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ABSTRACT
The emergence and spread of drug-resistance during treatment of many infectious
diseases continue to degrade our ability to control and mitigate infection outcomes
using therapeutic measures. While the coverage and efficacy of treatment remain key
factors in the population dynamics of resistance, the timing for the start of the treatment
in infectious individuals can significantly influence such dynamics. We developed a
between-host disease transmission model to investigate the short-term (epidemic) and
long-term (endemic) states of infections caused by two competing pathogen subtypes,
namely the wild-type and resistant-type, when the probability of developing resistance
is a function of delay in start of the treatment. We characterize the behaviour of disease
equilibria and obtain a condition to minimize the fraction of population infectious at
the endemic state in terms of probability of developing resistance and its transmission
fitness. For the short-term epidemic dynamics, we illustrate that depending on the
likelihood of resistance development at the time of treatment initiation, the same
epidemic size may be achieved with different delays in start of the treatment, whichmay
correspond to significantly different treatment coverages. Our results demonstrate that
early initiation of treatment may not necessarily be the optimal strategy for curtailing
the incidence of resistance or the overall disease burden. The risk of developing drug-
resistance in-host remains an important factor in the management of resistance in the
population.

Subjects Mathematical Biology, Epidemiology, Infectious Diseases, Public Health
Keywords Drug-resistance, Delay treatment, Epidemic and endemic states, Reproduction
numbers

INTRODUCTION
The evolution of drug-resistance in many infectious diseases has proven to be one of the
most challenging problems of human health in modern medicine. While a number
of evolutionary mechanisms are generic for the rise of resistance, there are several
processes which are specific to the drugs and treatment regimens (Zur Wiesch et al.,
2011). These processes are often characterized by the competition between the resistant
and wild pathogen subtypes. If no resistant-type exists before the start of treatment, the
likelihood of an emergent resistant mutant out-competing the wild-type and dominating
the pathogen population during treatment depends greatly on its fitness advantage over
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the wild-type (Lipsitch, 2001; Zur Wiesch et al., 2011). For a sufficiently low replicative
fitness, the resistant-type may still be out-competed by the wild-type, even under a
strong selection pressure of drugs (Ferguson et al., 2003; Moghadas, 2008). However, if
the difference between the intrinsic fitness of the two pathogen subtypes is sufficiently
small, then the selection pressure of drugs can overturn the competitive dynamics
in favour of the resistant-type (Lipsitch, 2001; Ferguson et al., 2003; Moghadas, 2008;
Zur Wiesch et al., 2011).

Within the fitness landscape of the pathogen subtypes, a key factor determining the
competitive dynamics between the resistant-type and wild-type is the probability of
developing resistance, which may be affected by the time for start of the treatment. For
example, in influenza infection and in the absence of resistant mutants, early treatment
inhibits viral replication, which will therefore minimize the likelihood of evolving resistant
mutants. However, when resistant mutants are present, early treatment can provide an
opportunity for the outgrowth of such mutants under the pressure of drugs (Alexander et
al., 2007; Handel, Longini Jr & Antia, 2007). In this context, a major barrier to this growth
is the generation of within-host adaptive immune responses. It has been shown that
drug resistance is less likely to develop if the immune responses are maintained above a
certain threshold during treatment (Lloyd & Wodarz, 2006;Wodarz, 2001;Wodarz & Lloyd,
2004), suggesting that a delay in start of the treatment may be beneficial in preventing
resistance emergence given the timelines for developing immune responses (Wodarz,
2001). Acquisition of resistance during treatment is thus affected not just by the fitness of
resistant-type, but also by the probability of resistant mutants occurring, which may be
viewed as a function of delay in the initiation of treatment.

Previous studies illustrate how treatment coverage and efficacy influence the
population dynamics of drug-resistance spread, while considering the fitness of
resistant-type but leaving out the possibility of time-dependent probability of resistance
development (Alexander et al., 2007; Huijben et al., 2013; Lipsitch et al., 2007; Legros &
Bonhoeffer, 2016; Moghadas, 2008; Moghadas et al., 2008; Xiao, Brauer & Moghadas, 2016).
Here we consider this probability as a function of delay in start of the treatment and
discuss both short-term (epidemic) and long-term (endemic) states of the resistant-type
and with-type infections. For the endemic state, we characterize the behaviour of disease
equilibria and obtain a condition to minimize the fraction of population infectious at
equilibrium with a delay in start of the treatment within the infectious period. For the
epidemic state, we show that in contrast with previous work on the short-term disease
dynamics (Lipsitch et al., 2007; Moghadas, 2008; Moghadas et al., 2008; Xiao, Brauer &
Moghadas, 2016), the minimum epidemic size may be achieved with different treatment
coverages (i.e., the fraction of infected population treated) depending on the functional
form of the probability of resistance development.

METHODS
The model
We consider a population that is fully susceptible to the invading pathogen. The model
includes two pathogen subtypes, namely, the wild-type and resistant-type. We assume
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that the resistant-type may prevail during the treatment of individuals infectious with the
wild-type. The probability of developing resistance is assumed to be a function of delay
in start of the treatment, and we assume that this delay is the same for everyone in the
population. To describe the transmission dynamics between susceptible and infectious
individuals, we use a mass-action incidence in a homogeneously mixing population, and
assume that the resistant-type emerges with a relative transmission fitness (δ) compared to
that of the wild-type, where δ= 1 describes the absence of fitness advantage or disadvantage
for direct transmission of resistance. Formany diseases (e.g., influenza), resistance generally
emerges with a negative fitness advantage (δ < 1); however, fitness costs of resistance can be
ameliorated with compensatory mutations (Handel, Regoes & Antia, 2006; Rimmelzwaan
et al., 2005). There are also diseases (e.g., tuberculosis) for which resistance may initially
emerge with a positive fitness advantage (δ > 1) (Borrell & Gagneux, 2009; Casali et al.,
2014). In the model presented here, we consider a delay τ in the treatment initiation during
the infectious period, and denote the delay-dependent probability of developing resistance
by q(τ ).We also assume that the treatment is ineffective against the resistant-type infection.

Denoting the class of susceptible individuals by S, and the classes of individuals infectious
with the wild-type and resistant-type by Iw and Ir , respectively, the dynamics of disease
propagation is governed by the time-dependent differential equations system:

S′(t )=µ−βS(t )[Iw(t )+δIr (t )]−µS(t ),
I ′w(t )=βS(t )Iw(t )−βS(t−τ )Iw(t−τ )e

−(µ+γ )τ
−γ Iw(t )−µIw(t ),

I ′r (t )= δβS(t )Ir (t )+q(τ )βS(t−τ )Iw(t−τ )e
−(µ+γ )τ

−γ Ir (t )−µIr (t ),
T ′(t )= (1−q(τ ))βS(t−τ )Iw(t−τ )e−(µ+γ )τ +γ [Iw(t )+ Ir (t )]−µT (t ).

(1)

where 1/µ is the average lifetime of the host population, and 1/γ is the average infectious
period (assumed to be the same for both wild-type and resistant-type infections). Here, we
omit the disease-induced death rate and assume that the disease has no effect on the average
lifetime of the infectious individuals. A more general case where the average lifetime of
the infectious individuals differs from that of the healthy individuals is considered in the
Supplemental Information.

In this model, we assume that each infectious individual will receive treatment precisely
τ units of time after becoming infected. The term βS(t )Iw(t ) gives the cohort of individuals
who enter the class Iw at any time t . Since the times until recovery and death are
exponentially distributed with means 1/γ and 1/µ, respectively, the probability for
an individual to remain in the Iw class τ units of time after entering the class is e−(µ+γ )τ .
Thus, the transition out of the Iw class by means of treatment at any time t can be described
by the term βS(t−τ )Iw(t−τ )e−(µ+γ )τ , accounting for the cohort of individuals who were
infected by the wild-type pathogen at time t −τ and therefore receive treatment at time
t (i.e., τ units of time after becoming infected). Treated individuals will either develop
resistance with the probability q(τ ) (and move to the Ir class), or become effectively
treated (and move to the T class). Since the treatment is ineffective against resistance, for
simplicity we included treated and untreated individuals infectious with the resistant-type
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Figure 1 Schematic diagram of the transitions betweenmodel compartments.

in the same class Ir (Fig. 1). Lastly, the class T represents all individuals who are recovered
from infection or effectively treated.

A careful bookkeeping of transitions between the compartments allows us to describe
the dynamics by a system of differential equations, presented in (1). As described above, the
system dynamics at any time t is not only determined by the present number of individuals
in each compartment, but it also requires the infection rate of the susceptible individuals
in the past time t − τ to account for those who receive treatment at the present time t .
Therefore, we need to keep track of the history of the S and Iw compartments, which can be
done both analytically and computationally (Smith, 2010). The computational codes for the
system dynamics were developed in Matlab and are provided as additional Supplemental
Information. For the analysis presented here, since re-infection is precluded, we omit the
class (T ) of individuals who are recovered from infection or effectively treated. This model
indicates that with the introduction of a resistant-type infection (either initially or during
treatment), a self-sustaining epidemic of resistant infections can occur through direct
transmission. A more detailed description of the model is provided in the Supplemental
Information.

Equilibria
To characterize the equilibria of the model, we define R0=β/(µ+γ ), and apply the next
generation method to express the effective reproduction number (Reff) as the spectral
radius of the matrix(
R1 0
δR2 R3

)
,

where

R1=R0
(
1−e−(µ+γ )τ

)
, R2= q(τ )R0e−(µ+γ )τ , R3= δR0.
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Figure 2 Parameter space for the existence of model equilibria in terms of the reproduction numbers
and delay in start of the treatment.

With this notation, Reff =max{R1,R3}. Each of these quantities provide important
information on the spread of disease by each pathogen subtype. Specifically, R1 represents
the number of secondary cases of the wild-type infection generated by an infectious case
of the wild-type before developing resistance; δR2 represents the number of secondary
cases of the resistant-type infection generated by an infectious case of the wild-type after
developing resistance; and R3 is the number of secondary cases of the resistant-type
infection generated by an infectious case of the resistant-type. In this formulation, R1

approaches R0 for large τ , and R0 represents the number of secondary cases generated
by a single case of the wild-type infection in the absence of treatment. As illustrated in
Fig. 2, we may characterize the existence of the model equilibria using the thresholds of
persistence. For simplicity, we describe the equilibria by their infection components of the
pathogen subtypes. The infection-free equilibrium E0= (0,0) exists unconditionally. The
resistant-type equilibrium Er = (0, Îr ), at which the wild-type infection is absent, exists only
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if R3> 1. The cotype equilibrium E∗= (I ∗w ,I
∗
r ) exists whenever both conditions R1> 1 and

R1>R3 hold.

Delay-dependent analysis
We focus our analysis on the equilibria when R0> 1 to establish a relationship between the
delay in start of the treatment and the fraction of population infectious at equilibria. As
we will show, this fraction is affected by two key parameters: the probability of developing
resistance, and the relative transmission fitness of the resistant-type compared with that of
the wild-type.

When the resistant-type emerges with a positive fitness advantage (i.e., δ ≥ 1 or
equivalently R3 ≥ R0), Er is the only infection equilibrium of the model, at which the
fraction of population infectious is independent of the delay in start of the treatment,
given by

Îr =
µ

µ+γ

(
1−

1
R3

)
. (2)

If the resistant-type emerges with a negative fitness advantage (i.e., δ < 1 or equivalently
R3 < R0), then there is a critical value τ0 =−log(1− δ)/(µ+γ ) at which R1(τ0)= R3

(Fig. 2). For τ < τ0 (R3>R1> 1), similar to the case of δ≥ 1, Er remains the only infection
equilibrium of the model.

At τ = τ0, the cotype equilibrium E∗ emerges and exists along with the resistant-type
equilibrium Er for τ ≥ τ0. We define the fraction of population infectious at the cotype
equilibrium as a function of τ , and let G(τ )= I ∗w(τ )+ I

∗
r (τ ) represent this function. At E

∗,
the value of G(τ ) depends on the probability of developing resistance during treatment in
addition to the transmission fitness of the resistance-type. Here we obtain the condition to
characterize the behaviour of G(τ ) at τ0. Taking the implicit derivative of G(τ ) at τ0 gives

G′(τ )=
d
dτ

(
I ∗w(τ )+ I

∗

r (τ )
)
=

d
dτ

(
R1−R3

R2

)
I ∗r (τ )+

(
1+

R1−R3

R2

)
d
dτ

I ∗r (τ )

=

(
R′1R2− (R1−R3)R′2

R2
2

)
I ∗r (τ )+

(
1+

R1−R3

R2

)
d
dτ

I ∗r (τ ). (3)

Since R′1(τ0)/R2(τ0)= (µ+γ )/q(τ0), we have

G′(τ0)=
(µ+γ )
q(τ0)

I ∗r (τ0)+
d
dτ

I ∗r (τ0).

Taking the derivative of infection componentwith the resistant-type at τ0 (see Supplemental
Information) gives

G′(τ0)=
µ

q(τ0)

(
1
δ
−1
)(

q(τ0)−1+
1
R3

)
.

This implies that the fraction of population infectious at E∗ decreases if

q(τ0)< 1−
1
R3

(4)
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Figure 3 The fraction of population infectious at the equilibria. Parameters are: R0 = 3,
µ= 1/70 year−1, and γ = 1/5 day−1. (A) δ= 0.4, τ0= 2.55 days, τ1= 3.4 days, q(τ )= 2e−aτ/(1+e−2(τ−1));
with a= 1.5 (solid magenta curve) and a= 0.5 (dashed magenta curve). (B): q(τ )= 0.6 for τ ≤ τ0− 0.06
and q(τ ) = 0.6e−2(τ−τ0+0.06) for τ > τ0 − 0.06, with δ = 0.38 (solid magenta curve), δ = 0.42 (dashed
magenta curve), and δ= 0.46 (dotted magenta curve). Solid and dashed horizontal lines correspond to the
fraction of population infectious at the resistant-type equilibrium.

and increases otherwise. As we show in the Supplemental Information, the condition (4)
also holds true for the more general case with the inclusion of disease-induced death rate
in the Iw and Ir classes. When (4) holds, the start of the treatment with delay τ > τ0 reduces
the fraction of population infectious at the cotype equilibrium. However, for sufficiently
large τ , G(τ ) increases and saturates at

G∞= lim
τ→∞

G(τ )=
µ

µ+γ

(
1−

1
R0

)
.

One can show that G(τ )<G∞ for any τ (see Supplemental Information), indicating that
when δ < 1, treatment reduces the population level of infection at the cotype equilibrium,
regardless of the probability of developing resistance. We also note that G∞ > Îr . This
suggests that, given (4), there is an intermediate interval for delay in start of the treatment
after τ0, in which the magnitude of infection at the cotype equilibrium reduces below that
of the resistant-type equilibrium (Fig. 3A).

When q(τ0)> 1−1/R3, the magnitude of infection at the cotype equilibrium increases
for τ > τ0 and sufficiently close to τ0. The continual increase in the population level
of infection for τ > τ0 depends on the functional form of the probability of resistance
development. As shown in our simulations (Fig. 3B), it is possible to reduce the fraction of
population infectious at the cotype equilibrium below that of the resistant-type for some
intermediate interval of τ that remains at positive distance from τ0. Characterizing q(τ )
and the conditions for the existence of such an intermediate interval is not an easy task,
but we show this possibility in our simulations.

When the demographics are omitted (µ= 0), the model represents an epidemic
scenario without exhibiting any endemic states. In this case, a similar question on the
fraction of population infected during the epidemic may be formulated in terms of the
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Figure 4 Final size of the epidemic and resistant infections as functions of delay in start of the treat-
ment and the transmission fitness of the resistant-type. Parameters are: R0 = 3, γ = 1/5 day−1, and the
functional forms of q(τ ) in (A, D), (B, E) and (C, F) correspond to the red, black, and blue curves illus-
trated in Fig. S2.

epidemic final size (i.e., the total number of infections throughout the epidemic), given by
(see Supplemental Information)

F =
γ
(
1−q(τ )e−γ τ

)
1−e−γ τ

∫
∞

0
Iw(t ) dt+γ

∫
∞

0
Ir (t ) dt .

Previous work on the population dynamics of drug-resistance emergence without
demographics focuses on the fraction of infected population treated to quantify the
epidemic size (Lipsitch et al., 2007; Moghadas, 2008; Moghadas et al., 2008; Xiao, Brauer &
Moghadas, 2016). Summarizing the outcomes, these models demonstrate that there is an
optimal treatment coverage at which the epidemic final size is minimized. The uniqueness
of such optimal coverage has not been proven (Xiao, Brauer & Moghadas, 2016). Our
simulations for the model presented here show that, for a given transmission fitness of
the resistant-type, different delays in start of the treatment may lead to the same epidemic
final size depending on the probability of resistance development at the time of treatment
initiation (Figs. 4 and 5). This effectively means that the minimum epidemic final size may
be achieved with different population levels of treatment.

SIMULATION RESULTS
To illustrate the theoretical results, based on the competitive dynamics between the
wild-type and resistant-type, we simulated the cotype equilibrium by varying the delay
in start of the treatment within the average infectious period of 1/γ = 5 days (Table 1).
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Figure 5 Illustration of the parametric curves (F (τ),e−γτF (τ)) for the epidemic final size and the frac-
tion of infected population treated, with τ as an independent variable. Parameters are: R0 = 2.2, γ =
1/5 day−1, δ = 0.48, and the functional forms of q in black and red curves are given by black and red
curves shown in Fig. S2.

Table 1 Parameter values used for simulations extracted from the published literature (Alexander et
al., 2007;Moghadas, 2008;Moghadas et al., 2008; Xiao, Brauer & Moghadas, 2016).

Parameter Baseline values (range) Comments

µ 1/70 per year assumed
R0 2.2, 3 (>1) the value of R0 used for simulations are within the estimated

ranges for influenza epidemics and pandemics
δ variable [0–1] varied in simulations
γ 0.2 per day the value of γ corresponds to an average infectious period of

five days within the estimated range for influenza infection
τ variable [0–1/γ ] varied in simulations for the length of infectious period
q(τ ) variable the probability of developing resistance during treatment was

determined from the functional form of q(τ )

We assumed a reproduction number R0 = 3 in the absence of treatment, and fixed the
transmission fitness of resistant-type at δ= 0.4, giving 1−1/R3= 0.1667. Figure 3A shows
the curves of equilibria for two different functional forms of q(τ )= 2e−aτ/(1+ e−2(τ−1)),
as illustrated in Fig. S1. The solid curve represents the emergence of the cotype equilibrium
at τ0= 2.55, where a= 1.5 and q(τ0)= 0.0418 satisfies the condition (4), and therefore
the fraction of population infectious at the cotype equilibrium reduces below that of the
resistant-type equilibrium in the interval (τ0,τ1) (Fig. 3A). The dashed curve corresponds
to the case where a= 0.5 and q(τ0)= 0.5348 disobeys the condition (4).
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We further simulated the cotype equilibrium with the probability of developing
resistance that has the functional form

q(τ )=

{
0.6 if τ < τ0−0.06
0.6e−2(τ−τ0+0.06) if τ ≥ τ0−0.06

with τ0 = 2.55. Figure 3B shows the behaviour of the cotype equilibrium for different
values of δ, and represents the possibility of an intermediate interval of τ in which the
magnitude of infection at the cotype equilibrium is reduced below that of the resistant-type
equilibrium (i.e., dotted curve for the case of δ= 0.46).

In the absence of demographics (µ= 0), we simulated the model with parameter values
described in Table 1 to determine the final size of the epidemic with different functional
forms of q(τ ). Figure 4 shows heatmaps for the epidemic final size and the final size of the
resistant infections as functions of delay in start of the treatment and transmission fitness
of resistance. Clearly, the patterns of epidemic final size are affected by q(τ ), which also
determines how early the competitive balance is shifted in favour of the resistant-type. The
functional forms of q(τ ) are shown in Fig. S2. We observed that for a given transmission
fitness δ, it is possible to obtain the same epidemic final size with several delays in start
of the treatment. For R0= 2.2 and δ= 0.48, Fig. 5 illustrates the change in the final size
of epidemic with the fraction of infected population that is treated. The particular forms
of q(τ ) (Fig. S2) indicate that if delay in start of treatment exceeds a certain amount of
time, the same final size may be achieved with different treatment levels (Fig. 5, black and
red curves). For the black curve, the lowest final size is achieved when the treatment starts
at the onset of infectious period, which corresponds to the highest fraction of infected
individuals being treated. However, using a different functional form of q(τ ) (Fig. S2, red
curve), we observed that the lowest final size occurs with τ = 2.75 days delay in start of
the treatment (within the infectious period), which corresponds to a lower treatment level
of the infected population. Importantly, the lowest epidemic final sizes in black and red
curves are approximately the same (represented by black and red boxed), but occurs at
different delays in start of the treatment and at different fractions of infected population
treated.

DISCUSSION
The emergence and spread of drug-resistance have been studied in a number of epidemic
and endemic models of infectious diseases (Lipsitch et al., 2007; Moghadas, 2008; Handel,
Longini Jr & Antia, 2007; Legros & Bonhoeffer, 2016; Mills, Cohen & Colijn, 2013). A key
parameter in these models is the probability of resistance development at the host level,
which has been considered to be independent of the time for start of the treatment.
In this study, we developed a simple two-subtype disease transmission model to study
the population dynamics of drug-resistance spread when the probability of developing
resistance is a function of delay in the treatment initiation. We discussed the transient and
equilibrium states of the resistant and wild pathogen subtypes in short-term (epidemic)
and long-term (endemic) scenarios. In contrast to previous work (D’Agata et al., 2008),
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our results show that an early initiation of treatment may not necessarily be the optimal
strategy for preventing the emergence and spread of drug-resistance (Fig. 5). Our results
also show that, depending on the probability of resistance development at the host level and
the relative transmission fitness of the resistant-type at the population level, the minimum
infection state of the system at equilibrium for both pathogen subtypes may occur with
considerable delay in start of the treatment during the infectious period (Fig. 3). This is
not necessarily consistent with current treatment practices, in which the management of
infection and severe outcomes in patients takes precedence over the possible evolution and
spread of drug-resistance under the selection pressure of drugs.

The probability of developing resistance at the host level is affected by several factors,
including the frequency with which the resistant mutants arise, compensatory mutations
that restore impaired fitness of resistance, the efficacy of drugs in preventing pathogen
growth, the concentration of drugs, and the level and strength of the host immune responses
(White, 2004). The time for start of the treatment can have a substantial influence on
the underlying processes by which these factors are characterized. At the population
level, the interplay between these factors manifests itself in the rise and fall of resistance
(Lipsitch, 2001), making the identification of optimal treatment regimens extremely
difficult to achieve in order to simultaneously minimize the incidence of disease and limit
resistance emergence and spread (Colijn & Cohen, 2015; Day & Read, 2016). As has been
demonstrated in recent studies, it is therefore important to develop multi-scale models
that integrate both within-host infection dynamics and between-host disease transmission
(Legros & Bonhoeffer, 2016). Our theoretical framework and analyses here are not meant to
address the question of optimal treatment strategies in either the host or population level,
but rather to underscore the complexity of drug-resistance dynamics in both the epidemic
and endemic disease states.

In the model presented here, we have made several simplifying assumptions. We
assumed that those who are effectively treated (without developing resistance) do not
contribute to disease transmission following the initiation of treatment. This effect can
be adjusted in the model by tuning other parameters such as the infectious period. We
assumed the same infectious period for both the resistance-type and wild-type infections.
Our distinct theoretical analyses show that similar analytical results can still be achieved,
and we therefore chose this simplification. We also assumed that all infectious individuals
will receive treatment with delay τ after the onset of infectious period, if they have not
recovered until time τ . Realistically, in several diseases (e.g., influenza), a sizeable fraction
of infectious individuals may not receive treatment for a number of reasons such as mild
illness or asymptomatic infection. While the coverage of treatment can be included in the
model as an independent parameter, we note that the effect of reduced treatment coverage
can also be adjusted through a longer infectious period. Our model is based on a single
treatment regimen which is assumed to be ineffective against resistant-type infection. In
some infectious diseases (e.g., influenza, HIV/AIDS, tuberculosis) there are a number of
drugs that may be used sequentially or in combination to prevent or manage resistance in
treated patients. Although we have not consideredmulti-drug treatment, the effect of drugs
on resistant-type infection may be included in the probability of developing resistance in
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our model. While these assumption can be relaxed and the model be extended to consider
the aforementioned factors, we believe this simple structure underscores the importance
of the probability of resistance development with delay in start of the treatment, and
clearly demonstrates the complex dynamics of drug-resistance spread in the population.
Finally, our results echo the take-home message drawn from some recent studies that the
management of drug-resistance requires theoretical frameworks that combine the two
scales of micro and macro dynamics to not only minimize the short-term impact of disease
on the population, but also to address the long-term epidemiological consequences of the
pathogen evolutionary responses under the pressure of drug treatment.
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