
Optimal Temporary Vaccination
Strategies for Epidemic Outbreaks

K. Muqbel, A. Dénes, and G. Röst

1 Introduction

Mathematical models of the transmission dynamics of infectious diseases are useful
in gaining insights into the mechanisms of disease spread, in estimating key
epidemiological parameters, in making predictions about the expected outcomes,
and also in devising, evaluating, and comparing intervention strategies. Vaccination
is the most successful and cost-effective preventive measure against many infectious
diseases [2]. However, for some emerging diseases, the delay in identification of
the pathogen (such as the particular strain), the time needed to develop novel
vaccinations, and the limited capacity in production, distribution, and administration
of vaccines may lead to a situation where vaccination programs run parallel in time
with the disease outbreak. During the recent West African Ebola virus epidemic
(2013–2016), at the beginning no licensed vaccines for the disease were available.
The rVSV-ZEBOV vaccine was developed during the course of the epidemic
[5]. Until the vaccine became available, other coordinated public health measures
have been implemented [1]. A similar situation occurred also in many developed
countries during the 2009 influenza H1N1 outbreak [4]. For instance, in Canada,
due to the limited availability of the vaccine at the outset of the outbreak, and the
inability to vaccinate the entire population simultaneously, a sequencing strategy
has been developed that identified groups of different levels of priority [3]. In some
countries a significant portion of the influenza vaccines were administered in the
later phase of the epidemics [4], when the number of prevented cases per a unit of
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administered vaccine drops sharply. This raises the question of cost-effectiveness,
and also suggests that the vaccination program should stop at some well defined
point of the epidemics.

Motivated by this problem, in this study we propose a family of temporary vac-
cination strategies. For the sake of simplicity, we work in the basic SIR-framework.
An intervention strategy will be defined by two parameters which determine the
time interval it is applied as well as the intensity of vaccine administration. Our goal
is to find out which strategy is the most cost-efficient, where costs are assigned to
cases of infections and units of administered vaccines.

2 Specification of the VUHIA Strategy and Its Total Cost

We consider a constant population divided into susceptible (S(t)), infected (I (t)),
and removed (R(t)) compartments. New infections occur with transmission coeffi-
cient β and infected individuals recover with rate α. Upon recovery, full immunity is
assumed. Vaccination of susceptibles is included in the model with time dependent
vaccination rate v(t), to be specified later. Vaccination is assumed to be fully
protective, thus vaccinated individuals are placed in the R-compartment as well.
Hence, we consider the following system of differential equations:

S′(t) = −βS(t)I (t)− v(t)S(t),
I ′(t) = βS(t)I (t)− αI (t), (1)

R′(t) = αI (t)+ v(t)S(t).

We are interested in the situation when a small number of infected hosts are
introduced into a fully susceptible population, hence we consider initial data S(0) =
S0, I (0) = I0, R(0) = 0, where I0 is relatively small compared to the total
population size N = S + I + R. The basic reproduction number is given by

R0 = βS0

α
,

however by normalizing the population size at N = 1 and with I0 << 1, we have
S0 ≈ 1 hence the reproduction number simplifies to R0 = β

α
. Epidemic outbreak

occurs when R0 > 1.
The total cost (T C) of an outbreak will be assessed by considering two

components, the disease burden and the cost of vaccination. Disease burden is
calculated as the total number of infections during the course of the outbreak
(denoted by Ĩ ) multiplied by the cost C1 of a single infection. Vaccination cost is
calculated as the total number of administered vaccines (denoted by Ṽ ) multiplied
by the cost C2 of a single vaccination. This way, for the total cost we have
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TC := C1Ĩ + C2Ṽ , (2)

where

Ĩ :=
∫ ∞

0
βS(t)I (t)dt = α

∫ ∞

0
I (t)dt, (3)

Ṽ :=
∫ ∞

0
v(t)S(t)dt. (4)

There has been a number of studies using optimal control theory to find the
control function v(t) that minimizes some (typically quadratic) cost function (see
[7] for an example). However, a continuously changing v(t), which is the common
output from that approach, is not feasible to be realized as a public health policy.
Hence, we aim to define a strategy v(t) in a simpler way, and we assume that v(t)
is a piecewise constant function, taking values of either 0 (control is off), or some
p > 0 (control is on). This means that we propose to apply vaccination with a
given rate on some time interval. It remained to determine when to start and when
to finish the intervention. We cannot expect in general that the intervention can start
immediately, as the epidemic may not have been detected or the resources are not in
place at the beginning of the outbreak. A reasonable assumption is that the starting
point of interventions is when the number of infected individuals reaches a threshold
value k, as it has been in [6]. However, in outbreak models using the same threshold
to define the end of intervention may not be adequate, given that if k is too large
then we finish vaccination too early, while when k is too small then vaccination may
go on even when it does not have any significant impact on the epidemic any more.
Instead, we propose to stop the vaccination when the number of infections starts
decreasing, which is the same point when the number of susceptibles becomes so
low that herd immunity has reached in the population. We call such an intervention a
VUHIA-strategy of (k, p)-type, referring to vaccinate until herd immunity achieved
with parameters (k, p).

In mathematical terms, the VUHIA-strategy of (k, p)-type is defined as follows.
Let

v(t) =
{

0, t /∈ J,
p, t ∈ J,

where J is the intervention interval J = [Tstart, Tend] with

Tstart = min{t ≥ 0 : I (t) ≥ k}

and

Tend = min{t ≥ 0 : βS(t)− α ≤ 0}.
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The time Tstart is well defined as long as k ∈ [I0, Imax], where Imax denotes the
peak of the SIR-epidemic in the absence of any intervention. It is well known for
the SIR model (with N = 1) that

Imax = 1−R−1
0 (1+ lnR0).

Clearly we have I ′(t∗) = 0 when S(t∗) = α/β, and I ′(t) < 0 for any t > t∗
regardless we vaccinate or not at some t > t∗. Since the epidemic eventually always
dies out, Tend is well defined, and (4) becomes

Ṽ := p
∫ Tend

Tstart

S(t)dt. (5)

Figure 1 depicts how the epidemic plays out with two different strategies. In
one, we start vaccinating early with a low rate; in the other we start vaccinate later
but with a higher rate. As Fig. 1 shows, it is unclear which of these two strategies
is better, hence we will systematically explore this in the forthcoming sections by
computer simulations.

3 The Relation Between the Total Cost and the Vaccination
Rate

To see how the total cost depends on the vaccination rate, we shall consider various
fixed k-s and vary p. The change in the total cost then depends on

d

dp
T C(p, k) = C1

d

dp
Ĩ + C2

d

dp
Ṽ .
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Fig. 1 The total number of infected (left) and vaccinated (right) people during the epidemic for
different strategies. The epidemic parameters are R0 = 4, α = 6, β = 24. On the left, the red
curve is the epidemic curve in the absence of intervention. On the right, we can clearly see when
the vaccination starts and stops
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From Fig. 2 we can see that Ĩ decreasing while Ṽ decreasing in p, thus the sign of
the rate of change of the total cost is determined by the ratio of C1 and C2 relative
to the rates of change in Ĩ and Ṽ . In the sequel we always normalize the cost of
disease burden C1 = 100, and we will vary C2 to compare different scenarios.
What we can see in Fig. 3 is that when C2 0 C1, the total cost is decreasing in
p, meaning that when vaccination is relatively cheap, we should vaccinate as high
rate as possible. On the other hand, when C2 $ C1, the total is increasing in p,
meaning that when vaccination is very expensive relative to the disease burden, the
strategy that give minimal cost is to not vaccinate at all. We can also see that the
total cost is more sensitive to p when the vaccination rate is small. These results are
what one would expect; however, there is a curious situation when C1 and C2 are
of similar magnitudes: there is a possibility that the total cost is not monotone in p.
This scenario is highlighted in Fig. 3, right. In this case, vaccination with a small rate
yields a higher cost than no vaccination (see the red line); however, vaccination with
a high rate yields a smaller cost. Let p∗ be the value where the cost curve intersects
the straight red line corresponding to cost of no vaccination. This means that if we
are capable to vaccinate with a sufficiently high rate p > p∗, then we should do it,
but if with our capacities and resources only a smaller rate p < p∗ can be achieved,
it is better to not vaccinate at all.

4 The Relation Between the Total Cost and the Threshold
Level

Next we consider how the total cost changes when we vary k for fixed values of
p. Figure 4 shows that by increasing k, that is we start vaccinating later, the total
number of infections increases while the total number of vaccinations decreases.
Again, the change in total depends on how C1:C2 relates to dĨ

dk
: dṼ
dk

. This is depicted
in Fig. 5 (left) for various values ofC2. Similarly as before, we see that if vaccination
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Fig. 2 The total number of infected (left), and vaccinated (right) people during the epidemic as a
function of vaccination rate p. Parameters are R0 = 1.5, α = 6, β = 9
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Fig. 3 The total cost as a function of p, for five different vaccination costs (left). In the right, the
case C2 = 155 is highlighted by zooming in. Parameters are R0 = 1.5, α = 6, β = 9, k = 0.002
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Fig. 4 The total number of infected (left) and vaccinated (right) people during the epidemic as a
function of k. Parameters are R0 = 1.5, α = 6, β = 9

is relatively cheap, it is better to start early, and when it is very expensive, it
is better not to start at all. The graphs of all five curves meet at the right when
k → Imax. When similar costs are assigned to disease burden and vaccination, we
can see a non-monotone behavior, which is highlighted in the right of Fig. 5. The
interpretation of this figure is that in the scenario of the blue dotted curve there is
a k∗, such that if we are capable to start the intervention earlier that k∗, then we
should as soon as possible. But, if for any reason we could not start the intervention
before I (t) reached k∗, then it is better not to vaccinate at all. This k∗ is given by
the intersection of the blue dotted curve with the horizontal red line.
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Fig. 5 The total cost as a function of k for five different vaccination costs (left). The cases C2 =
155 and C2 = 200 are highlighted by zooming in (right). Parameters are R0 = 1.5, α = 6, β = 9,
p = 1.5

5 Conclusions and Summary

We have proposed a family of temporary vaccination strategies in the framework
of the SIR model. These strategies are characterized by parameters (k, p), where
vaccination starts when the number of infected hosts reaches the threshold value k,
and with rate p we continue vaccination until herd immunity is achieved (VUHIA).
The advantages of the VUHIA-strategy are the following. First, it has a clear and
meaningful definition: we start the vaccination with rate p when a threshold k is
reached in the level of infection, and we stop the vaccination when the number
of susceptibles drops below R−1

0 , that is herd immunity achieved the number of
infected will decrease anyway. Second, it is determined only by the parameters
(k, p), hence all strategies from this family can be explored in a two dimensional
parameter space.

We have assigned a total cost to each strategy composed of cost of disease burden
and cost of vaccination, and systematically investigated the dependence of the total
cost on the parameters. Essentially, we have found three types of behaviors:

(i) vaccination cost is very low compared to the cost associated to disease burden:
in this case increasing the vaccination rate and start vaccination earlier reduce
the total cost;

(ii) vaccination cost is very high compared to the cost associated to disease
burden: in this case the optimal strategy is to not vaccinate at all;

(iii) vaccination cost and disease burden cost are of similar magnitudes: there
may be non-monotone relationships between the vaccination rate, the starting
threshold and the total cost.

These three typical behaviors are plotted into a heatmap in Fig. 6. In case (iii), it
may happen that a better strategy is to start earlier but only if we can start sufficiently
early, or, it is better to increase vaccination rate but only if we can increase it to a
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Fig. 6 Dependence of the total cost on (k, p) in three typical situations: C2 = 50 0 C1 (bottom
left), C2 = 500 $ C1 (bottom right), and C2 = 155 (top). Parameters are R0 = 1.5, α = 6,
β = 9, and C2 = 50,155,500, respectively. The bottom plots show monotone cases, while in the
top plot we can find non-monotonicity in both k and p

sufficiently high level. If we cannot meet those criteria, then the best decision is
to not vaccinate. The top plot of Fig. 6 illustrates these intricate non-monotonicity
properties.

Depending on the available resources and public health capacities, there may be
constraints on the parameters, such as k ≥ kmin and p ≤ pmax. The optimal strategy
with such constraints can be found even in these cases from the graphs in Figs. 3, 5,
and 6. It is very easy when the total cost depends monotonically on the parameters,
for example with an upper bound on p and in the situation of C2 = 50 in Fig. 3, the
optimal strategy is always p = pmax. In contrast, for C2 = 155 (see Fig. 3 right),
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Fig. 7 Effect of R0 on the monotonicity of the cost curve. Parameters are p = 0.25, C2 = 115,
α = 6 and β = 7.2, resp. β = 24. For R0 = 1.2, optimal strategy is achieved by vaccinating early,
while for R0 = 4 it is better to not vaccinate at all

p = pmax is the optimal strategy only if p∗ < pmax, otherwise the optimal strategy
is p = 0.

Another interesting phenomenon is depicted in Fig. 7, showing that for a fixed p,
the monotonicity of the total cost in k can reverse varying the reproduction number.
In that particular situation of Fig. 7, for a less contagious disease (R0 = 1.2), to
minimize the cost vaccination should start as early as possible (k → 0), while for
a more contagious disease (R0 = 4) the lowest cost comes from not vaccinating at
all (k→ Imax).

Although this SIR vaccination model is certainly too simplistic to apply to any
real outbreak, this simple epidemiological model already exhibits some surprising
and counter-intuitive features, highlighting that in real applications with more
complex models, a comprehensive mathematical investigation of the possible
intervention strategies is really necessary.
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