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0. Introduction

The results concerning minimax theorems have many applications in sev-
eral fields of pure and applied mathematics. Our purpose is to study the fol- -
| lowing two problems: let X and Y be nonempty sets, and let
; 18 XXY >R ¢:X— Y be given functions such that f <gonXxY.
Under which hypothesis on X, Y, f, g and ¢ holds

(A) - inf sup f(x,y) < sup inf g(x.y)
_ yEYxe}P}- xE)P})’EYg' Y
or
(B) : inf sup f(x,y) < sup g(x,p(x)).
: YEY yex T xeX

Results related to problem (A) (called minimax theorems, since in case
f =g we have equality) have been obtained by several authors. These can
be applied in game theory, mathematical economics and optimization theory.-
Problem (B) has been studied justin case X = Y and ¢ (x)=x. These results
(called minimax inequalities) are useful for studying variational inequalities,
differential equations, potential theory, etc. It is easy to see that (A) implies
(B), therefore (B) can be usually stated under weaker hypothesis.

The aim of this note is to state theorems which extend some of the
most important known results concerning problems (A) and (B), to study the
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. connection between them and to give some applications. The first section 1is
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concerned on problem (B). Using a convexity concept introduced by Joo [14],
Theorem 1.1 contains, in particular KY FAN [4], while Theorem 1.3 those
of BREZIS-NIRENBERG-STAMPACCHIA [1], SiMons [25] and Ky FAN [5]..
Here we use a method related to KNASTER-KURATOWSKI-MAZURKIEWICZ =~ -
(KKM in short) theorem which first appeared in KASSAY—KOLUMBAN [17]. '
In section 2 we apply our results from section 1 and deduce Brouwer’s fixed
point theorem for this kind of convexity (pseudoconvex spaces). Further, we
show that Brouwer’s fixed point theorem fails in a more general convexity
structure (interval spaces, introduced by STACHO [28]). Although problem (A)
can be treated in interval spaces (see the results of Joo [14], [15], STACHO
(28], KOMORNIK [21]) our counterexample shows that problem (B) cannot
be attached in interval spaces using the argument of section 1 (which uses
Brouwer’s fixed point theorem). This question remains open (i.e., problem
(B) in interval spaces). '

In section 3 we are concerned on probiem (A). It is shown how one can
prove a general minimax theorem (Theorem 3.1) using three methods: the ..
KKM-method used in section 1, the level set method discovered:by JoO [11] -
and the mixture of the level set and cone method (discovered in the strongest
form by JoO [13]) given by KASSAY [19].

Theorem 4.1 (section 4) is deduced using Theorem 1.3 and extends a
result on variational inequalities due to BROUWER [2].

Recently, SIMONS [27] introduced the concept of upward-downwar
function in order to establish.minimax theorems. He asked whether his result
remains true for two functions. In section 5 we answer in the negative to both
of Simons conjectures. On the other hand, we prove these conjectures under -
an additional hypothesis. '

Finally, in section 6 we state generalized Kuhn-Tucker theorems for cone -
constrained and inequality constrained (nonlinear) optimization problems. -

For other results concerning-problems (A) and (B) see also [31, {71, [8],
[91, (10], [16], (18], [29]. )

The results of this paper were first announced in [15].

1. Minimax inequalities on pseadoconvex spaces

The aim of this section is to give a minimax inequality without lin:
ear structure which, in particular implies KY FAN [5], BREZIS-NIRENBERG—
STAMPACCHIA [1] and SIMONS [25]. Instead of the usual convexity in lin
ear spaces, we consider a convexity concept introduced by Joo [14] which
doesn’t need the linear structure. First we recall the following definitions:
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DEFINITION 1.1 (KoMrya [20]). Let X be a nonempty set. A mapping
h 2% — 2% is said to be convex hull operation if it satisfies the following
conditions: h(0) = 0, A({x}) = {x}, h(A) = jw{h(ﬁ) : F C Ais a finite set},
h(h(A))= A(A C X). One says that A C X 13 convex, if h(A)= A. -

i , DEFINITION 1.2 (Joo [14]). A triple (X,h,%) is called pseudoconvex
| space if

(1) X is a topological space and % is a convex hull 'operation on it;

(2) F={yr:FCXisfinite}, yp : A" — h(F), (n = cardF — 1) is a
continuous mapping of A" onto A (F), where A" denotes the standard simplex
of R";

=(ep,e1,..-,en) and F={xg,x,..., %, } for each subsimplex (eio’eil 3oy, ) C
C (eg,ey,...,e,) we have wp((e,-o,...,eik)) = h(xio,...,x,-k).'

In [12] can be found an example for pseudoconvex space (see the next
section too), where X = R" and which differs from the usual convexity. We
also mention that pseudoconvex spaces include convex spaces in the sense of
Komriva [20]. -

tion theorem [4] (often called the Ky Fan’s lemma). For, we first need the
following definition: : :

DEFINITION 1.3. Let (X, h,%)bea pseudoconvex space and let X, Xj, ...
..., Xn be a family of subsets of X. The set {x0,X1,...,xn} C X is said to be
KKM-selection for Xy,..., X, if for any subset j C {0,1,...,n} we have

h({xj:jeTpc Ux.
JeJ
Note that this concept differs from that in Ky Fan’s lemma even in case when
the convexity above reduces to the usual one, since the elements x,...,x, are
not necessarily distinct. For.instance we could have X0 =X{ =...=Xxy; then

N X 0.
i=0

i=0
exists a KKM-selection for X1,...,Xn which contains one element. The
following theorem gives a sufficient condition for the existence of such a

KKM-selection.

THEOREM 1.1. Let (X,h,%) be a pseudoconvex. space, I a 'nonemptj
Set and (X;);er a family of compact subsets of X. Then () X#0 if and
. . i€l _

(3) For each finite F C X, yg is convex hull preserving, ie., if A" =

- Now we state a result which extend-the well known Ky Fan’s intersec-

n
Moreover, we have the following property: (| X; #0 if and only if there .

[u
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only if for each finite subset iy, iy,...,i, € I, the family (X,-k Jo<k<n admits a '

KKM-selection. ‘ :

PROOF. The necessity is obvious. We prove the sufficiency. By com-
pactness, it is enough to show the “finite intersection property” for (X)ier.
Let X;, Xi\,..., X, (io,i,...in € I) be given and let {x0sx1,...xn} be a
KKM-selection of them. Without loss of generality we may suppose that
X0,X1,--.,Xn are distinct. Otherwise, if, say x; =xp for [#p then the corre-
sponding sets X;, and Xij, could be changed with their (nonvoid) intersection.
Let E, =¢1§1(Xik ﬂh(F)), 0 _<_ k < n, where F = {xy,x{,...,%, }. Then for
{eo,e1,-..,en} =A" we have co{e; :j €J} C E; foreach J C {0,1,...,n}.

. _ JjeJ
Indeed, let z € co{e; : j € J}. Then ¢g(z) € h({x :jeThc U X Let
: o jer
Jo € J such that Yg(z) € X,-jo. Therefore, z € w;l()(ijo Nh(F)) = Ejo‘ By a
variant of the classical KKM theorem (see [17], Lemma 2.1) it follows that

n n
() Ex #0; thus [ X, #0. This completes the proof.
k=0 : k=0

~ In the following we give an extension to an intersection theorem due to
BREZIS-NIRENBERG-STAMPACCHIA ([1], Lemma 1).

THEOREM 1.2. Let (X, h,F) be a pseudoconvex space, I a nonempty set
and ¢ : I — X a given function. Let (Xi)ies be a family of subsets of X for
which

(4) there is an index iy € I such tharXTO (the closure of Xio ) 1s compact;. ‘

(5) foreachi € I and for each finite subset F of X, X; Nh(F) is closed:;
(6) for each finite subset F of X we have

N X | ne@E)={ N X0 |,
i€l ielp
where Ir =~ (h(F)) (may be empty);
(7). for each finite subset J of I we have _
| h({pGy:j eTh ()X
JjeJ
Then () X; #0.
iel

PROOF. Let ®={F:FC X isa finite set, ¢(ig) € F} and J¢ = {h(F);
F € ®}. For simplicity, denote the family # by (H)ses- On S introduce U

S T S




CONVEXITY, MINIMAX THEOREMS AND THEIR APPLICATIONS 75 o

ordering relation as follows: s < ¢ '(s,-t € S)iff H; C H;. Let s € S be fixed
and [ := <p“1(Hs) (Since i € I; for each s € S, I is nonempty). Define

Ef =X;NH, iel
Then we have S
(8) E’ is nonempty and closed for each i € I;
9 E;:) is compact;
(10) For each finite subset J of I; we have

h({pG):jeThc U E.
| JjEI

Properties (8) and (9) are obvious. For (10) let J be a finite subset of I.

It is clear by (7) that h({p(j):j € J}) C | Xj. On the other hand, using the
) jET .

axioms of 4 we have h({p(j):j € J}) C H;. Applying Theorem 1.1 (without
loss of generality we may assume that E; are compact, i € I;), () E7 #0. For

. . , : _ i€ls
each s € S, choose an element u; € () E’ and let K; := | {u;}.-We have

_ N iels 1> .
K € X,,; further for sy, 55 € S there exists s3 € S with K5y C K5 NK,y.
Using compactness of X; it follows that (] K;#0. Let¥ € () K;. We show
‘ ' SES seS
that X € (] X;. By definition, K; C () X;. Choose an index sg € S such that
iel ' iel ’
X € Hy,. Let i € I be arbitrarily chosen and s > s¢. such that @ (i) € Hy. Then
by (6) | < o "
XEKNHC| N X |nH=NX|NH,.
_ iels - \i€ls '

Thus X € X;. This completes the proof.

Our next purpose is to establish a minimax inequality for pseudoconvex
spaces. First we need the following definition.

A pair (X, k) is said to be convex space of X is a point set and A : 2% —
2% is a convex hull operation (see Definition 1.1).

THEOREM 1.3 Let (X,h}) be aconvex space and ( Y, hy, %) be a pseudo-
convex space. Letf, g : X x Y — R such thatf <g on X x.Y, letp:X—Y

be-a function and a := sup g(x, (x)). Suppose
xeX

(11) for each finite subset Xy ofX, hy({p(x) :x € Xp}) C o (h1(X0));
(12) f is Ls.c. in its second variable on hy(Yy), for each finite Yo C Y ;
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(13) g is quasiconcave in its first variable, i.e. the set {x € X : g(x,y)>B}
is convex foreachy € Y andf € R;
(14) for each finite subset Yy C Y and for each filter yo € Y converging to
y € ho(Yp), we have: f(x,yq) < a for each x € Iy impliesf(x,y) < a for each
x € Iy, where Iy = (p—l(hz( Yo)), )
(15) there is a compact subset D of Y and xp € X such that f (xg,y) > a for
eachy € Y\D. ‘ -

Then there exists yo € Y N D such that f(x,y0) < @ for all x € X. In

particular, inf sup f(x,y) < sup g(x,p(x)).
YEY xeX x€X

REMARK. Assumptions (14) and (15) are clearly satisfied if Y is compact
and f is 1.s.c. in its second variable on Y. :

PROOE. For each x € X define the sets
Ye={y€ Y :f(x,y)<a}. .
Using Theorem 1.2, we show that () Yx#0. Itis easy to see that properties '
x€X :

(4), (5) and (6) follow by (15), (12) and (14) respectively, with I =X,

Y, := X;. We have to verify that (11) and (13) imply (7). Let x,x2,---
n

....xn € X and suppose ha({p(x;):i € {1,..,n}H ¢ U Yx;. Then for some
i=t.

yeh({pk):ie {1,...,n}}) we have f(x;,y) > a for each i € {1,2,...,n}.

By (11),y € w(hl({xl,...,xn})), hence there exists z € hy({x[,---»%Xn}) such

that'y = ¢ (z). Since glx;,y)>a foreach i € {1,...,n}, by (13), g(z,y) > a,
ie., g(z,p(2))>a, which contradicts the definition of a.

This completes the proof. ' |

COROLLARY 1.1 (BREZIS—NIRENBERG-STAMPACCHIA [1]). Let Z be.a
closed convex subset of a Hausdorff topological vector space E and let
f:ZxZ—JRsuchthat ' .
(16) o f(x,x) <0 foreach x €Z; )
(17) f isls.c.inits second variable on the intersection of Z with any finite’
dimensional subspace of E; v '
(18) f is quasiconcave in its first variable; - . iy

(19) Whenever C Is a convex subset of Z and yq Is a filter convergingt0.
y € C, thenf(x,ya) <0 foreveryx € C implies f(x,y) <0 for every x € C,
(20) There is a compact subset D of E and xy € DNZ such thatf (x0» y)_}f'
fory € Z\D. : . L L 3
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Then there exists yo € DN Z such that f (x yo) <0 for a]] x€Z. In

pamcu]ar mf sup f (x, y) <0.
Y€Zrez

PROOF. Apply Theorem 1.3 with X =Y =2, f =g, <p(x) x for each
x € X and hi(A)=hy(A)=coAiIf AC X.

COROLLARY 1.2 (SIMONS, [25]). Let Z be a nonempty convex subset of

- a topological vector space, letf : Z X Z — R be Ls.c. in its second variable,

g 1 Z X Z — R quasiconcave in its first variable and f < g on Z x Z. Then
min sup f(x,y) < sup g(x,x).
Y€Zrez - x€Z

COROLLARY 1.3 (KY FAN [5]). Let Z be a nonempty compact convex
subset of a topological vektor space and f : Z x Z — R be guasiconcave
in its first variable and l.s.c. in its second vanab]e Then mlg supf(x,y) <

Y€Lxez
< sup f(x,x).
x€eZ

2. Appllcatlon in ﬁxed pomt theory

Usmg the results above, in thlS section we prove that Brouwer’s fixed
point theorem holds under convexity introduced by I. L0 and L. L. STACHO
[12]. ThlS is a kind of pseudoconvexity defined in R".

Let x —‘(xo, Xn), ¥ =(g,---,¥n) € R**1. The interval joining x and y
w111 be defined as a polygon with at most n + 1 pairwise orthogonal segments
as follows (see also [12] and [14]). If x, > y, then let I, = {(xgs-rxn—1,2):
yn <t <xp}. If xp < yp then let I = {(yg,.. ., Yn— L) ixy <t <yp}. In
the first case we get J n—| analogously to I,; if, for example x,_; < y,_;
then J,_1 = {(0,---,¥n—2,8,9n) : Xp—1 <t < yp_1}; if X, > y,_1 then
By ={(x0, X 2,8, %) 1 ¥p—1 <t <x,_;}. In the second case (x, < y,)
we construct analogously I,_ and in the third step I, _,, etc. The segments
Io, I,..., I, parallel to the axis will join x and y. A set A C R" is convex if
x,y € A implies that the interval joining x and y is contained in A. It can be
shown that R" with this convexity is a pseudoconvex space in the sense of
Definition 1.2 (see JOO [14]).

In which follows, we use the notions of convex set, quasiconvex (quasi-
concave) function in the sense of JOO-STACHO [12], described above.

LEMMA 2.1. The Chebyshev norm in R", i.e. ||x||c = max{|x;],...,|xn|}
forx = (xl, xn) €ERY s a quasiconvex functzon o




~ is equivalent with f(xp) = xg. - 8

- implies [xp,x;] C A. We can define the concept of quasiconvex (quasiconcave)
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PROOF. It is easy to see that each Chebyshev sphere centered at the origin
is a convex set. Let x,y € R" and z € [x,y] (the interval joining x and y). Let
R =max{||x||c,|lyl|c}. Then the sphere centered at the origin with radius R
contains z. Hence |z||c < R=max{||x||c,|lyllc}

We mention that this statement is false for the Euclidean norm. For
instance let x = (=2,0), y =(1,-1) € R2. Then z =(-2,—1) € [x, y] and
llzll > max{||x||,[ly|l} where || -] denotes the Euclidean norm.

THEOREM 2.1 (See also KY FAN [6]). Let X be a compact convex subset
of R* andf,f: X — R" be two continuous mappings. Suppose

Ix =flle > lx =Fflc  foreach x € X.
Then there exists a point xy € X such that
21) e =flic 2 o ~fGolllc foreach xeX.

PROOF. Take f(x,y) = |ly =FO)llc — |I* f(y)“c It is clear that f is 3
continuous in its second variable and (using Lemma 2.1) quasiconcave in its ¥
first variable. Applying Theorem 1.3 with X = Y, hj = hy, f =g, p(x)=x for
each x € X we obtain (21). .

REMARK. If in addition X is invariant under £, i.e. f(X) C X, then (21)

In [28] L. L. STACHO introduced the following convexity structure: the
pair (X,[-,-]) is called an interval space if X is a topological space and
[, ]: X x X—»ZX is a mapping such that xg, x; € [xg,x1] and [xg,x;] 1s a
connected set for each xg, x; € X. A set A C X is called convex if x5, x;1 € A

function f : X — R in a similar way as above. It is easy to see that every
pseudoconvex space (X, h,¥) is an interval space, where the interval [xg,x;]
is defined to be wr(Al), with F = {xg,x;} C X. It is natural to ask whether
Brouwer’s fixed point theorem remains true for interval spaces. We answer
to this question in the negative. Let X =[0,1] C R. Introduce the following
topology in X : A C X is closed iff A is finite or A = X. It is clear that
X is a compact topological space with the topology above. For each xj,
xy € X let the interval joining x; and x, be the whole space X. Then every .
interval is closed, connected and contains its endpoints. Now consider the
function £ : X — X defined by f(x)=x+1/2 forx €[0,1/2], f(x)=x — 1/2,
for x €]1/2,1[ and f(1) = 0. Then f is bijective, without fixed points. It':.
remains to prove that f is continuous. Let x € [0, 1] be an arbitrary element
and let V be a neighbourhood of f(x). By definition V must contain each’
element of X except a finite number of them. Let V = [0, 11\{y1,¥2,--->Vn ¥
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and x; :=f~!(y;), (1 <i < n). Then the set U = [1,00\{x{,%9,...,x, } is &
neighborhood of x for which f(U) C V. Thus f is continuous at x.

In section one we have seen that results concerning minimax inequalities
(problem (B)) can be extended for pseudoconvex spaces. The proof is based
on KKM methods which use Brouwer’s fixed point theorem. As it could be
seen, these theorem fails in interval spaces. Therefore, in these spaces, the
results in section one can’t be proved using the argument above. However, it
would be interesting to attack problem (B) in case of interval spaces.

3. Minimax theorems

In this section. we are concerned on problem (A). We start with the
following definition. ‘

. DEFINITION 3.1. Let (X, h,%) be a pseudoconvex space. A function f :
X — R is said to be convex if f oyp is convex (in the usual sense) for
each finite F C X. f is said to be concave if —f is convex. Recall that f is
quasiconcave if -f is quasiconvex. It is clear that if f is convex (concave)
then it is also quasiconvex (quasiconcave). -

THEOREM 3.1. Let (X,h), %) be a pseudoconvex space, ( Y,hy, %) be a
compact pseudoconvex space. Letf : X x Y — R be u.s.c. and concave in
its first variable and 1.s.c. and convex in its second variable. Then

min sup f(x,y) = sup inf f(x,y).
yeY xex . - xeXYEY

_ We shall deduce Theorem 3.1 in three ways: the first one uses the
results above concerning minimax inequalities (therefore, the proof is based

on KKM methods and its generalizations); the second one uses the Hahn—

Banach method (separation of convex sets), while the third one will be the

method of “level sets” dicovered by I. JoO [11] which uses neither KKM nor

Hahn-Banach’s theorems. '

" For the beginning, we give a minimax theorem for two functions which
follows by Theorem 1.3 and which clearly implies Theorem 3.1. This con-
tains, in particular SIMONS [25], Theorem 1.4, and H. NIKAIDO [24].

THEOREM 3.2. Let (X,h,F) and (Y,hy,F3) be two pseudoconvex
Spaces with Y compact, f,g : X X Y — R withf < g on X x Y such that

(22) f is ls.c. in its second variable and quasiconcave in its first variable;




TItis ¢asy to see that @ verifies the conditions of Theorem 3.1 (withf =g :=

“such that

e ‘
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(23) g is u.s.c. in its first vanab]e and quaswon vex in its second variable.
Then

min sup f(x,y) < sup 1nf g(x ).
YE€Y xeX x€XY

PROOF. Suppose first that X is compact. If the result were false, we could
choose r € R such that

(24) minsupf(x,y) > r > supinfg(x,y).
Y x x Y

Let Z=X x Y. Then (Z,h,%) is a compact pseudoconvex space, where /& and
F are defined as follows: if F = {(x0,y0),...,(%n,¥n)}, Fi = {x0s--s%n}, By =
={y0,-->¥n} thenYr =9 g XY g, : A" Sz (e Yp(t) =15 P2,R (1))
if t € A") and % = {yp: F C Z is finite}. The convex hull ~(F) of a finite
set F C Z is defined by Y p(A")(n + 1 =card F) and the convex hull of any set
A C Z is determined by h(A) =N{h(F),F C A is a finite set}.

Consider the function @ : Z x Z — R defined by
q)((xay)a (x*’j‘))) = mm{f(%f’) —r,r— g(x’\ay)}

= @). We have O((x,y),(x,y)) <0 for each (x,y) € Z. Thus, there exists
(£,9) € Z such that ((x,y),(%,9)) <0 for each (x,y) € Z, or, in other words
f(x $)<r or g(%£,y) > r for each (x,y) € Z. This contradicts to (24) Now,

con51dermg the general case, it can be seen that foreachxy,...,x, € X ﬂ {ye
. i= 1 .
€ Y :f(x;,y) <a}#0 where a = supmfg(x y) Using the finite intersection

property for compact sets, we have ﬂ {y €Y fx,y)< a}#@ as required.
: xEX

In paper [19], G. KASSAY gave a simple proof for Kénig’s mmlmax:_
theorem [22] based on geometrlcal properties on R?. Konig’s theorem has.
extended by S. SIMONS [25] for two functions. We prove Simon’s theorem
using the method in [19]. ‘

THEOREM 3.3 (S. SIMONS, [25]). Let X be a nonempty set, Y a non--
empty compact topological space, f,g : X x Y = R withf < g on X x Y:

f is Ls.c. and 1/2 convex in its second variable, i.e. for all y1, y, € Y.
there exists y3 € Y such that

f(x Y1) +f(x,y2)

X for eab]z x €X;

(25) JF,y3) <




e —

CONVEXITY, MINIMAX THEOREMS AND THEIR APPLICATIONS 81

8§ 1s 1/2 concave in its first variable, i.e. for all X1, Xp € X there exists
x3 € X such that '

> g(x1,y)+8(x2,y)

(26) | g(x3,y) 7 foreach yeY.
Then’
(27) ,ynéiyl}xsgg( foe,y) < xsgg yiengg(x,y)-
Let ¢y := s;zpi;)fg(x, y)‘. We have the following statement which has

proved for one function by I. Joo [13].:

LEMMA 3.4. (27) holds iff N {yeY:fx,y»< c}#0, ¢ > cy.
xeX

;The proof is analogous to that of Theorem 2 [13]; we omit the details.

- PROOF OF THEOREM 3.3. Since Y is compact and f is l.s.c. in its second
variable, hence the sets HS := {y :fx,y) <c} (c>cy) are compact. . Thus,
it is enough to prove that the family of sets {H¢ : x ¢ X} (c > c4) has

‘the finite intersection property. We ‘prove that any two sets of this family
" have nonempty intersection. Suppose the contrary, i.e. that there exists ¢ >
> ¢4 and x;, x, € X such that Hy NH =0 and define p: ¥ — R? by

PO) = (€ —flx1,9),c —f(xp,y). If K ={(s,) €R? : 5 >0, t > 0} then
p(Y)NK =0.We show that cop(Y)NintK =0 (coA denotes the standard
convex hull of A C R%). For this, suppose that there exist Af,.. A €10,1]

Tk , k ,
with 3 A; =1 and yg,y5,...,y, € Y such that >_Aip(y;) € intK. Using (25)

=] i=1

—_— _ — k __
we can choose 11,4y,...,4; withd; >0 (1<i< k) and > A; =1 such that
- i=l

ko ' - ' ko
Z/L-p(yi) € K and for which there exists y € ¥ such that p(y) — X" A;p(y;) €

i= i=1
€ K. This means that p(y) € K, which contradicts the hypothesis. By the
well-known separation theorem of Hahn—Banach in R?, there exists a line
which separates the sets cop(Y’) and K. That is, there exists b = (b1,b;) € K
with by +by = 1 such that (u,b) < 0 for all u € p(Y) or, in other words
bif(x1,y)+bof (x9,y) > ¢ for every y € Y. Let ¢; € R such ¢« < ¢y < ¢ and
d:=cy~c. Then we have b;[c| —f (x1,y)] +bylc) ~f(x,y)]1 <d forevery y €
€ Y, hence the set p; (Y) is separated from K by the line by s +byt =d, where
PiO)=(cr =f(x1,y),c1.~f(x3,)) (d < 0). Since £ (x;,) and f (xp,) are L.s.c.
on Y, hence there exist @, > 0 such that p1(Y) C (~oc0,a] X (—c0,$]. The
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line bys +byt =d intersects at least one of the lines s =¢ and t=f; suppose that
it intersects the second one. It is clear then, that the line b1Bs +(—d +byf)t =
= 0 separates pj(Y) and K. Let 8100) = (c; —g(x1,y),¢ —g(x2,¥)). Since
P1(y) —g1(y) € K for every y € Y, each line which separates p;(Y’) and
K, separates g{(Y) and K too. Using (26), choose u € [0,1] and yeX
such that &0, y) >ug(xy,y)+(1 —m)g(xp,y) for every y € Y and such that
#s+ (1 —u)t =0 separates g1(Y) and K or, in other words uley —glxy, )]+
+ (I —w)lc) —g(xp,y)] <0 for every y € Y. Therefore, g&(xu,y) > c; for
every y € Y which leads to supigl]fg(x,y) 2 €1 > cx. This is a contradiction.
! X

Hence any two sets of the family {H¢ :x € X } have nonempty intersection.

n
(In order to prove that for any ¢ > ¢, and X1;-..,Xp € X we have | HE #0
: i

=
we use induction. For the details, see [13]). This completes the proof.

Observe that Theorem 3.3 implies Theorem 3.1 (note that 1/2 convexity
implies convexity in a pseudoconvex space): '

Finally, Theorem 3.1 follows by a result of 1. JOO ([14]. Theorem 3).

THEOREM 3.4 (1. J0O, [14]).' Let X be an interval space, Y a compact
interval space andf : X x Y — R such that 't
(28) f is us.c. and quasiconvex in its first variable;
(29) f is Ls.c. and quasiconcave in its second variable.

Then

min.-sup f(x,y) = sup fninf(x,y).
€Y yex xeXYEY

4. Application to variational inequalities

In this section we apply the results from section 1 to obtain an existence *
theorem for variational inequalities. Our statement will be an extension of
F. E. BROUWER [2]. :

Let X be a nonempty convex subset of a topological vector space E and
let T: X — E*, where E* denotes dual space-of E. The problem is to find
y € X such that

(30) \ (Ty,y —x) <0 forevery x € X.

This problerri has been studied by many mathematicians who have solved:
(30) under some hypothesis on X and T. (see for instance [2], [23], [25]”
Now we will study a generalized form of (30). Let X be a convex subset of &
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topological vector space E, (Y, 4,%) a pseudoconvex space and E* the dual
space of E.Let T: Y —» E*, g: Y — E. *

We study the following problem: find an element y € Y such that
(3D (Ty,g(y)—x))<0 forevery x € X.

. THEOREM 4.1. Let X be a convex subset of a topo]ogicé] vector space
E, (Y,h,%) a pseudoconvex space, T: Y - E*,g:Y —E andp : X — Y.

Suppose that
(32) foreachxi,xy,...,xy € X, h{p@x1),...,pxn)} C p(co{xy,...,xn }).
(33) (T(p(x)), g(p(x)) —x) <0 foreveryx € X; |
(34) T:Y - E*andg:Y — E are continuous;

(35) - there is a compact subset D of Y andxy € X such that (Ty,g(y) —xg) >
>0 foreveryy € Y\D. o

- Then there exists yg € D solution of (31).

PROOF. Let f : X X X — R defined by f(x,y) = (Ty,g(y) —-x) (x € X,

y € Y). It is easy to see that f satisfies the conditions of Theorem 1.3

(considering f = g). Since sup f (x,p(x)) < 0 by (33), there exists Yo € D
eX '

X
such that f(x,yg) < 0, as desired.

COROLLARY 4.1. Suppose that (32), (33), (34) hold and Y is compact.

Then there exists yg € Y, solution of (31).

COROLLARY 4.2 (F. E. BROUWER, [2]). Let X be a compact convex
subset of a topological vector space E and T : X — E* a continuous map.
Then there exists yg € X such that

(Typ,y0~x).<0 for every‘ x €X.
PROOF. Apply Theorem 4.1 for X = Y, g(x) =¢(x)=x for every x € X.

5. Upward-downward functions
A disprove for two conjectures of S. Simons

In [27] S. SIMONS has given the following definitions. Let X and Y be
nonempty sets. A function f : X XY — R is said to be upward on Y if
Ve >0 '3 6 >0 such that Vy;,y, € Y Jdy3 € Y such that:

(36) {vx € X 5f(xJ3) S mak{f<x’yv]))f(x7y2)} and
FGy3) > max{f (e, y).f (x,y2)} =8 =|f(x,y1) —F(x,y2) |<e.
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One says that f is downward on X if Ve >0- 3 & > 0 such that Vx1,x0 € X,
dx3 € X such that: :
(361) {vy €Y :f(x3,y) > minf(xl,y),f(xg,y) and

FGa,y) <min{f(ey,),f (g, y)} +6 =| f(x1,) = Flxp,y) <. |

SIMONS has proved in [27] that if f is upward on Y, downward on X , Y

.1s a compact topological space and f is l.s.c. in its second variable then !

minsupf (x,y) = supminf (x,y). The question whether this statement remains ;
Y x x Y e

true in case of two functions remained open. Namely, [27] concludes with
the following conjectures: . : . ‘
(37) Suppose that f,g : X x Y — R, f is upward on Y, g is downward
on X, f<gon XXY, X, 1s a noneémpty finite subset of X. Then

inf max f(x,y) < sup inf g(x,y).
yEYxEXOf( Y) xeggye)’g( 2 ,

(38) Suppose that f,g: X x Y-— R, f is upward on Y, g is downward on
X,f<gonXxY,Y is acompact topological space and f is Ls.c. in its
second variable. Then ' CTe - -
C . minsupfry) < sup inf g(x,y).
YeY xex x€XYEY ,

We shall give negative answer for both conjectures of S. SIMONS [27].

Our counterexample shows that these conjectures fail even in a special
case: X and Y are both compact, f,g : X X Y — R are continuous, f
is upward on Y, g is downward on X. and f<gon X x Y. However,

min sup f(x,y) > sup inf g(x,y).
YEY reXx xeXYEY

To this end, we need the fol'lowing Lémma:

LEMMA 5.1. LetX and Y be bompact subsets of R andf : X x 'Y — R,
f(x,-) is either strictly monotone, or a constant function. If Y is convex, then
fisupwardon Y. ‘

PROCF. It is enodgh to show that for each ¢ > 0 there exists § > 0 such
that for each x € X and Y.y2 € Y,'f_(x,)—'%z) < max{f(x,yl),f_(x,yz)}'
and | f(r,y0) = f(y2) 12 € = f (3, 252) < max{f(e,y0),f (5,30} — 6

The first relation is trivial. For the second on let’s suppose that th'ere.ex-rf
ists &€ > 0 such that for all n € N there exist x, € Xoyyl €Y w1th‘{

7Gny ) =Fn 12 e and £ (228 ) > man( oy 590} -

for all n € N. Using compactness, one can suppose (xn), 1), (¥3) convergént‘
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(if it'is necessary, we choose subsequences). Since f is uniformly continuous
on X x Y, there exists 00 > 0 such that [ y] ~Y) |26 forall n € N, Let
Xn =X, Y1 —y1, Yy = y. Then we obtain the following contradiction:

7 (5 P522) 2 maxif e,y ).
A similar property assures that g is downward on x.

Now let X = Y=[—1,l],f,g; XxY SR given by
f(—l,—1)=g(—1,—1)=f(1,1)=g(1,1).=2,
f(‘l,1)'—"8(*1,1)=f(1,*1)=‘g(1,-1)=—2,

f(=1,0)=¢(~1,0) =f(1,0)=¢g(1,0)=1,
f(O:—l)-‘-g(O,—l)—“—f(O,1)28(0,1)=—1;
on the segments ~ - - -

let f =g be affine; £(0,y) = —1 for each y € [~1,1] and &(x,0)=1 for each

-2 U -1 o 2

" Fig. |
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Geometrically, both f and g are formed by two conoidal surfaces.

Using Lemma 5.1, f is upward on Y and g is downward on X. It is
easy to verify that f < g on [—1,1] x [—1,1]. On the other hand, we have
infsupf(x,y)=1 and supinfg(x,y)=—1. .
Y x x VY

. Therefore, the second conjecture of S. SIMONS fails (i.e. (38)). The first

one (i.e. (37)) fails too: let Xy ={—1,1}.

It remains an open question: under which additional hypothesis (37) and
(38) can be proved? ‘ ‘

We answer to this question in case when one of the sets X and Y is
finite. To this end we prove the following lemmas. '

LEMMA 5.2. S’uppose thatf : X x Y — R is downward on X and X is a
finite set. Then there exists x* € X such that f(x*y)>f(x,y) foreachx € X
andy € Y. :

PROCOF. Let X = {x{,x,...,%, } It is easy to see that (36) implies
» Vxj,xp € X:3x3€ X suchthat

¥y € Yo f(x3,) 2 min{f (x;,5),f (42,y)} ~and
{f(xl,y) #f(x2,y) = f(x3,9) > min{f (x1,y),f (x2,7)}.

We use induction. If n =1 the conclusion is trivial. Suppose that for n =k
the property holds and prove it for n =k + 1. First we shall prove

(40) There exist . _
L,j €{1,2,...,k +1} with i#j such that f (x;,y) > f(x;,y) for each y € Y.

39)

Suppose the contrary. Then the sets Al={yeyY f(x1,)<f(x2,y)} and

T Ay={y €Y :flx1,y) > f(x2,y)} are both nonempty. Choose x3 as in (39) -

andlet A3 ={y € Y : f(x3,y) <f@x1,y)}. If A3=0, then (40) holds. Suppose
A3#0. It is easy to see by (39) that -

f(x3,9)>f(x1,y) forevery yeA; and
f(3,7)>f(x,y)  forevery ye4,.

We also have A3 C A;. Let x4 be the element which corresponds to
xy and x3 by (39). Then f(x4,y) > f(x3,y) for every x € A3. Let A4 :=
={y € Y:f(xs;y) <f(x1,y)}. Then A4 C As. If A4 =0, we have (40). Else,

we continue this procedure. It is also clear, that the elements X1,X2,X3,... are -

distinct (supposing that the corresponding sets Aj,ap, As,... are nonempty).
Hence, it is impossible to continue this procedure indefinitely since X is
finite. Then, for ani€{1,2,...k+ 1} we must have A; =0, which implies
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(40). Choose i,j € {1,2,...,k + 1}, i #j such thatf(x,,y) >f(xj,y) for every
y € Y. Then (39) remains true for {%1,%2, - s X1t F\{x; }, or in other words
the functions f(x,,-), p € {1,2,...,k + 1}\{/} satlsfy (39). Using 1nduct10n
the conclusion of Lemma 5.2 follows

, LEMMA 5.3. Supposef : X x ¥ — R is upward on Y and Y is a finite
set. Then there exists y* € Y such that f (x,y*) < f(x, y) for each x € X and
yeyY.

The proof is analogous to the proof of Lemma 5.2. We omit the details.
PROPOSITION 5.1. Supposc that f is downward on X and X is finite.
Then

_inf supf(x y)— sup mff(x,y)
YeYrex 0 xeX)E

PROOF By Lemma 5.2 there exists x* € X such that:f (x*,y) > f(x,y)

for every x € X andy€ Y. Then sup f(x,y)=f(x* ,y) for every y € Y, from
xeX
which we have

1nf supf(x,y)— mf (x ,) < sup 1n1}°/f(x,y)
Y€Y rex x€EXYE

PROPOSITION 5.2. Suppose thatf is upward on Y and Y is finite. Then

1nf supf(x,y)— sup mff(x y).
bAS xEX

The proof is similar to the p[oof of Proposition 5.1 and uses Lemm-a'j'ﬁ.

COROLLARv 5.1. Suppose thatf,g : X x.Y — R are such that f<gon
X XY.

(41) If f isupward on Y and Y is finite, then

inf sup f(x,y) < sup mf g(x y);
YEY xex xEXY

(42) if g is downward on X and X is finite, then

mf sup f(x,y) < sup mf g(x,y).
Y€Y yex . xeXJYE
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6. Saddle points and generalized Kuhn-Tucker theorems

In this section, using Konig’s. minimax theorem [22], we extend the
Kuhn-Tucker principle (see for instance [30]) for noconvex optimization
problems with side conditions. Our results contain, in particular, those of
[30]. For other extensions of Kuhn—Tucker type theorems which uses KONIG
[22] see S. SIMONS [28].

First we discuss the case when the constrains are given in operator form.

Let X be a compact Hausdorff topological space, Y be reflexive Banach
space, Y™ the dual space of ¥ and K a closed convex cone of Y such
that its interior is nonempty. Let K* be the dual cone of K, i.e. the set
{y*€e Y*:y*(y)>0forally € K}. Con31der the ordering relation < on Y
defined by y; <y, iff yp —y; € K.

Letf: X —-R, &G: X — Y and A:={x € X : G(x) < 0}. Consider the
problem .
f(x)— min
®) {
xe€eA
Then we prove

'THEOREM 6.1. Suppose that the following conditions hold:

(43) f is ls.c.  on X, G is ls.c. in the sense that the functionals x —
y*(G(x)) are ls.c. on X forall y* € K*;

(44) for eachx|,xy € X, there exists x3 € X such that 2f (x3) <f(x1) +f(x7)
and 2G(x3) K G(xy) + G(xp);

(45) there existsx € X such that —G(X € intK (Slater condition).
Then the following two assertions are equivalent:.

(46) (P) has a solution xp;
There exists yy € K* such that

(47) f(xo)+y6‘(0(xo))=§réi)1}{f(x)+y5(0(x))} and yg(G(x))=0

"PROOF. Define the lagrange function L: X x K* — R by L(x,y*)=f(x)+
+y*(G(x)). Let Ky ={y* € K*:|ly*|| <n}. Then we have:

For each x|, x; € X, there exists x3 € X such that
(48) 2L(x3,y™) < L(xy;y*) + L(x,y™) foreach y* e K;

(49)' the functions L(x,-) are affine and continuous on K}’ for each x € X,
therefore they are weakly continuous:
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The functions L(-,y*) are l.s.c. on X -for each y* € K*. Since K} is
weakly compact, by Koénig’s theorem [22], there exists a saddle point (x,,y;) |
of L{x,y*) on X x K, i.e. L(xp,y*) < L(x,y;) < L(x,y;) for each x € X :
and y* € K;;. In particular ' ’

(50) - L(xn,0) < L(xn, y) < LT, ).

It is easy to see that the sequence (y,) is bounded. Otherwise, by (45)
one can choose a neighborhood of —G(X) wh1ch is contained in int K, that
is, there exists r > O such that

y(-GX)—rh)>0 foreach y*eK*
and h € Y with ||h|| < 1. Therefore

(51) rHy |= sup y*(rh) <y*(—~G(x)) foreach y*e K*.
llAll=1
Now if ||y, || — o0, by (10), =y (G(X)) — co. Since L(-,0) is l.s.c. on X, this
contradicts (50). Without loss of generality, we may suppose x, — z € X,
¥n — Yo € K* (converges weakly) and L(x,,y,) — « as n — oco. Therefore
Liz,y") < lm L(xn,y") <a < lim L(x,y;) = L{x,y3)

n—00 n—oo

for each x € X and y* € K*. In particular, L(x, yo) a, hence (x,yp) is a
saddle point of L on X x K*, i.e. B

f@)+y* (G(Z))<f(2)+yo(0(z)) <f(x)+y0(6’(x))
for each x € X and y* € K*.
(52) In particular z € A'and y;(G(z)) =0.

Now let xg be a solution of (P). Then yO(G(x)) < 0 (since xg € A and

fx)= inf sup L(z,y").

Indeed, L(x,y*) < f(x) for each x € A and y* € K*, hence

Sup L(x,y™) < f(x)
y*eK*

for each x € A. .Therefore

inf sup L(x,y*) < sup L(xg,y™) < f (x0)-
XEA y*eK* y*eK*

It is easy. to see that we also have f(xg) > inf sup L(x,y*) using the fact
EXy €K*

that xg is a solution of (P). Thus f(xg) = a, hence f (xq) +yO(G(xO)) <flxp) < ..

<fx)+ ya‘(G(x)) for each x € X. On the other hand, if we put x; mstead of
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x. and O instead of y* in (52), we obtain ¥5 (Glxg)) = 0. Hence (46) = (47).
(47) = (46) is trivial. This completes the proof.

Now consider the case when the constraints are given in the form of

inequalities. Let X be a compact Hausdorff topological space, f0:f15-- > fin be
i real functions on X. Consider the problem:

) {fo(x) —min, xe€X
COROLLARY 6.1. Suppose . |

(53) fi is ls.c. on X foreachi e {0,...,m};
(54) for each x[,xy € X, there exists x3 € X such that

2ﬁ(x3) SLiGx)+fi(xp),  foreach i€ {0,...,m};

(55) there exists¥ € X such that f;(X) <0 foreachi ¢ {1,2,...,m}.
Then the following two assertions are equivalent:

(56) Xg s a solution of (P’ );

There exist (Lagrange multipliers) /1*,/13,...,/1,’;‘1 such that

(57) folxo) + > A%fi(xo) = min{fo(0)+ Y AHfix)} and
i=] i=]

Aifox0)=0 for each i€{l,...,m}.
PROOF. Take Y =R™, K = {h=(hy,...,hm) €R™; b >0, i €{1,..., m}},
=5 G=01,....fn): X - R™ and apply Theorem 6.1.

. Finally we give an account on the the connection of the results consid-
ered, in Figure 4. . '
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