rostgergely
   Dr. Röst GERGELY
itusdecaeuhu
    SZTE BOLYAI INTÉZET
    habilitált tudományos főmunkatárs, kutatócsoport-vezető



Publication record in the MTMT database

Google Scholar profile


Research Papers

[47] Knipl DH, Pilarczyk P, Röst G
Rich bifurcation structure in a two-patch vaccination model
SIAM Journal on Applied Dynamical Systems 14:(2), 980-1017, 2015

[46] Barbarossa MV, Dénes A, Kiss G, Nakata Y, Röst G, Vizi Zs
Transmission dynamics and final epidemic size of Ebola Virus Disease outbreaks with varying interventions
PLOS ONE in press (2015)

[45] Liu M, Liz E, Röst G
Endemic bubbles generated by delayed behavioral response --
global stability and bifurcation switches in an SIS model
SIAM Journal on Applied Mathematics, 75(1), 74-91
, 2015

[44]
Barbarossa MV, Röst G
Immuno-epidemiology of a population structured by immune status:
a mathematical study of waning immunity and immune system boosting
Journal of Mathematical Biology, in press 2015

[43]
Barbarossa MV, Röst G
Mathematical models for vaccination, waning immunity and immune system boosting: a general framework
In: Mondaini RP (szerk.) BIOMAT 2014. Singapore: World Scientific, 2015.

[42] Knipl DH, Röst G

Large number of endemic equilibria for disease transmission models in patchy environment
Mathematical Biosciences, 258, 201-222,  2014

[41] Dénes A,
Röst G
Global dynamics of a compartmental system modeling ectoparasite-borne diseases
Acta Sci Math (Szeged), 80(3-4), 553-572, 2014

[40] Faria T, Röst G

Persistence, permanence, and global stability for an n-dimensional Nicholson system
Journal of Dynamics and Differential Equations, 
26(3), 723-744, 2014
link

[39] Nakata Y, Röst G

Global analysis for spread of infectious diseases via transportation networks
Journal of Mathematical Biology,  70(6), 1411-1456, 2015 
link

[38] Röst G, Vizi Zs

Backward bifurcation for pulse vaccination
Nonlinear Analysis - Hybrid Systems, 14, pp 99-113, 2014
link

[37]
Gourley S, Röst G, Thieme HR
Uniform persistence in a model for bluetongue dynamics
SIAM Journal on Mathematical Analysis
 
46(2), 1160–1184 (2014) link

[36] Nakata Y, Röst G
Global dynamics of a delay differential system of a two-patch SIS-model with transport-related infections
Mathematica Bohemica,
2015, in press


[35] Pituk M, Röst G
Large Time Behavior of a Linear Delay Differential Equation with Asymptotically Small Coefficient
Boundary Value Problems, 2014:114 link

[34]
Nah K, Nakata Y, Röst G
Malaria dynamics with long incubation period in hosts
Computers and Mathematics With Applications, 68(9), 915-930
(2014) link

[33]
Nah K, Röst G, Kim Y
Modelling Malaria Dynamics in Temperate Regions with Long Term Incubation Period
in: BIOMAT 2013 - Proceedings of the International Symposium on Mathematical and Computational Biology
(ed.: Mondaini P), World Scientific, pp. 263-285 (2014) link

[32] Dénes A, Röst G
Global dynamics for the spread of ectoparasite-borne diseases
Nonlinear Analysis Real World Applications, 
18 pp 100-107, 2014 link

[31] Dénes A, Röst G
Impact of excess mortality on the dynamics of diseases spread by ectoparasites
in: Proc. AMMCS-2013 Waterloo, Springer, 2014, in press


[30] Röst G
Baneling dynamics in the Legend of the Seeker, Chapter 17 in:
Mathematical Modelling of Zombies (ed. Robert Smith?), pp 231-241, University of Ottawa Press, 2014


[29]
Knipl DH, Röst G, Wu J
Epidemic Spread and Variation of Peak Times in Connected Regions due to Travel-Related Infections -
Dynamics of an Antigravity-Type Delay Differential Model
SIAM Journal on Applied Dynamical Systems,
12:(4), pp 1722–1762 (2013) link pdf

[28] Knipl DH, Röst G
Backward bifurcation in SIVS model with immigration of non-infectives
Biomath
2:(2) Paper 1312051 (2013) pdf

[26] Liz E, Röst G
Global dynamics in a commodity market model
J Math Anal Appl 398:(2) pp. 707-714. (2013)
pdf

[25] Liu M, Röst G, Vas G
SIS model on homogeneous networks with threshold type delayed contact reduction
Comput Math Appl
66:(9) pp 1534–1546 (2013) link pdf

[24] Dénes A, Kevei P, Nishiura H, Röst G
Risk of infectious disease outbreaks by imported cases with application to the European Football Championship 2012
Int J Stoch Anal Article ID: 576381 (2013)
pdf

[23] Röst, G., Huang Sh-Y, Székely L.
On a SEIR epidemic model with delay
Dynam Syst Appl 21 pp 33-48 (2012)
pdf

[22] Röst G
Global convergence and uniform bounds of fluctuating prices in a single commodity market model of Bélair and Mackey
Electron J Qual Theory Differ Equ Nr. 26 (2012) pdf

[21] Liu M, Röst G
Dynamics of an SIS Model on Homogeneous Networks with Delayed Reduction of Contact Numbers
Biomath 1:(2) Article ID: 1210045 (2012)
pdf

[20] Knipl DH, Röst G
Multiregional SIR Model with Infection during Transportation
Biomath 1:(1) Article ID: 1209255 (2012)
pdf

[19] Jones DA, Smith HL, Thieme HR, Röst G
Spread on phage infection of bacteria in a Petri dish
SIAM J Appl Math, 72:(2) pp. 670-688. (2012)
pdf

[18] Dénes A, Röst G
Structure of the global attractors in a model for ectoparasite borne diseases
Biomath 1:(1) Article ID: 1209256 (2012)
pdf

[17] Röst G
SEI model with varying infectivity and mortality,

In: Siddiqi AH, Singh RC , Manchanda P (szerk.) MATHEMATICS IN SCIENCE AND TECHNOLOGY:
Mathematical Methods, Models and Algorithms in Science and Technology,
Proceedings of the Satellite Conference of ICM 2010. New Delhi, India
World Scientific, pp. 489-498 (2011)
link pdf

[16] Röst G
On an approximate method for the delay logistic equation,
Commun Nonlinear Sci Numer Simul, 16(9), 3470-3474 (2011)
link pdf

[15] Knipl DH, Röst G
Modelling the strategies for age specific vaccination scheduling during influenza pandemic outbreaks,
Math. Biosci. Eng. 8(1), 123-139 (2011) most read article
pdf

[14] Knipl, DH., Röst G
Influenza models with Wolfram Mathematica, pp 1-24, Chapter 4 in:
Interesting Mathematical Problems in Sciences and Everyday Life -2011
(eds: J Karsai, R Vajda), Szeged - 2011 - Novi Sad link pdf


[13] Liz, E. and Röst, G.,
Dichotomy results for delay differential equations with negative Schwarzian derivative,
Nonlinear Anal. RWA, 11(3)
1422-1430 (2010) pre link pdf

[12] Moghadas, S.M., Bowman, C.S., Röst, G., Fisman, D.N. and Wu J. most viewed research article
Post-exposure prophylaxis during pandemic outbreak,
BMC Medicine 7:73, 2009 link pdf supp

[11] Liz E and Röst G
On global attractors for delay differential equations with unimodal feedback,
Discrete and Continuous Dynamical Systems
,
24:(4) 1215-1224 (2009) pre pdf

[10]
Röst G and Wu, J.,
SEIR epidemiological model with varying infectivity and infinite delay,
Math. Biosci. Eng., 5(2),
pp. 389 –402, 2008,pdf

[9] Moghadas, S.M., Bowman, C.S., Röst, G. and Wu, J.,
Population-Wide Emergence of Antiviral Resistance during Pandemic Influenza.
PLoS ONE 3(3): e1839. doi:10.1371/journal.pone.0001839
(2008) pdf supp

[8] Alexander, M.E., Moghadas, S.M., Röst G. and Wu, J.,
A Delay Differential Model for Pandemic Influenza with Antiviral Treatment,
Bull. Math. Biol.
70: (2) 382-397 (2008) pdf

[7] Röst, G
On the Global Attractivity Controversy for a Delay Model of Hematopoiesis,
Appl. Math. Comput.
, 2007, Vol 190/1 pp 846-850 pdf

[6] Röst, G. and Wu, J.,
Domain-decomposition method for the global dynamics of delay differential equations with unimodal feedback, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2007, Vol 463(2086), pp. 2655-2669 pdf cited in Scholarpedia


[5]
Alexander, M.E., Bowman, C.S., Feng, Zh., Gardam, M., Moghadas, S.M., Röst G., Wu, J. and Yan, P., Emergence of drug-resistance: implications for antiviral control of influenza pandemic,
Proc. R. Soc. Lond. Ser. B Biol. Sci.
, 2007, Vol 274, Nr 1619, pp 1675-1684 pdf supp top downloaded paper

[3] Röst G
Bifurcation of the Time-One Maps of Delay Differential Equations at Points of Resonance,
Funct. Differ. Eq., 2006, vol. 13., Nr. 3-4, pp. 585-602 pdf

[2] Röst G
Some Applications of Bifurcation Formulae to the Period Maps of Delay Differential Equations
in: Dynamical Systems and Applications,
Proc. of the ACMA 2004, Antalya (eds.: Akca H., Boucherif A. and Covachev V.) pp. 624-641, 2005 pdf

[1]
Röst, G. ,
Neimark-Sacker Bifurcation for Periodic Delay Differential Equations
Nonlinear Analysis - Theor., 2005, vol. 60, issue 6, pp. 1025-1044 pdf

Theses

[27]
Röst G, Funkcionál-differenciálegyenletek globális dinamikája: attraktorok, összekötő pályák, perzisztencia és
alkalmazások, Habilitáció Tézisei, SZTE, 2013


[4] Röst, G. , Periodikus funkcionáldifferenciálegyenletek bifurkációelmélete , PhD 2005
PhD Disszertáció (pdf), Tézisek (pdf), Abstract (pdf), supervisor: Dr. Tibor Krisztin

[0] Röst, G. , Egy periodikus funkcionál-differenciálegyenlet instabil halmaza (dvi/zip)
diplomamunka, 2001, témavezető: Dr.Krisztin Tibor

Miscellaneous

Röst, G., Folytonos függvények periodikus pontjai, Polygon, 2000, X./1. 35-46

Röst, G., Az elektromos haltól a zúzógépekig – periodikus FDE modellek dinamikája, Természet és Tudomány, válogatás a II. VMTDK munkáiból, Újvidék (Szerbia), pp. 279-292, 2003

Röst, G., Periodikus funkcionál-differenciálegyenletek bifurkációi , MTA SZAB publikációs pályázat, pp. 1-64, 2004.

Röst, G., Az ötven éves Wright-sejtés története, III. VMTDK konferenciakiadvány, Zenta (Szerbia), 2004 Röst, G., Beszámoló a 11th IMC nemzetközi matematikaversenyről, Polygon, XIII./2. 65-75, 2005

Röst, G., The Effect of Resonance on the Bifurcation of Periodic Delay Differential Equations, Conference Proceedings of ISIRR-8 - International Symposium on Interdisciplinary Regional Research -Hungary-Romania-Serbia, Szeged, pp 1-9, 2005

Röst, G., A szegedi Eötvös Kollégium, Magyar Tudomány, 2005/11

Röst, G., A Mathematician's Survival Guide by Steven G. Krantz (book review), Acta Sci. Math. (Szeged), 71, pp. 428-429, 2005

Röst G, Beszámoló a 11th IMC nemzetközi matematikaversenyről, Polygon, XIII./2. 65-75, 2005

Röst G, The Effect of Resonance on the Bifurcation of Periodic Delay Differential Equations,
Conference Proceedings of ISIRR-8 - International Symposium on Interdisciplinary Regional Research
-Hungary-Romania-Serbia, Szeged, pp 1-9, 2005

DH Knipl, A Hulman (additional contribution: J Karsai, Röst G)
Dynamic Model of Pandemic Influenza with Age Structure and Vaccination
http://demonstrations.wolfram.com/DynamicModelOfPandemicInfluenzaWithAgeStructureAndVaccin
atio/ Wolfram Demonstrations Project, Published: October 8, 2011

Röst G, Delay differential models and transmission dynamics of infectious diseases – in the
shadow of the Saguaros, Hungarian Fulbright Grantee Reports, pp 1-8, 2012