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We present the generalized mean-field and pairwise
models for non-Markovian epidemics on networks
with arbitrary recovery time distributions. First we
consider a hyperbolic partial differential equation
(PDE) system, where the population of infective nodes
and links are structured by age since infection. We
show that the PDE system can be reduced to a system
of integro-differential equations, which is analysed
analytically and numerically. We investigate the
asymptotic behaviour of the generalized model and
provide an implicit analytical expression involving
the final epidemic size and pairwise reproduction
number. As an illustration of the applicability of
the general model, we recover known results for
the exponentially distributed and fixed recovery
time cases. For gamma- and uniformly distributed
infectious periods, new pairwise models are derived.
Theoretical findings are confirmed by comparing
results from the new pairwise model and explicit
stochastic network simulation. A major benefit of the
generalized pairwise model lies in approximating the
time evolution of the epidemic.

1. Introduction
It has long been acknowledged that the connectivity
pattern between individuals in a population is an
important factor in determining how diseases invade,
spread or how to design or deploy optimal control
measures [1–5]. Using networks to model disease
transmission, individuals can be represented by nodes
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in a network and the connectivity between individuals can be represented by links between the
nodes. This allows modellers to capture a high level of detail of many realistic contact processes.
In this framework, we can develop more accurate models, especially when compared to classical
compartmental models which usually operate on the assumption of homogeneous random
mixing. The most popular node-level models are perhaps the degree-based or heterogeneous
mean-field models. The pairwise models offer an explicit treatment of the epidemic process
both at the node and link level [6,7]. Such and other models of epidemic dynamics of
networks (see [8] for a review) have led to a much better understanding of the role of
contact heterogeneity, assortativity and clustering of contacts. While networks deal with the
complexity of the contact structure, epidemic models on networks often only consider Markovian
transmission and recovery processes. However, empirical observations show that assuming
Markovian infectiousness is a strong simplifying assumption [9,10]. Unfortunately, the analysis
of non-Markovian systems is significantly more challenging and requires deeper theoretical
and numerical tools. This paper is motivated by the renewed interest in non-Markovian
processes [11–14] and aims to extend the pairwise model from Markovian to non-Markovian
epidemics, where the infection process is Markovian but the infectious period is taken from an
arbitrary distribution.

Research in this area is based on different mathematical techniques depending on how the
exact stochastic process is approximated. If the main focus is on the early (i.e. epidemic threshold)
and asymptotic behaviour (i.e. final epidemic size) of the epidemic, then probabilistic models
based on branching process approximations and susceptibility sets as well as percolation models
can provide analytical results. In these cases, the impact of the network structure on the epidemic
threshold and final epidemic size is clear. For example, in [15] the final epidemic size is given
implicitly by an equation connecting it to moments of the network degree and other factors. The
percolation theory-based approach [16,17] applies even more widely for general transmission and
recovery processes. It provides implicit analytical equations which determine the final epidemic
size and links it to average characteristics of the epidemic process (e.g. transmissibility) and
network properties (e.g. first and second moment of the degree distribution). However, both
approaches fail to characterize the time evolution of the epidemic.

The message passing approach [18,19] is also an effective way to model an epidemic with
arbitrary transmission and recovery processes, but at the expense of a system consisting of a
large number of integro-differential equations. By using the concept of average message, one
can further simplify the equations and gain insight into both the time evolution of the epidemic
and final epidemic size. Edge-based compartmental models [20] have also been successful in
capturing SIR dynamics on configuration-like networks and for Markovian models, giving
perhaps the most compact ODE models that provide an excellent approximation of the exact
stochastic network epidemic. They become exact in some appropriate limits and conditions on
the underlying network [21–23]. The overwhelming view is that such models complement each
other and offer a different or complementary perspective of the exact stochastic process. Often it
turns out that such models are in fact equivalent in some well-defined sense or limit [24,25], and
they all contribute to a better or more complete understanding of exact stochastic processes on
networks.

For the Markovian case, the pairwise model is amenable to extensions to either networks
with more exotic properties, such as directed [26] and weighted [27] networks. Here we focus
on generalizing this approach to the case of non-Markovian epidemics and test the flexibility of
this modelling framework. This paper is structured as follows: in §2, we present the derivation
of pairwise and mean-field models for arbitrary infectious periods, with the most technical part
of the calculations presented in appendix A. Section 3 includes the mathematical analysis of the
resulting systems, with focus on the positivity of solutions, associated reproduction numbers and
the implicit relation concerning the final epidemic size. In §4, we illustrate that in special cases the
resulting system can be reduced to the well-known and previously studied models. In appendix
A, we collect the most technical parts of proofs, namely the calculations involved in the model
derivation and the algebraic manipulations of the resulting multiple integrals.

 on February 22, 2018http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


3

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20170695

...................................................

2. Model derivation
We consider an undirected and unweighted regular network with N nodes where each node has
n link/edges. For our purposes such networks would be created using the configuration model
with clustering going to zero as the network size increases. However, we note that our results
will remain valid also for Erdős–Rényi random networks. Each node has a state at any time t,
which can be susceptible (S), infected (I) or recovered (R). If an infection occurs along an S − I
link, then the state of the susceptible node S changes to I. Each infected node has an infectious
period chosen from some given distribution and after it elapses, the node recovers and changes
its state to R permanently, which means that the infectious period is the same as the recovery time
and recovered nodes remain immune.

We want to build mean-field and pairwise models for the SIR epidemic process with
Markovian transmission (i.e. time to infection is exponentially distributed) and general recovery
time distribution. We use the notations [X](t), [XY](t) and [XYZ](t) to denote the expected number
of nodes in state X, links in state X − Y and triples in state X − Y − Z, respectively, where
X, Y, Z ∈ {S, I, R}. For the derivation of a model at the level of nodes (i.e. for mean-field model), we
obtain equations for ˙[S](t) and ˙[I](t), and these depend on the expected number of pairs. For the
pairwise model (at the level of links/pairs), equations for ˙[SS](t) and ˙[SI](t) are needed, which in
turn depend on triples.

First, let i(t, a) represent the density of infected nodes with respect to the age of infection a at the
current time t; then [I](t) = ∫∞

0 i(t, a) da. Similarly, Si(t, a) and ISi(t, a) describe the density of S − i
links and I − S − i triplets, respectively, where the infected node i has age a at time t and [SI](t) =∫∞

0 Si(t, a) da, [ISI](t) = ∫∞
0 ISi(t, a) da. We assume that the infection process along S − I links is

Markovian with transmission rate τ > 0. The recovery part is considered to be non-Markovian,
with a cumulative distribution function F(a) and probability density function f (a). We use the
associated survival function ξ (a) = 1 − F(a) and hazard function h(a) = −ξ ′(a)/ξ (a) = f (a)/ξ (a).

Using the notations above, we arrive at the following model:

˙[S](t) = −τ [SI](t), (2.1a)(
∂

∂t
+ ∂

∂a

)
i(t, a) = −h(a)i(t, a), (2.1b)

˙[SS](t) = −2τ [SSI](t) (2.1c)

and
(
∂

∂t
+ ∂

∂a

)
Si(t, a) = −τ ISi(t, a) − (τ + h(a))Si(t, a), (2.1d)

subject to the boundary conditions

i(t, 0) = τ [SI](t) (2.2a)

and

Si(t, 0) = τ [SSI](t), (2.2b)

and initial conditions

[S](0) = [S]0, [SS](0) = [SS]0, i(0, a) = ϕ(a) (2.3a)

and

Si(0, a) = χ (a) ≈ n
N

[S]0i(0, a) = n
N

[S]0ϕ(a). (2.3b)

We shall use the biologically feasible assumption lima→∞ ϕ(a) = 0. To break the dependence on
higher-order moments, we apply the closure approximation formula, as given in [28] (see §2(a)
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for further details),

[XSY](t) = n − 1
n

[XS](t)[SY](t)
[S](t)

, (2.4)

which can be also applied for XSi(t, a) in the form

XSi(t, a) = n − 1
n

[XS](t)Si(t, a)
[S](t)

, X ∈ {S, I}. (2.5)

To obtain a self-consistent system in terms of network-level averaged quantities such as [S], [SS],
[I] and [SI], further calculations are needed, which are presented in appendix Aa. The resulting
pairwise system is the following integro-differential equation:

˙[S](t) = −τ [SI](t), (2.6a)

˙[SS](t) = −2τ
n − 1

n
[SS](t)[SI](t)

[S](t)
, (2.6b)

˙[I](t) = τ [SI](t) −
∫ t

0
τ [SI](t − a)f (a) da −

∫∞

t
ϕ(a − t)

f (a)
ξ (a − t)

da (2.6c)

and ˙[SI](t) = τ
n − 1

n
[SS](t)[SI](t)

[S](t)
− τ

n − 1
n

[SI](t)
[S](t)

[SI](t) − τ [SI](t)

−
∫ t

0
τ

n − 1
n

[SS](t − a)[SI](t − a)
[S](t − a)

e− ∫ t
t−a τ ((n−1)/n)([SI](s)/[S](s))+τ dsf (a) da

−
∫∞

t

n
N

[S]0ϕ(a − t) e− ∫ t
0 τ ((n−1)/n)([SI](s)/[S](s))+τ ds f (a)

ξ (a − t)
da. (2.6d)

From equation (2.6), the associated mean-field model can be easily deduced by using the closure
approximation formula for homogeneous networks (i.e. n-regular graphs)

[XY](t) = n
N

[X](t)[Y](t), (2.7)

thus the node-level system becomes

Ṡ(t) = −τ n
N

S(t)I(t) (2.8a)

and

İ(t) = τ
n
N

S(t)I(t) −
∫ t

0
τ

n
N

S(t − a)I(t − a)f (a) da −
∫∞

t
ϕ(a − t)

f (a)
ξ (a − t)

da. (2.8b)

In the following, we investigate these systems from a mathematical and numerical point of view,
focusing on the epidemiologically meaningful properties of the models.

(a) The relation of the stochastic and mean-field epidemic model
The underlying epidemic model is a stochastic model unfolding on a network of N nodes with
three possible states (S, I, R). When the transmission and the recovery processes are Markovian,
the corresponding 3N forward Kolmogorov equations make the analysis of the model extremely
difficult. Starting at the microscopic level and seeking to derive a meaningful mean-field model
relies on considering the expected values of some appropriately chosen random variables. In
the case of the pairwise model, these are the expected number of singles, pairs and triples
of appropriate types. However, developing limiting mean-field models (be these ordinary or
integro-differential equations) for these usually depends on higher-order moments or correlations
between these random variables. In kinetic theory, the propagation of chaos or mean-field particle
methods essentially relies on assuming independence, e.g. the expected value of a product of
random variables is equal to the product of the expectations [29], this in our case translates to
assuming that the expected number of triples can be approximated in terms of the expected
number of pairs and singles. This was shown in [28] by assuming a regular network and that the
states of nodes around a given susceptible node are multinomially distributed with probabilities
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Figure 1. (a) Stochastic and numerical experiments for non-Markovian epidemic with various recovery time distributions on
regular networks with N = 1000 nodes and infection rate τ = 0.35. Squares, circles and diamonds show the mean of 100
simulations on regular graphs with k = 15 for exponential distribution with rate 2/3 (mean= 3/2, variance= 9/4), gamma
distribution with shapeα= 3 and rateβ = 2 (mean= 3/2, variance= 3/4) and uniform distribution on interval [a, b]=
[1, 2] (mean= 3/2, variance= 1/2), respectively. Simulations startedwith a single newly infected node and amatching initial
condition was considered for the integro-differential system. Dashed and solid lines correspond to the numerical solution of
the mean-field (2.7) and pairwise (2.6) models, respectively. Attack rate based on explicit stochastic network simulations is
plotted against τ andRp

0 (in the inset) for regular (b) and Erdős–Rényi networks (c) with 〈k〉 = 15; the theoretical curves
(continuous black lines) are based on (3.24). The circle, diamond, square and cross stand for gamma (shapeα= 0.5,β = 0.25
with mean= 2, variance= 8), uniform (on [a, b]= [1, 3] with mean= 2, variance= 1/3), exponential (with rate 1 and
mean= 1, variance= 1) and Dirac delta distributions (fixed at 1 with mean= 1, variance= 0), respectively. For (b) and (c),
N = 10 000 and results are based on averaging over 1000 simulations where each epidemic starts with exactly one infectious
node. The error bars are smaller than the markers and thus not plotted. (Online version in colour.)

depending on the expected number of pairs and singles alone. While here we do not provide a
rigorous proof that our model is a large-scale limiting model of the stochastic process, numerical
tests confirm the validity of our model (figure 1).

Perhaps related but more widely used in the mathematical–biology community are the formal
proofs by Decreusefond et al. [22], Barbour & Reinert [21] and Janson et al. [23] which are all
concerned with the limiting mean-field equations of the SIR stochastic epidemic on configuration
networks. Decreusefond et al. [22] study a measure-valued process capturing the degrees of
susceptible individuals and the number of edges between different types of nodes. They prove
that, as N → ∞, the measure-valued process converges to a deterministic limit, from which the
Volz [30] equations may be derived as a corollary.

Barbour & Reinert [21] use multitype branching process approximations to prove results
approximating the entire course of an SIR epidemic within a more general non-Markovian
framework, allowing degree-dependent infection and recovery time distributions. Janson
et al. [23] relaxes some of the conditions on the degree distribution.
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These are strong theoretical results which cement many empirical observations and numerical
validations, and such a type of proof in our case is beyond the scope of our paper. In our
paper, the derivation of the model is intuitive and its validation is done numerically. However,
pairwise models before a closure and for Markovian epidemics have been proved to be exact [31].
Moreover, it is possible that the validity of our model could be established more rigorously using
the results in [21] augmented by the argument that the Volz-type and pairwise equations are
equivalent [5,24].

3. General results
In this section, we explore the most important features of systems (2.6) and (2.8). First, we find a
first integral of the pairwise model (2.6), which allows us to reduce the dimensionality. We show
that the solutions of the models are biologically meaningful, i.e. solutions with non-negative
data remain non-negative for t ≥ 0. The central result of this part is the implicit relationship
between the reproduction number and the final epidemic size. We summarize the definitions
of the associated reproduction numbers referring to [7], where the basic (R0) and pairwise (Rp

0 )
reproduction numbers are precisely introduced for mean-field and pairwise models, respectively.

(a) First integral
We use (2.6a,b) to find an invariant quantity of the system.

Proposition 3.1. The function U(t) = [SS](t)/[S]2((n−1)/n)(t) is a first integral of system (2.6).

Proof. To see this, let us divide equation (2.6b) by equation (2.6a), which gives

d[SS]
d[S]

= −2τ ((n − 1)/n)([SS][SI]/[S])
−τ [SI]

= 2
n − 1

n
[SS]
[S]

.

Solving this equation, we find [SS] = K[S]2((n−1)/n), where K is a constant, thus U(t) =
[SS](t)/[S]2((n−1)/n)(t) is an invariant quantity in the system and its value is

U(0) = K = [SS](0)
[S]2((n−1)/n)(0)

= [SS]0

[S]2((n−1)/n)
0

= n[S]0([S]0/N)

[S]2((n−1)/n)
0

= n
N

[S]2/n
0 . �

Consequently, using this first integral, we obtain

[SS](t) = n
N

[S]2/n
0 [S]2((n−1)/n)(t). (3.1)

Applying equation (3.1), we can reduce our pairwise model to a two-dimensional system:

˙[S](t) = −τ [SI](t)

and ˙[SI](t) = τκ[S](n−2)/n(t)[SI](t) − τ [SI](t) − τ
n − 1

n
[SI](t)
[S](t)

[SI](t)

−
∫ t

0
τκ[S](n−2)/n(t − a)[SI](t − a) e− ∫ t

t−a τ ((n−1)/n)([SI](s)/[S](s))+τ dsf (a) da

−
∫∞

t

n
N

[S]0ϕ(a − t) e− ∫ t
0 τ ((n−1)/n)([SI](s)/[S](s))+τ ds f (a)

ξ (a − t)
da,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

where

κ = n − 1
N

[S]2/n
0 .

(b) Positivity
We are interested only in non-negative solutions of system (2.6). The following proposition shows
that the solutions remain non-negative provided that the initial conditions are non-negative.
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Proposition 3.2. If initial conditions [S]0, [SS]0 are non-negative and ϕ(a) ≥ 0 for a ≥ 0, then [S](t) ≥
0, [SS](t) ≥ 0, [I](t) ≥ 0 and [SI](t) ≥ 0 hold for t ≥ 0.

Proof. It is clear that [SS](t) remains non-negative if the initial condition [SS](0) is non-negative,
because [SS](t) can be expressed from equation (2.6b) in the form

[SS](t) = [SS]0 e−2τ ((n−1)/n)
∫ t

0([SI](s)/[S](s)) ds.

Moreover, if [SS]0 is positive, then [SS](t)> 0 for all t ≥ 0. From equation (3.1), we obtain that [S](t)
cannot be zero if [SS](t) is positive for all t ≥ 0, which implies (from the continuity of solutions)
[S](t)> 0 for t ≥ 0. From the derivation of system (2.6) (see appendix A), we have the following
formulae for [I](t) and [SI](t):

[I](t) =
∫ t

0
τ [SI](t − a)ξ (a) da +

∫∞

t
ϕ(a − t)

ξ (a)
ξ (a − t)

da (3.3)

and

[SI](t) =
∫ t

0
τ

n − 1
n

[SS](t − a)[SI](t − a)
[S](t − a)

e− ∫ t
t−a τ ((n−1)/n)([SI](s)/[S](s))+τ dsξ (a) da

+
∫∞

t

n
N

[S]0ϕ(a − t) e− ∫ t
0 τ ((n−1)/n)([SI](s)/[S](s))+τ ds ξ (a)

ξ (a − t)
da. (3.4)

It can be seen that [I](t) remains non-negative if [SI](t) is non-negative for t ≥ 0. On the other
hand, [SI](t0) cannot be zero for some t0 ≥ 0, because the right-hand side of (3.4) depends on the
[S](t; t< t0), [SS](t; t< t0) and [S](t; t< t0), which are positive, hence [SI](t)> 0. �

In the case of the mean-field model (2.8), the positivity of S(t) is clear. To see the positivity of
I(t), we substitute (2.7) into (3.3), which gives

I(t) =
∫ t

0
τ

n
N

S(t − a)I(t − a)ξ (a) da +
∫∞

t
ϕ(a − t)

ξ (a)
ξ (a − t)

da. (3.5)

Note that I(t) remains non-negative if S(t) is non-negative for t ≥ 0.

(c) Reproduction numbersR0 andRp
0

To determine the reproduction numbers for our models, we start with the usual interpretation,
which specifies R0 as the number of secondary infections generated by a ‘typical’ infected
individual introduced into a fully susceptible population during its infectious period. In [7], the
reproduction numbers are precisely described in both cases: in the context of a mean-field model,
we use the basic reproduction number R0, which is the expected lifetime of an I node multiplied by
the number of newly generated I nodes per unit time. On the other hand, the pairwise reproduction
number Rp

0 is the expected lifetime of an S − I link multiplied by the number of newly generated
S − I links per unit time. These definitions above give

R0 = τ [SI]0E(I), (3.6)

where E(I) denotes the expected value of the random variable I defined by the infectious period
of an infected node, and

Rp
0 = τ [SSI]0E(Z) = τ [SSI]0

(1 − L[ f ](τ ))
τ

, (3.7)

where E(Z) denotes the expected value of the random variable Z, defined by the lifetime of an
S − I link, and L[ f ](τ ) denotes the Laplace transform of f , the density of the recovery process at
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τ . Applying the mean-field closure assumption (2.7) for (3.7), we get

R0 = τ
n
N

S0E(I), (3.8)

and using the pairwise closure approximation (2.4) and first integral (3.1) in (3.7), we find

Rp
0 = n − 1

N
[S]0(1 − L[ f ](τ )). (3.9)

We omit the detailed calculations here [7]. Note that while in compartmental models R0 can be
interpreted as the growth factor of subsequent generations of infected individuals in the initial
phase of the epidemic, Rp

0 in the pairwise model can intuitively be understood as the growth
factor of subsequent generations of infected links. The well-known form of the basic reproduction
number for stochastic epidemics on networks is [32]

Rs
0 = T

(
〈k2〉 − 〈k〉

〈k〉

)
, (3.10)

where T is the average transmissibility, and 〈k〉 and 〈k2〉 are the first and second moment of the
network’s degree distribution, respectively. In our case 〈k〉 = n, 〈k2〉 = n2 and T = 1 − L[ f ](τ ). The
latter equality can be seen as follows: consider an isolated S − I link, and let E be the exponentially
distributed random variable of the time of infection along this link, with parameter τ . Then the
probability of transmission is the same as the probability that infection occurs before recovery,
that is

T = P(E < I) =
∫∞

0
FE (y)f (y) dy =

∫∞

0
(1 − e−τy)f (y) dy = 1 − L[ f ](τ ). (3.11)

Hence,

Rp
0 = n − 1

N
[S]0(1 − L[ f ](τ )) =︸︷︷︸

[S]0→N

(1 − L[ f ](τ ))

(
n2 − n

n

)
=Rs

0, (3.12)

and thus the two approaches are equivalent. The intuitive derivation for Rp
0 follows from

considering the rate at which new S − I links are created. From (2.6d), and focusing on the
single positive term on the right-hand side, it follows that S − I links are created at rate
(τ (n − 1)/n)([SS]/[S]), which at time t = 0 and with a vanishingly small initial number of infected
nodes reduces to τ (n − 1). Now, multiplying this by the average lifetime of an S − I link, which is
E(Z) = 1 − L[ f ](τ )/τ , gives the desired threshold value in the limit of [S] → N at t = 0.

(d) Final size relation
In this part, we derive final size relations that allow us to calculate the total number of infected
nodes during an epidemic outbreak on the network. We use the notation s∞ = [S]∞/[S]0, where
[S]∞ = limt→∞[S](t) and 1 − s∞ is called the attack rate (the fraction of infected nodes).

Theorem 3.3. The final size relation associated with the mean-field model (2.8) is

ln(s∞) =R0(s∞ − 1), (3.13)

where the basic reproduction number R0 is defined in (3.8).

Proof. From (2.8a), we obtain

S∞ − S0 = −τ n
N

∫∞

0
S(u)I(u) du (3.14)

and

ln
(

S∞
S0

)
= −τ n

N

∫∞

0
I(u) du. (3.15)
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Substituting (3.5) into (3.15), we get

ln
(

S∞
S0

)
= −τ n

N

∫∞

0

∫u

0
τ

n
N

S(u − a)I(u − a)ξ (a) da du

− τ
n
N

∫∞

0

∫∞

u
ϕ(a − u)

ξ (a)
ξ (a − u)

da du.

Neglecting the small number of initial infecteds (ϕ(a) ≈ 0), we obtain

ln
(

S∞
S0

)
= −

(
τ

n
N

)2 ∫∞

0

∫u

0
S(u − a)I(u − a)ξ (a) da du. (3.16)

After some algebraic manipulation (for details, see appendix Ab), we obtain

ln
(

S(∞)
S(0)

)
= τ

n
N

E(I)(S(∞) − S(0)), (3.17)

where I denotes the infectious period of an infected node. Therefore, we found (3.13). �

We note that in [33] a similar calculation has been performed to derive the final size relation
for an age-of-infection model. In the following, we derive our main mathematical result that is
the final size relation for the pairwise system (2.6).

Theorem 3.4. The final size relation associated with the pairwise model (2.6) is

s1/n
∞ − 1

1/(n − 1)
=Rp

0 (s(n−1)/n
∞ − 1), (3.18)

where the pairwise reproduction number Rp
0 is defined in (3.9).

Proof. The second equation of the two-dimensional system (3.2) has the general form

x′(t) = α(t) − β(t)x(t),

where

α(c) = τκ[S](n−2)/n(c)[SI](c)

−
∫ c

0
τκ[S](n−2)/n(c − a)[SI](c − a)f (a) e− ∫ c

c−a τ ((n−1)/n)([SI](s)/[S](s))+τ ds da

−
∫∞

c

n
N

[S]0ϕ(a − c)
f (a)

ξ (a − c)
e− ∫ c

0 τ ((n−1)/n)([SI](s)/[S](s))+τ ds da,

β(w) = τ + τ
n − 1

n
[SI](w)
[S](w)

,

x(t) = [SI](t),

and has the solution

x(u) = e− ∫u
0 β(w) dwx(0) +

∫u

0
e− ∫u

c β(w) dwα(c) dc. (3.19)

Using (2.1a), simple calculations give the relations

e− ∫u
0 τ+τ ((n−1)/n)([SI](s)/[S](s)) ds = e−τu [S](n−1)/n(u)

[S](n−1)/n(0)
,

e− ∫u
c τ+τ ((n−1)/n)([SI](s)/[S](s)) ds = e−τ (u−c) [S](n−1)/n(u)

[S](n−1)/n(c)
.
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Using these relations, from (3.19) we get

[SI](u) = [SI](0)
[S](n−1)/n(0)

e−τu[S](n−1)/n(u) +
∫u

0
τκ[S]−1/n(c)[SI](c) eτc e−τu[S](n−1)/n(u) dc

−
∫u

0

∫ c

0
τκ[S]−1/n(c − a)[SI](c − a)f (a) e−τa eτc e−τu[S](n−1)/n(u) da dc

−
∫u

0

∫∞

c

n
N

[S]1/n
0 ϕ(a − c)

f (a)
ξ (a − c)

e−τu[S](n−1)/n(u) da dc.

Then, substituting this formula into the first equation of (3.2), we find an equation in general form

[S]′(t) = −τA(t)[S](n−1)/n(t), (3.20)

where

A(u) = [SI](0)
[S](n−1)/n(0)

e−τu +
∫u

0
τκ[S]−1/n(c)[SI](c) eτc e−τu dc

−
∫u

0

∫ c

0
τκ[S]−1/n(c − a)[SI](c − a)f (a) e−τa eτc e−τu da dc

−
∫u

0

∫∞

c

n
N

[S]1/n
0 ϕ(a − c)

f (a)
ξ (a − c)

e−τu da dc. (3.21)

Solving this scalar equation, we have

[S]1/n(t) = [S]1/n
0 − τ

n

∫ t

0
A(u) du.

For the final size relation, we consider the following equation:

[S]1/n
∞ = [S]1/n

0 − τ

n

∫∞

0
A(u) du. (3.22)

Using the linearity of integration, we have to calculate the following four integrals on the right-
hand side:

I1 =
∫∞

0

[SI](0)
[S](n−1)/n(0)

e−τu du,

I2 =
∫∞

0

∫u

0
τκ[S]−1/n(c)[SI](c) eτc e−τu dc du,

I3 =
∫∞

0

∫u

0

∫ c

0
τκ[S]−1/n(c − a)[SI](c − a)f (a) e−τa eτc e−τu da dc du,

I4 =
∫∞

0

∫u

0

∫∞

c

n
N

[S]1/n
0 ϕ(a − c)

f (a)
ξ (a − c)

e−τu da dc du.

After lengthy calculations (see appendix Ac), we arrive at the relation

[S]1/n
∞ = [S]1/n

0 + κ
1

n − 1

(
1 −

∫∞

0
f (a) e−τa da

)
([S](n−1)/n

∞ − [S](n−1)/n
0 ). (3.23)

After some algebraic manipulation and substituting back the formula of κ , we have

s1/n
∞ − 1

1/(n − 1)
= n − 1

N
(1 − L[ f ](τ ))[S]0(s(n−1)/n

∞ − 1), (3.24)

where L[ f ](τ ) denotes the Laplace transform of f , the PDF of recovery time at τ . �

Note that, for n → ∞, the relation (3.18) takes the form ln(s∞) =Rp
0 (s∞ − 1), which is exactly

the classical form of final size relations. Furthermore, simple algebraic manipulations show that
our final size relation (3.24) agrees with that derived in [34].
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4. Special cases
In this section, we investigate some common choices for the recovery time. As we expect, if
I ∼ exp(γ ) (i.e. the infectious period I is exponentially distributed), we get back the classical
Markovian models. In the case of fixed recovery time, the models reduce to the systems studied
in detail in [7]. We can also recover the multistage infection model of [35] with gamma-distributed
recovery time. Finally, we consider I ∼ Uniform(A, B) and write down the associated equations in
a compact form. In this section, we assume that the initial infecteds are ‘newborn’, i.e. the initial
distribution of infected nodes ϕ(a) = [I]0δ(a), where δ(a) is the Dirac delta function. Then,∫∞

t
ϕ(a − t)

f (a)
ξ (a − t)

da = [I]0f (t) (4.1)

and ∫∞

t

n
N

[S]0ϕ(a − t) e− ∫ t
0 τ ((n−1)/n)([SI](s)/[S](s))+τ ds f (a)

ξ (a − t)
da

= n
N

[S]0 e− ∫ t
0 τ ((n−1)/n)([SI](s)/[S](s))+τ dsf (t). (4.2)

(a) Exponential distribution with parameter γ
The most widely used distribution in disease modelling is the exponential distribution. Both
the stochastic and deterministic approaches exploit the memorylessness property to build
tractable models. The resulting deterministic systems are ordinary differential equations, which
are favoured due to their simpler structure and numerical solvability. In the exponential case,
ξ (t) = e−γ t and f (t) = γ e−γ t. Using the assumption ϕ(a) = [I]0δ(a), (3.3) and f (t) = γ ξ (t), from (2.6c)
we obtain

˙[I](t) = τ [SI](t) − γ [I](t),

which gives the classical Markovian-type pairwise equation for [I](t). With similar arguments,
from (2.6d) we obtain

˙[SI](t) = τ
n − 1

n
[SS](t)[SI](t)

[S](t)
− τ

n − 1
n

[SI](t)
[S](t)

[SI](t) − τ [SI](t) − γ [SI](t).

For the mean-field model (2.8), the same calculation gives the classical Markovian mean-field
equation for İ(t):

˙[I](t) = τS(t)I(t) − γ I(t).

(b) Fixed recovery timeσ
In several models, it is a reasonable assumption for the infectious period to have a fixed, constant
duration, e.g. for measles [36]. In the case of fixed recovery time σ , we have

ξ (t) =
{

1 if 0 ≤ t<σ ,

0 if t ≥ σ ,

and
f (t) = δ(t − σ ),

where δ(t) denotes the Dirac delta function. Applying the fundamental property of δ(t), from (2.6c)
and ϕ(a) = [I]0δ(a) we have

˙[I](t) = τ [SI](t) −
{

0 if 0 ≤ t<σ ,

τ [SI](t − σ ) if t ≥ σ ,

and from (2.6d), if 0 ≤ t<σ , we obtain

˙[SI](t) = τ
n − 1

n
[SS](t)[SI](t)

[S](t)
− τ

n − 1
n

[SI](t)
[S](t)

[SI](t) − τ [SI](t).
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If t>σ , we get

˙[SI](t) = τ
n − 1

n
[SS](t)[SI](t)

[S](t)
− τ

n − 1
n

[SI](t)
[S](t)

[SI](t) − τ [SI](t)

− τ
n − 1

n
[SS](t − σ )[SI](t − σ )

[S](t − σ )
e− ∫ t

t−σ τ ((n−1)/n)([SI](s)/[S](s))+τ ds.

which is exactly the same system that was studied in detail in [7]. The mean-field model for fixed
recovery time [7] can also be derived from (2.8b) using the same arguments.

(c) Gamma distribution with shape K ∈ Z
+ and rate Kγ

The case of gamma-distributed recovery time was studied in [35].
Using pairwise approximation with a standard closure, the authors have been able to

analytically derive a number of important characteristics of disease dynamics. These included
the final size of an epidemic and the epidemic threshold. Their results have shown that a higher
number of disease stages, but with the same average duration of the infectious period, results in
faster epidemic outbreaks with a higher peak prevalence and a larger final size of the epidemic.
The pairwise model in [35] has the following equations for nodes:

˙[S] = −τ
K∑

i=1

[SIi],

˙[I1] = τ

K∑
i=1

[SIi] − Kγ [I1]

and ˙[Ij] = Kγ [Ij−1] − Kγ [Ij], j = 2, 3, . . . , K,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)

where Ii, i = 1, 2, . . . , K are the infectious stages, where nodes spend an exponentially distributed
time with parameter Kγ . The distribution of the total infectious period is the sum of K exponential
distributions with parameter Kγ , which gives the gamma distribution with shape K and rate Kγ
(thus the expected infectious period is K × 1/Kγ = 1/γ ). Clearly, [I](t) =∑K

j=1[Ii](t) and [SI](t) =∑K
i=1[SIi](t), and the sum of equations for infectious stages gives

˙[I](t) = τ [SI](t) − Kγ [IK](t).

On the other hand, using (4.1), the PDF and survival function of gamma distribution

f (a) = (Kγ )K

(K − 1)!
aK−1 e−Kγ a

and ξ (a) = e−Kγ a
K−1∑
k=0

(Kγ )k

k!
ak,

and inserting into (2.6c) and (3.3), we have

˙[I](t) = τ [SI](t) − Kγ

(∫ t

0
τ [SI](t − a)

(Kγ )K−1

(K − 1)!
aK−1 e−Kγ a da − [I]0

(Kγ )K−1

(K − 1)!
tK−1 e−Kγ t

)
(4.4)

and

[I](t) =
K−1∑
k=0

(∫ t

0
τ [SI](t − a)

(Kγ )k

k!
ak e−Kγ a da − [I]0

(Kγ )k

k!
tk e−Kγ t

)
. (4.5)

These equations suggest the relations

[Ij](t) =
∫ t

0
τ [SI](t − a)

(Kγ )j−1

( j − 1)!
aj−1 e−Kγ a da + [I]0

(Kγ )j−1

( j − 1)!
tj−1 e−Kγ t, j = 1, 2, . . . , K. (4.6)
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To show this, we consider the equations for infectious stages in (4.3) as first-order, linear
differential equation with variation of constants formulae:

[I1](t) = [I1](0) e−Kγ t +
∫ t

0
e−Kγ (t−s)τ [SI](s) ds (4.7)

and

[Ij](t) = [Ij](0) e−Kγ t +
∫ t

0
e−Kγ (t−s)Kγ [Ij−1](s) ds, j = 2, 3, . . . , K. (4.8)

If all infecteds are newborn, we have [I1](0) = [I]0 and [I2](0) = [I3](0) = · · · = [IK](0) = 0.
Proceeding by induction yields that (4.6) satisfies (4.7) for j = 1 and (4.8) for j = 2, 3, . . . , K (for
details, see appendix Ad). It is analogous to derive the equations for [SIj](t).

(d) Uniform distribution on interval [A, B]
The uniform distribution is one of the most natural probability distributions and preferred in
agent-based modelling [37], and was applied also for avian influenza [38]. Let the recovery time
be distributed uniformly on interval [A, B] (we assume 0<A< B), i.e.

f (t) =
⎧⎨
⎩

1
B − A

if t ∈ (A, B),

0 otherwise

and

ξ (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if t ≤ A,
B − t
B − A

if t ∈ (A, B),

0 if t ≥ B.

We have to study the three cases t<A, A< t< B and t> B. Writing the equation for ˙[I](t), we have
(after changing the variable)

˙[I](t = τ [SI](t) −

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if t<A,∫ t−A

0

τ [SI](u)
B − A

du + [I]0

B − A
if t ∈ [A, B],

∫ t−A

t−B

τ [SI](u)
B − A

du if t> B.

With a more compact notation,

˙[I](t) = τ [SI](t) −
∫max(0,t−A)

max(0,t−B)

τ [SI](u)
B − A

du − [I]0

B − A
χ[A,B](t),

where χ[A,B](t) is the indicator function of interval [A, B]. The same argument gives

˙[SI](t) = τ
n − 1

n
[SS](t)[SI](t)

[S](t)
− τ

n − 1
n

[SI](t)
[S](t)

[SI](t) − τ [SI](t)

−
∫max(0,t−A)

max(0,t−B)

τ

B − A
n − 1

n
[SS](u)[SI](u)

[S](u)
e− ∫ t

u τ ((n−1)n)([SI](s)/[S](s))+τ ds du

− n
N

[S]0 e− ∫ t
0 τ ((n−1)/n)([SI](s)/[S](s))+τ ds [I]0

B − A
χ[A,B](t).

For t> B, the model becomes a system of differential equations with distributed delays.

5. Discussion
While the main focus of this paper is on the derivation and rigorous analysis of the model, we
have performed a number of numerical tests where the results of explicit stochastic network
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simulations on networks are compared to the output from the generalized pairwise model.
In figure 1a, regular random networks were considered and the average of 100 simulations
is compared to the numerical solutions of mean-field (2.7) and pairwise (2.6) models. Several
observations can be made: (i) the agreement of the simulation results with the numerical solution
of the pairwise model is excellent and (ii) the mean-field model, which largely ignores the
network structure, performs poorly. We note that distributions with the same mean but smaller
variance lead to epidemics that grow faster initially (see also [15,39]). We emphasize that a key
strength of our model is to approximate the whole time course of the epidemic. Furthermore,
in figure 1b,c we test if the analytical threshold (3.9) and final epidemic size formula (3.24) are
accurate when compared to simulations. These clearly demonstrate that our analytical results
agree with simulations, and this gives us great confidence that the generalized pairwise model
can and will be used in different contexts as dictated by empirical or other theoretical studies.

The generalized model is more challenging to analyse due to its complexity, but it largely relies
on tools from the theory of integro-differential equations. Further extensions of the model could
focus on relaxing the assumption of regular networks and extend the model to networks with
heterogeneous degree distribution (e.g. [40,41]) or to consider modelling the situation where both
the infectious and recovery processes are non-Markovian.

Our pairwise model is developed for regular networks where each node has the same number
of links. It is well known that such ODE-based models will also provide good approximations
if epidemics are considered on Erdős–Rényi networks with the same mean, due to the efficient
mixing within the network. It will, however, fail to provide good agreement for networks
with highly heterogeneous degrees even if the mean is the same. Our proposed model, as
most pairwise models and models based on the message-passing approach and edge-based
compartmental models, are primarily designed for Configuration Model networks, and thus
with clustering going to zero in the limit of large networks. Extending any of these to clustered
networks is still a major challenge and has so far been only done when clustering is introduced
in a very specific way, e.g. non-overlapping triangles or other clustering inducing subgraphs or
motifs [42,43]. Pairwise models for Markovian epidemics and for infectious periods of a fixed
length can be extended to heterogeneous networks, at the cost of a much larger number of
equations. Thus, our general model may require us to start with a system of PDEs with many
equations to capture degree heterogeneity. We foresee that while this may be possible, it would
probably involve highly complex and technical calculations. Potentially, a more natural extension
of our model would be to relax the assumption of Markovian transmission, and this is indeed a
more promising future research direction. We note that Wilkinson et al. [44] have independently
derived a similar pairwise model by starting from the message-passing system [18], assuming
that the initial distribution of infected nodes is ξ (a) = [I]0δ(a). However, our model can handle
arbitrary initial conditions.

Several different approaches exist to model non-Markovian epidemics on networks. These
are largely guided by the choice of model and variables to be tracked. Notable examples
include the message-passing approach, often referred to as the cavity model [18,19], the edge-
based compartmental model [45], which has recently been generalized to arbitrary infection and
recovery processes, and the percolation-based approach [1,16,17,46]. While the latter only offers
information about the final state of the epidemic, the former two describes the temporal evolution
of the epidemic. Generalizations of the pairwise model to gamma-distributed infectious periods
have also been proposed and this has been developed for both homogeneous and heterogeneous
networks [35,40]. As for Markovian epidemics, we expect that many of the models mentioned
above are complementary and offer different perspectives on the time evolution or final state
of the epidemic. We expect that many of the non-Markovian models will in fact be equivalent
under appropriately chosen initial conditions and appropriate averaging. With the model we
proposed in this paper, we wanted to emphasize opportunities to frame models of epidemics on
networks in more rigorous mathematical terms and use existing mathematical theory to enhance
our understanding of stochastic processes on networks and their average behaviour as captured
by mean-field models.
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Appendix A

(a) Calculations for model derivation
Repeating equation (2.1a) and applying the moment-closure formula (2.4) to equation (2.1c), we
have

˙[S](t) = −τ [SI](t)

and ˙[SS](t) = −2τ
n − 1

n
[SS](t)[SI](t)

[S](t)
.

Using [I](t) = ∫∞
0 i(t, a) da, from equation (2.1b) we obtain

˙[I](t) =
∫∞

0

∂

∂t
i(t, b) db =

∫∞

0

(
−h(b)i(t, b) − ∂

∂b
i(t, b)

)
db

= −
∫∞

0
h(b)i(t, b) db − (i(t, ∞) − i(t, 0)) = −

∫∞

0
h(b)i(t, b) db − i(t, ∞) + i(t, 0). (A 1)

Solving the first-order linear PDE (2.1b) along characteristic lines, we obtain

i(t, a) =
{

i(t − a, 0) e− ∫ a
0 h(b) db, if t> a;

i(0, a − t) e− ∫ a
a−t h(b) db, if t ≤ a.

Plugging (2.2a) and (2.3a) into the solution above, we have

i(t, a) =
{
τ [SI](t − a) e− ∫ a

0 h(b) db, if t> a;

ϕ(a − t) e− ∫ a
a−t h(b) db, if t ≤ a.

(A 2)

Applying this formula for [I](t) = ∫∞
0 i(t, a) da, we find

[I](t) =
∫ t

0
τ [SI](t − a) e− ∫ a

0 h(b) db da +
∫∞

t
ϕ(a − t) e− ∫ a

a−t h(b) db da. (A 3)

Finally, using that along the characteristic lines, i(t, ∞) = i(0, ∞) = ϕ(∞) = 0 from the assumption,
substituting (A 2) and the boundary condition (2.2a) into (A 1), we get

˙[I](t) = τ [SI](t) −
∫ t

0
τ [SI](t − a)h(a) e− ∫ a

0 h(b) db da −
∫∞

t
ϕ(a − t)h(a) e− ∫ a

a−t h(b) db da. (A 4)
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Using the definition and properties of the hazard function, we can deduce the following formulae:

e− ∫ a
0 h(b) db = ξ (a)

ξ (0)
= ξ (a), (A 5a)

e− ∫ a
a−t h(b) db = ξ (a)

ξ (a − t)
, (A 5b)

h(a) e− ∫ a
0 h(b) db = f (a) (A 5c)

and h(a) e− ∫ a
a−t h(b) db = f (a)

ξ (a − t)
. (A 5d)

Applying these formulae to equations (A 3) and (A 4), we have

[I](t) =
∫ t

0
τ [SI](t − a)ξ (a) da +

∫∞

t
ϕ(a − t)

ξ (a)
ξ (a − t)

da (A 6)

and

˙[I](t) = τ [SI](t) −
∫ t

0
τ [SI](t − a)f (a) da −

∫∞

t
ϕ(a − t)

f (a)
ξ (a − t)

da.

To compute the equation for [SI](t), we follow the calculation process above. First, applying (2.5)
to equation (2.1d), we get(

∂

∂t
+ ∂

∂a

)
Si(t, a) = − τ (n − 1)

n
[SI](t)
[S](t)

Si(t, a) − (τ + h(a))Si(t, a). (A 7)

Using [SI](t) = ∫∞
0 Si(t, a) da, from equation (A 7) we find

˙[SI](t) =
∫∞

0

∂

∂t
Si(t, a) da

=
∫∞

0

(
− τ (n − 1)

n
[SI](t)
[S](t)

Si(t, a)
)

da −
∫∞

0
(τ + h(a))Si(t, a) da −

∫∞

0

∂

∂a
Si(t, a) da

= −τ n − 1
n

[SI](t)
[S](t)

[SI](t) − τ [SI](t) −
∫∞

0
h(a)Si(t, a) da − Si(t, ∞) + Si(t, 0). (A 8)

We want to express the variable Si(t, a) as a function of classical network variables. To achieve
this, let us consider the following first-order PDE:(

∂

∂t
+ ∂

∂a

)
x(t, a) = −f (t)x(t, a) − g(a)x(t, a)

with boundary conditions

x(t, 0) = φ(t), x(0, a) =ψ(a).

Solving along the characteristic lines t − a = c, we find that

x(t, a) =
{
φ(t − a) e− ∫ t

t−a f (s) ds e− ∫ a
0 g(b) db, if t> a;

ψ(a − t) e− ∫ t
0 f (s) ds e− ∫ a

a−t g(b) db, if t ≤ a.
(A 9)

In our case, x(t, a) = Si(t, a), f (t) = τ ((n − 1)/n)([SI](t)/[S](t)), g(a) = τ + h(a), φ(t) = τ ((n − 1)/n)
([SS](t)[SI](t)/[S](t)) (from closure approximation (2.5)) and ψ(a) = (n/N)[S]0ϕ(a), hence from
(A 9) we get

Si(t, a) =

⎧⎪⎪⎨
⎪⎪⎩
τ

n − 1
n

[SS](t − a)[SI](t − a)
[S](t − a)

e− ∫ t
t−a τ ((n−1)/n)([SI](s)/[S](s)) ds e− ∫ a

0 τ+h(b) db, if t> a;

n
N

[S]0ϕ(a − t) e− ∫ t
0 τ ((n−1)/n)([SI](s)/[S](s)) ds e− ∫ a

a−t τ+h(b) db, if t ≤ a.

(A 10)
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Again, along the characteristic lines Si(t, ∞) = Si(0, ∞) = χ (∞) = 0. Putting (A 10) into [SI](t) =∫∞
0 Si(t, a) da, we obtain

[SI](t) =
∫ t

0
τ

n − 1
n

[SS](t − a)[SI](t − a)
[S](t − a)

e− ∫ t
t−a τ ((n−1)/n)([SI](s)/[S](s)) ds e− ∫ a

0 τ+h(b) db da

+
∫∞

t

n
N

[S]0ϕ(a − t) e− ∫ t
0 τ ((n−1)/n)([SI](s)/[S](s)) ds e− ∫ a

a−t τ+h(b) db da. (A 11)

If we substitute (A 10) back into equation (A 8), we obtain

˙[SI](t) = τ
n − 1

n
[SS](t)[SI](t)

[S](t)
− τ (n − 1)

n
[SI](t)
[S](t)

[SI](t) − τ [SI](t)

−
∫ t

0
τ

n − 1
n

[SS](t − a)[SI](t − a)
[S](t − a)

e− ∫ t
t−a τ ((n−1)/n)([SI](s)/[S](s)) ds e− ∫ a

0 τ+h(b) dbh(a) da

−
∫∞

t

n
N

[S]0ϕ(a − t) e− ∫ t
0 τ ((n−1)/n)([SI](s)/[S](s)) ds e− ∫ a

a−t τ+h(b) dbh(a) da. (A 12)

Applying the formulae (A 5a–d) in equations (A 11) and (A 12), we have

[SI](t) =
∫ t

0
τ

n − 1
n

[SS](t − a)[SI](t − a)
[S](t − a)

e− ∫ t
t−a τ ((n−1)/n)([SI](s)/[S](s))+τ dsξ (a) da

+
∫∞

t

n
N

[S]0ϕ(a − t) e− ∫ t
0 τ ((n−1)/n)([SI](s)/[S](s))+τ ds ξ (a)

ξ (a − t)
da (A 13)

and

˙[SI](t) = τ
n − 1

n
[SS](t)[SI](t)

[S](t)
− τ

n − 1
n

[SI](t)
[S](t)

[SI](t) − τ [SI](t)

−
∫ t

0
τ

n − 1
n

[SS](t − a)[SI](t − a)
[S](t − a)

e− ∫ t
t−a τ ((n−1)/n)([SI](s)/[S](s))+τ dsf (a) da

−
∫∞

t

n
N

[S]0ϕ(a − t) e− ∫ t
0 τ ((n−1/n)([SI](s)/[S](s))+τ ds f (a)

ξ (a − t)
da.

(b) Calculation for final size relation (3.13)
In this section, we show the steps of going from (3.16) to (3.17):

ln
(

S(∞)
S(0)

)
= −

(
τ

n
N

)2 ∫∞

0

∫u

0
S(u − a)I(u − a)ξ (a) da du

= −
(
τ

n
N

)2 ∫∞

0

∫u

0
S(v)I(v)ξ (u − v) dv du = −

(
τ

n
N

)2 ∫∞

0

∫∞

v

S(v)I(v)ξ (u − v) du dv

= −
(
τ

n
N

)2 ∫∞

0
S(v)I(v)

[∫∞

v

ξ (u − v) du
]

dv= −
(
τ

n
N

)2 ∫∞

0
S(v)I(v)

[∫∞

0
ξ (p) dp

]
dv

= τ
n
N

[∫∞

0
ξ (p) dp

]
(S(∞) − S(0)) = τ

n
N

[∫∞

0

∫∞

p
f (q) dq dp

]
(S(∞) − S(0))

= τ
n
N

[∫∞

0

∫ q

0
f (q) dp dq

]
(S(∞) − S(0)) = τ

n
N

[∫∞

0
qf (q) dq

]
(S(∞) − S(0))

= τ
n
N

E(I)(S(∞) − S(0)).
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(c) Calculation for final size relation (3.18)
We compute the integrals that appear on the right-hand side of equation (3.22). For the first one,
we have

I1 =
∫∞

0

[SI](0)
[S](n−1)/n(0)

e−τu du = [SI](0)
[S](n−1)/n(0)

[
e−τu

−τ
]∞

0
= [SI](0)

[S](n−1)/n(0)
1
τ

.

After some algebraic manipulation, we obtain the following expression for the second integral I2:

I2 =
∫∞

0

∫u

0
τκ[S]−1/n(c)[SI](c) eτc e−τu dc du =

∫∞

0

∫∞

c
τκ[S]−1/n(c)[SI](c) eτc e−τu du dc

=
∫∞

0
τκ[S]−1/n(c)[SI](c) eτc

[
e−τu

−τ
]∞

c
dc =

∫∞

0
τκ[S]−1/n(c)[SI](c) eτc e−τc

τ
dc

= − 1
τ
κ

∫∞

0
[S]−

1
n (c) ˙[S](c) dc = − 1

τ
κ

n
n − 1

(
[S](n−1)/n

∞ − [S](n−1)/n
0

)
.

The most challenging one is the third integral I3:

I3 =
∫∞

0

∫u

0

∫ c

0
τκ[S]−1/n(c − a)[SI](c − a)f (a) e−τa eτc e−τu da dc du

=
∫∞

0

∫∞

c

∫ c

0
τκ[S]−1/n(c − a)[SI](c − a)f (a) e−τa eτc e−τu da du dc

=
∫∞

0

∫ c

0

∫∞

c
τκ[S]−1/n(c − a)[SI](c − a)f (a) e−τa eτc e−τu du da dc

=
∫∞

0

∫ c

0
τκ[S]−1/n(c − a)[SI](c − a)f (a) e−τa eτc

[
e−τu

−τ
]∞

c
da dc

= 1
τ

∫∞

0

∫ c

0
τκ[S]−1/n(c − a)[SI](c − a)f (a) e−τa da dc

= − 1
τ
κ

∫∞

0
f (a) e−τa

[
[S](n−1)/n(c − a)

(n − 1)/n

]∞

a

da

= − 1
τ
κ

n
n − 1

([S](n−1)/n
∞ − [S](n−1)/n

0 )
∫∞

0
f (a) e−τa da.

For the fourth integral, we get

I4 =
∫∞

0

∫u

0

∫∞

c

n
N

[S]1/n
0 ϕ(a − c)

f (a)
ξ (a − c)

e−τu da dc du

=
∫∞

0

∫∞

c

∫∞

c

n
N

[S]1/n
0 ϕ(a − c)

f (a)
ξ (a − c)

e−τu da du dc

=
∫∞

0

∫∞

c

∫∞

c

n
N

[S]1/n
0 ϕ(a − c)

f (a)
ξ (a − c)

e−τu du da dc

=
∫∞

0

∫∞

c

n
N

[S]1/n
0 ϕ(a − c)

f (a)
ξ (a − c)

[
e−τu

−τ
]∞

c
da dc

= 1
τ

∫∞

0

∫∞

c

n
N

[S]1/n
0 ϕ(a − c)

f (a)
ξ (a − c)

e−τc da dc.

Having a small amount of initial infecteds (i.e. [I](0) = ∫∞
0 ϕ(a) da � 1), the integrals I1 and I4 are

approximately zero.
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(d) Calculations for proof of equivalence in the case of gamma distribution
Here, we obtain the formula (4.6) by induction from variation of constants formulae (4.7) and
(4.8). Letting j = 1 in (4.6), we have

[I1](t) =
∫ t

0
τ [SI](t − a) e−Kγ a da + [I]0 e−Kγ t,

which comes directly from (4.7). Assuming that (4.6) holds for 1< j, we prove that it holds for
j + 1. Indeed, we can do the following elaboration:

[Ij+1](t) = [Ij+1](0) e−Kγ t +
∫ t

0
e−Kγ (t−s)Kγ [Ij](s) ds

=
∫ t

0
e−Kγ (t−s)Kγ

(∫ s

0
τ [SI](s − a)

(Kγ )j−1

( j − 1)!
aj−1 e−Kγ a da + [I]0

(Kγ )j−1

( j − 1)!
sj−1 e−Kγ s

)
ds

=
∫ t

0

(Kγ )j

( j − 1)!
e−Kγ (t−s)

(∫ s

0
τ [SI](s − a)aj−1 e−Kγ a da ds

)
+ [I]0

(Kγ )j

( j − 1)!
e−Kγ t

∫ t

0
sj−1 ds

=
∫ t

0

(Kγ )j

( j − 1)!
e−Kγ (t−s)

(∫ s

0
τ [SI](u)(s − u)j−1 e−Kγ (s−u) du

)
ds + [I]0

(Kγ )j

j!
tj e−Kγ t

=
∫ t

0

(Kγ )j

( j − 1)!
e−Kγ (t−u)τ [SI](u)

(∫ t

u
(s − u)j−1 ds

)
du + [I]0

(Kγ )j

j!
tj e−Kγ t

=
∫ t

0
τ [SI](u)

(Kγ )j

j!
(t − u)j e−Kγ (t−u) du + [I]0

(Kγ )j

j!
tj e−Kγ t

=
∫ t

0
τ [SI](t − a)

(Kγ )j

j!
aj e−Kγ a da + [I]0

(Kγ )j

j!
tj e−Kγ t.

(e) Implementation of numerical simulations
As a validation of our models, we implemented an event-based stochastic algorithm for
simulating non-Markovian SIR process with arbitrary recovery time. In the code, the waiting
times for possible events are generated from appropriate distributions. After selecting the smallest
waiting time, the associated event (infection or recovery) happens, and according to the type of
event, the necessary updates are executed.

For the numerical solution of integro-differential equations (2.6) and (2.7), we developed a
numerical scheme based on collocation method. The numerical methods in [47] were adapted to
the reduced, but highly nonlinear pairwise system, having the following general form:

x′(t) = f (x(t), y(t))

and y′(t) = g(x(t), y(t)) −
∫ t

0
F(t − a, x(a), y(a)) e− ∫ t

a G(x(s),y(s)) ds da

− H
(

t,
∫ t

0
G(x(s), y(s)) ds

)
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A 14)

A collocation solution uh to a functional equation on an interval I is an element from some finite-
dimensional function space (the collocation space) which satisfies the equation on an appropriate
finite subset of points in I (the set of collocation points), whose cardinality essentially matches the
dimension of the collocation space. For integro-differential equations, the collocation equations
are not yet in a form amenable to numerical computation, due to the presence of the memory term
given by the integral operator, thus another discretization step, based on appropriate quadrature
approximations, is necessary to obtain the fully discretized collocation scheme. The presence of
the double integral in (A 14) makes our scheme different from standard methods.
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