 4, 766-786 (1974).
10. S. Czorgo, "On an asymptotic expansion for the von Mises ω^{2} statistic," Acta Sci. Math., 38, 45-67 (1976).
11. S. Csorgo and L. Stacho, "A step toward an asymptotic expansion for the Cramer-von Mises statistic," in: Analytic Function Methods in Probab. Theory, North-Holland, Amsterdam-Oxford-New York (1980), pp. 53-65.
12. F. Götze, "Asymptotic expansions for bivariate von Mises functionals," Z. Wahr. Verb. Geb., 50, No. 3, 333-355 (1979).
13. V. S. Korolyuk and Yu. V. Borovskikh, Asymptotic Analysis of Distributions of Statistics [in Russian], Naukova Dumka, Kiev (1984).
14. V. Yu. Bentkus, "Asymptotic expansions in the central limit theorem in Hilbert space," Liet. Mat. Rinkinys, 24, No. 3, 29-50 (1984).
15. V. Yu. Bentkus, "Asymptotic expansions for distributions of sums of independent random elements of a Hilbert space," Liet. Mat. Rinkinys, 24, No. 4, $29-48$ (1984).
16. V. Yu. Bentkus, "Asymptotic expansions in the local limit theorem in Hilbert space," Liet. Mat. Rinkinys, 25, No, 1, 9-22 (1985).
17. G. V. Martynov, Omega-Square Tests [in Russian], Nauka, Moscow (1978).
18. Sh. Cherge "Asymptotic expansion for the Laplace transform of the von Mises ω^{2} criterion, " Teor. Veroyatn. Primen., 20, No. 1, 158-162 (1975).
19. A. W. Marshall, "The small sample distribution of $n \omega_{n}^{2}$, " Ann. Math. Stat., 29, No. 1 , 307-309 (1958).
20. M. A. Stephens, "The distribution of goodness-of-fit statistics $U_{n}^{2}, "$ Biometrika, 50 , No. 3-4, 303-313 (1963).

[^0]: Institute of Mathematics and Cybernetics, Academy of Sciences of the Lithuanian SSR. Translated from Litovskii Matematicheskii Sbornik (Lietuvos Matematikos Rininys), Vol. 28, No. 1, pp. 14-22, January-March, 1988. Original article submitted February 6, 1987.

