On a Schwarz Lemma for Bounded Symmetric Domains

Wilhelm Kaup
Mathematisches Institut
Universität Tübingen
Auf der Morgenstelle 10
D-72076 Tübingen, Germany
wilhelm.kaup@uni-tuebingen.de

ABSTRACT.

1. Introduction

It is well known that the classical Schwarz Lemma allows the following higher dimensional extension: Let E, F be complex Banach spaces with open unit balls $B \subset E, D \subset F$ and let $f: B \to D$ be a holomorphic mapping with $f(0) = 0$. Then $\|f(z)\| \leq \|z\|$ for all $z \in B$ and $\|L\| \leq 1$ hold, where the linear operator $L: E \to F$ is the complex derivative at 0 of f. But in contrast to the classical case $E = F = \mathbb{C}$, the condition $\|f(z)\| = \|z\|$ for some $z \neq 0$ and also the condition $\|L\| = 1$ does in general not imply that f is linear (more precisely the restriction to B of a linear map – necessarily the derivative $L = df(0)$). To have a short notation we call the ordered pair of complex Banach spaces (E, F) rigid if every holomorphic mapping $f: B \to D$ with $f(0) = 0$ is linear provided that the derivative $df(0): E \to F$ is a (not necessarily surjective) isometry. In case this conclusion already follows without the assumption $f(0) = 0$ we call the pair strictly rigid. For instance, (E, F) is rigid if every unit vector in F is a complex extremal boundary point of D and this condition is also necessary if $E = \mathbb{C}$, compare [1]. Also, (E, E) is strictly rigid for every complex Banach space E of finite dimension as a consequence of Cartan’s uniqueness theorem, compare [5] and [1]. The rigidity condition for (E, F) is not symmetric in E, F. In particular, (E, F) trivially is rigid if there is no linear isometry $E \to F$.

Suppose that \mathcal{K} is a class of complex Banach spaces and that $\varphi: \mathcal{K} \to \mathbb{N} \cup \{\infty\}$ is a function. We will consider the following property for φ.

Property A: For all $E, F \in \mathcal{K}$ with $\varphi(F) \leq \varphi(E) < \infty$ the pair (E, F) is rigid.

Since for spaces with φ-value ∞ nothing is claimed in this property we always may assume without loss of generality that \mathcal{K} is the class B of all complex Banach spaces (simply by extending φ using the value ∞). For instance, on B the function $\varphi = \dim$ satisfies Property A. But also the following function ψ satisfies Property A: For every complex Hilbert space E put $\psi(E) = 1$. In case E is not a Hilbert space but any unit vector is an extreme point of its unit ball put $\psi(E) = 2$. In the remaining cases put $\psi(E) = \infty$. Clearly, this would be more interesting if some of the values ∞ could be changed to a finite one while keeping Property A.

In the present paper we consider certain rank functions with Property A on the class of complex Banach spaces associated with bonded symmetric domains. It is known that every bounded symmetric domain in a complex Banach space can be realized as the open unit ball of another complex Banach space E uniquely determined up to linear isometry [7]. These Banach spaces are called JB^*-triples since they may be algebraically characterized by a certain ternary structure, the Jordan triple product.

1 Supported by a grant from the German-Israeli Foundation (GIF), 1-0415-023.06/95.
2. The rank function

Fix the field \mathbb{K} in the following which is either \mathbb{R} or \mathbb{C}. Denote by B the category of all \mathbb{K}-Banach spaces with the bounded \mathbb{K}-linear mappings as morphisms. Throughout, E and F are Banach spaces with open unit balls $B \subset E$ and $D \subset F$. The notation $E \subset F$ means that E carries the induced norm from F, i.e. $B = D \cap F$. Also we write $E \lesssim F$ to indicate that there exists a (not necessarily surjective) linear isometry $E \to F$. By $\mathcal{L}(E,F)$ we denote the Banach space of all bounded linear operators $E \to F$. Furthermore $\mathcal{L}(E):= \mathcal{L}(E,E)$ is the Banach algebra of all continuous endomorphisms and $E^*: = \mathcal{L}(E, \mathbb{C})$ is the dual of E. The group of all invertible operators in $\mathcal{L}(E)$ is denoted by $\text{GL}(E)$. The vector space dimension of E over \mathbb{K} is denoted by $\text{dim}(E)$ and will be considered as an element of $\overline{\mathbb{N}}:= \mathbb{N} \cup \{\infty\}$.

The boundary of B (the unit sphere in E) is denoted by ∂B. The subset of all extreme boundary points of B is denoted by $\partial_B B$, that is the set of all $a \in \partial B$ with the property: $\|a \pm v\| = 1$ implies $v = 0$ for all $v \in E$. In the complex case (i.e. $\mathbb{K} = \mathbb{C}$) the point $a \in \partial B$ is called complex extreme if $\|a + tv\| = 1$ for all $t \in \Delta$ always implies $v = 0$, where $\Delta \subset \mathbb{C}$ is the open unit disc. With $\partial_B B \subset \partial B$ we denote the subset of all complex extreme boundary points. Also we denote for every complex Banach space E by $E^\mathbb{R}$ the underlying real Banach space. Clearly, E and $E^\mathbb{R}$ have to be distinguished, for instance $\dim(E^\mathbb{R}) = 2 \dim(E)$ holds in our notation.

We are interested in functions $\varphi : B \to \overline{\mathbb{N}}$ satisfying

Property B: $\varphi(E) \leq \varphi(F)$ for all $E, F \in B$ with $E \lesssim F$.

It is clear that $\varphi = \text{dim}$ satisfies this property. Further examples can be obtained in the following way: Let φ satisfy Property B. For every Banach space E and every $a \in E$ let Θ_a be the closed linear span of

$$\{v \in E : \|a + tv\| = \|a\| \text{ for all } t \in \mathbb{K} \text{ with } |t| \leq 1\}$$

in E (this notion coincides except for $a = 0$ with the one in [1]). Then $\varphi'(E) := \sup_{a \in E} \varphi(\Theta_a)$ defines a function $\varphi' : K \to \overline{\mathbb{N}}$, and it is clear that every linear isometry $L : E \to F$ maps Θ_a into Θ_{La}, therefore, with φ also φ' satisfies Property A. We call φ' the derived function of φ. Then $\varphi' \leq \varphi$ is easily seen and by iteration we also get φ'' and so on. As an example, $\dim'(E) = 0$ holds if and only if $\partial B = \partial_B B$ in case $\mathbb{K} = \mathbb{R}$ and $\partial B = \partial_B B$ in case $\mathbb{K} = \mathbb{C}$. Also, if $E = \mathcal{L}(H,K)$ for Hilbert spaces H, K with $\dim(H) = 2$ and $\dim(K) = n \geq 1$ we have $\dim(E) = 2n$, $\dim'(E) = n - 1$ and $\dim''(E) = 0$ (even if n is infinite).

For every E put furthermore $\tau(E) := \inf\{n \in \mathbb{N} : \varphi^{(n)}(E) = 0\}$, where $\varphi^{(n)}$ is the n-th derivative of φ and $\inf \emptyset = \infty$. In case of $\varphi = \text{dim}$ we also write $\tau(E) = \tau_{\dim}(E)$ and call it the rank of the Banach space E. The following statement is easily verified.

2.1 Lemma. With φ all derivatives $\varphi^{(n)}$ and also τ_φ satisfies Property B.

In particular, the rank τ satisfies Property B. All elements of $\overline{\mathbb{N}}$ occur as a rank: Consider for example the Banach space $E = C_0(S, \mathbb{K})$ of all \mathbb{K}-valued continuous functions vanishing at infinity on the locally compact topological space S. Then it is not difficult to see that $\tau(E) = \dim(E) = |S|$ where $|S| \in \overline{\mathbb{N}}$ is the number of elements in S. Actually, we can show a little bit more. Denote by $\ell^p \oplus \oplus F$ the ℓ^p-sum of E and F, that is $E \oplus F$ with norm satisfying $
(x, w)\| = \max(\|x\|, \|w\|)$ if $p = \infty$ and $
(x, w)\| \| = \|x\| + \|w\| p$ if $1 \leq p < \infty$. Instead of $E \oplus F$ we also write $E \times F$ since then the open unit ball is $B \times D$.

2.2 Proposition. For all Banach spaces E, F the following statements hold.

(i) $\tau(E) \leq \dim(E)$ and $\tau(E) = 0$ if and only if $E = \{0\}$.

(ii) $\sup_{a \in E} \tau(\Theta_a) = \tau(E) - 1$ if $E \neq \{0\}$.

(iii) $\tau(E \times F) = \tau(E) + \tau(F)$.

Proof. (i) is obvious.

(ii) We may assume that $k := \sup_{a \in E} \tau(\Theta_a) < \infty$ since $k \leq \tau(E)$. For $\varphi := \dim$ this means

$$\varphi^{(k+1)}(E) = \sup_{a \in E} \varphi^{(k)}(\Theta_a) = 0,$$
i.e. \(r(E) \leq k + 1 \). But \(r(E) \leq k \) would contradict the definition of \(k \).

(iii) We assume that \(0 < r(E) \leq r(F) \) holds and use induction on \(n = r(E) + r(F) \). The case \(n = 0 \) is trivial and for \(n = \infty \) the statement follows from \(r(E \times F) \geq r(F) = \infty \). Therefore we only have to consider the case \(0 < n < \infty \). For all \((a, b) \in E \times F\)

\[
\Theta_{(a,b)} = \begin{cases}
\Theta_c \times F & ||a|| > ||b|| \\
\Theta_a \times \Theta_b & ||a|| = ||b|| \\
E \times \Theta_b & ||a|| < ||b||
\end{cases}
\]

is easily seen. Then by induction hypothesis we have

\[
\sup_{(a,b) \in E \times F} r(\Theta_{(a,b)}) = n - 1 \quad \text{and hence} \quad r(E \times F) = n \quad \text{by (ii)}. \quad \square
\]

Property (ii) implies that the \(n \)-th derivative \(r^{(n)} \) of the rank function does not give further information since

\[
r^{(n)} = \max(r - n, 0) \quad \text{for all} \quad n \in \mathbb{N}.
\]

For the rest of the paper let \(\mathbb{K} \) be the complex field. For every complex Banach space \(E \) then let \(\rho(E) = r(E^{\mathbb{R}}) \) be the \textit{real rank} of \(E \). Then it is clear that also the function \(\rho \) on \(B \) satisfies Property B. Also, by induction it can be shown that always \(r(E) \leq \rho(E) \) holds. The question arises: To what extent do the rank functions \(r \) and \(\rho \) satisfy Property A? In the next section we prove this for the class of \(\mathbb{J}B^* \)-triples.

For certain complex Banach spaces \(E \) of finite dimension Vigué [12] has defined a rank \(r(B) \) of the open unit ball \(B \subset E \). Since in case that \(B \) is a bounded symmetric domain this rank in general is not the usual one, we prefer to write \(r_V(E) \) instead of \(r(B) \) here. Let \(V \) be the class of all complex Banach spaces of finite dimension such that the set

\[
\{ x \in E : \dim \Theta_x = \sup_{a \in E} \dim \Theta_a = \dim'(E) \}
\]

is dense in \(E \). Then \(r_V(E) = 1 + \dim'(E) \) in our language and the result in [12], Théorème 5.2, can be expressed in the following way: \textit{The function} \(r_V \) \textit{on} \(V \) \textit{satisifies Property A}.

3. \(\mathbb{J}B^* \)-triples

For complex Banach spaces \(E, F \) with open unit balls \(B, D \) a mapping \(f : B \to D \) is called \textit{holomorphic} if for every \(a \in B \) the Fréchet derivative \(df(0) \in \mathcal{L}(E, F) \) exists. The holomorphic mapping \(f \) is called \textit{biholomorphic} if the inverse mapping \(D \to B \) exists and is holomorphic. Cartan’s uniqueness theorem states that for every \(a \in B \) every biholomorphic map \(f : B \to D \) is uniquely determined within the space of all holomorphic mappings \(B \to D \) by \(f(a) \) and \(df(a) \) (compare i.e. [4] p. 75). With \(\text{Aut}(B) \) we denote the group of all biholomorphic mappings \(g : B \to B \), also called \textit{biholomorphic automorphisms} of \(B \).

The complex Banach space \(E \) is called a \(\mathbb{J}B^* \)-\textit{triple} if the group \(\text{Aut}(B) \) acts transitively on the open unit ball \(B \). To every \(a \in B \) then there is a unique automorphism \(s_a \in \text{Aut}(B) \) with \(s_a = s_a^{-1}, s_a(a) = a \) and \(ds_a(a) = -id \), i.e. \(D \) is a bounded symmetric domain. Denote by \(\mathbb{J}B \) the category of all \(\mathbb{J}B^* \)-triples. By definition a linear map \(L : E \to F \) is a morphism in \(\mathbb{J}B \) if \(L \circ s_B = s_F \circ L \) holds for all \(a \in B \) and \(c = L(a) \in D \). It is clear that with \(E, F \) also the \(\ell^\infty \)-sum \(E \times F \) is in \(\mathbb{J}B \) and that the canonical projections are triple morphisms. \(\mathbb{J}B^* \)-triples can also be introduced without any reference to holomorphy by the existence of a Jordan triple product \((a, b, c) \mapsto \{abc\} \) from \(E^3 \) to \(E \) that is symmetric complex bilinear in the outer variables \(a, c \) and conjugate linear in the middle variable \(b \) together with some other properties, compare [7]. For instance, for every pair \(H, K \) of complex Hilbert spaces every closed linear subspace \(E \subset \mathcal{L}(H, K) \) stable under the triple product \(\{abc\} = (ab^*c + cb^*a)/2 \) is a \(\mathbb{J}B^* \)-triple. Therefore, every \(C^* \) algebra and also every complex Hilbert space is in \(\mathbb{J}B \), whereas in the latter case \(\{aba\} = (a|b|a) \) holds. The morphisms in \(\mathbb{J}B \) can also been characterized algebraically by the triple product:
The linear map $L: E \to F$ is a triple morphisms if and only if $L(abc) = L(a)L(b)L(c)$ holds for all $a, b, c \in E$. Triple morphisms always have closed range and are automatically continuous (the induced map $E/\ker(L) \to F$ is an isometry). On the other hand, every surjective linear isometry in JB^* is a triple isomorphism.

Let E, F always be JB^*-triples in the following. For every $a, b \in E$ denote the linear operator $z \mapsto \{abz\}$ by $a \circ b$. Then $\|ab\| \leq \|a\|^4 \|b\|$ holds and \square may be considered as an operator-valued inner product on E. We write $a \perp b$ and call a, b orthogonal if $\|a \circ b\| = 0$ or equivalently if $\|a \circ a\| = 0$ holds. For every $a \in E$ and $n \in \mathbb{N}$ the odd powers are defined by $a^{2n+1} = (a \circ a)^n a$. These always satisfy $\|a^{2n+1}\| = \|a\|^{2n+1}$. It is clear that the triple product on E is uniquely determined by the cube mapping $a \mapsto a^3 = \{aaa\}$. The fixed points of the cube mapping are called tripotents. The set $M \subseteq E$ of all tripotents is a real analytic submanifold of E and every non-zero tripotent $e \in E$ has norm 1. Suppose e_1, \ldots, e_r are pairwise orthogonal tripotents in E. Then for every $i, j \in \{0, 1, \ldots, r\}$ the Peirce space

$$E_{ij} := E_{ij}(e_1, \ldots, e_r) := \{ z \in E : 2\{e_k e_k z\} = (\delta_{ik} + \delta_{jk})z \text{ for all } k \}$$

is a subtriple with $E_{ij} = E_{ji}$ and

$$E = \bigoplus_{0 \leq i \leq r} E_{ij}$$

is called the corresponding Peirce decomposition, compare [10]. The Peirce spaces multiply according to the rules

$$\{E_{ij}E_{jk}E_{kl}\} \subseteq E_{il} \quad \text{and} \quad E_{ij}E_{pq} = 0 \quad \text{if} \quad i, j \notin \{p, q\}.$$

In particular, we have the Peirce decomposition $E = E_{11}(e) \oplus E_{10}(e) \oplus E_{00}(e)$ for every single tripotent $e \in E$. The tripotent e is called minimal in E if $\dim(E_{11}(e)) = 1$ holds.

For every $a \in E$ denote by $E_a \subseteq E$ the smallest closed subtriple of E that contains a and put $d(a) := \dim(E_a) \in \mathbb{N}$. It is known that E_a is isometrically isomorphic to $C_0(S) := C_0(S, \mathbb{C})$ for some locally compact topological space S. In particular, also $d(a) = r(E_a)$ holds where $r(E_a)$ is the Banach space rank as defined in the previous section. By definition, the triple rank of E is the supremum in \mathbb{N} of all $d(a)$ with $a \in E$.

3.1 Proposition. For every JB^*-triple E the triple rank and the Banach space rank $r(E)$ coincide.

Proof. Denote for a while the triple rank of E by $\tilde{r}(E)$. We have to show $\tilde{r}(E) = r(E)$. For every $a \in E$ we have $d(a) = r(E_a) \leq r(E)$ and hence $\tilde{r}(E) \leq r(E)$. Therefore we may assume that $n = \tilde{r}(E) < \infty$ holds. In case $n = 0$ we have $E = 0$, i.e. in addition we may assume $n > 0$. For every $a \in E$ with $a \neq 0$ there exists a unique representation

$$a = \lambda_1 e_1 + \cdots + \lambda_s e_s \quad \text{with} \quad \lambda_1 > \lambda_2 > \cdots > \lambda_s > 0,$$

where e_1, e_2, \ldots, e_s are pairwise orthogonal non-zero tripotents in E, compare [8]. By [1] Lemma 7.8 we know that $\Theta_a = E_{00}(e_1)$ is a subtriple of E. Since Θ_a has triple rank $\tilde{r}(\Theta_a) < n$ we get by induction hypothesis $r(\Theta_a) = \tilde{r}(\Theta_a) \leq n - 1$, i.e. $r(E) \leq n = \tilde{r}(E)$ by 2.2.ii. \hfill \square

JB^*-triples of finite rank can be characterized in many ways, compare also [8].

3.2 Proposition. For every JB^*-triple E the following conditions are equivalent.

(i) E has finite rank.

(ii) Every finite subset of E is contained in a subtriple of finite dimension.

(iii) Every $a \in \partial B$ has a (unique) representation $a = e + u$ with $u \in B$, e a tripotent and $e \perp u$.

(iv) For every $a \in E$ the operator $a \circ a \in \mathcal{L}(E)$ is algebraic (i.e. satisfies a nontrivial polynomial equation).

(v) E is reflexive.

JB^*-triples E of finite rank behave essentially like those of finite dimension, compare [10] for the following discussion. A tuple (e_1, \ldots, e_r) of pairwise orthogonal minimal tripotents in E is called
a frame in E if $E_0(e_1, \ldots, e_r) = 0$. All frames have the same length $r = r(E)$. The tripotent $e(\alpha) = e$ in 3.2.iv can be obtained by $e = \lim n^{-1}$. The fibres of the mapping $e: D \to M$ are the holomorphic arc components of D, i.e. the smallest non-empty subsets $A \subset D$ with the property: $f(A) \subset A$ for every holomorphic mapping $f: \Delta \to D$ with $f(A) \cap A \neq \emptyset$. For every $a \in D$ and $e = e(a)$ the holomorphic arc component of a is $e^{-1}(e) = e + (D \cap E_0(e))$.

The n-dimensional Banach space $F = \ell^n$ is a JB*-triple with open unit ball Δ^n. Let $f_1 = (1, 0, \ldots, 0, \ldots, f_n = (0, \ldots, 0, 1)$ be the standard basis of F. Suppose, E has finite rank and $L: F \to E$ is a linear isometry. Let $a_k = L(f_k)$ and write $e_k = e_k + u_k$ with $e_k = e(a_k)$ for all k. Then for all $j \neq k$ we have $a_j + \Delta a_k \subset e^{-1}(a_j) = e^{-1}(e_j)$. This implies $u_j + \Delta a_k \subset E_0(e_j)$ and hence $a_k \in E_0(e_j)$. The closed subtriple $E_0(e_j)$ contains with a_k also all odd powers of a_k and hence also the limit e_k, i.e. $e_j \perp e_k$ and $u_j \perp e_k$ for all $j \neq k$. This implies $u_j \perp e = e_1 + \ldots + e_n$ and also $n \leq r(E)$. In case of equality all u_j vanish and $L(F)$ is a subspace of E. This implies that then L is a triple homomorphism. Since for every $1 \leq k < n$ there exist linear isometries $\ell^n \to \ell^n$ that are not triple homomorphisms we have thus proved

3.3 Lemma. For every JB*-triple E and every integer $r \geq 1$ the following conditions are equivalent.

(i) E has finite rank r.

(ii) $n \leq r$ if there exists a linear isometry $\ell^n \to E$.

(iii) Every linear isometry $\ell^n \to E$ is a triple homomorphism.

As a consequence, for every JB*-triple of finite rank, $r(E)$ is the maximal n such that there exists a linear isometry $\ell^n \to E$.

We are now ready to prove the main result of this section.

3.4 Theorem. Let E, F be JB*-triples with $r(F) \leq r(E) < \infty$ and open unit balls B, D. Suppose $f: B \to D$ is a holomorphic mapping such that the derivative $L = df(0) \in L(E, F)$ is an isometry. Then $r(F) = r(E)$, $f = L|B$ and L is a triple homomorphism. In particular, the rank function r on JB satisfies Property A.

Proof. Fix $a \in E$ and put $r = r(E)$. Then there exists a frame (e_1, \ldots, e_r) in E and a spectral decomposition $a = \lambda_1 e_1 + \cdots + \lambda_r e_r$ with coefficients $\lambda_i \geq 0$ for all i. Since L is an isometry $t \mapsto \sum_{i=1}^r t_i L(e_i)$ defines an isometry $R: \ell^r \to F$. From 3.3.i we derive $r(E) = r(F)$ and also that R is a triple homomorphism. This implies $L(a)^3 = L(a^3)$ for all $a \in E$, i.e. also L is a triple homomorphism. The set $\partial E \subset \partial B$ of all extreme boundary points of B coincides with $\{ e \in M : E_0(e) = 0 \}$ and is a set of determinacy in E in the sense of [1]. Because of $L(\partial E) \subset \partial D$ we derive $f = L|B$ as a consequence of Corollary 3.3 in [1].

Suppose, E with open unit ball B is a JB*-triple of finite rank r. In [8] all equivalent norms Φ on E have been determined which are invariant under the group $GL(B) \subset GL(E)$. Among these are all p-norms for $1 \leq p \leq \infty$ on E defined as follows: Write every $a \in E$ as linear combination $a = \lambda_1 e_1 + \cdots + \lambda_r e_r$ for some frame (e_1, e_2, \ldots, e_r) in E and put $\|a\|_p = \|(\lambda_1, \lambda_2, \ldots, \lambda_r)\|_p$. Then $\partial E \subset \{ a \in B : \|a\|_p = 1 \}$, the original norm of E coincides with $\|\cdot\|_e$ and $\|\cdot\|_2$ is a Hilbert norm. This implies E is isomorphic to a complex Hilbert space. Now suppose that F is another JB*-triple of finite rank and $L: E \to F$ is a linear map with $\|L\| \leq 1$ and $\|L(a)^p\| = \|a\|_p$ for all $a \in E$ (i.e an isometry with respect to the p-norm on both spaces). Since B is the closed convex hull of $\partial E \subset E$ it is clear that then L is also an isometry of JB*-triples. Thus as a consequence of our main Theorem ?? we get.

3.5 Proposition. Let E, F with open unit balls B, D be JB*-triples of rank $r(F) \leq r(E) < \infty$ and let $f: B \to D$ be a holomorphic mapping such that $L = df(0)$ is an isometry with respect to the p-norm for some $1 \leq p \leq \infty$. Then $r(F) = r(E)$ and $f = L|B$ is linear.

For $p = 2$ and finite dimensions this result is already contained in [13].

References