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Abstract. We prove the global asymptotic stability of the disease-free and the

endemic equilibrium for general SIR and SIRS models with nonlinear incidence.

Instead of the popular Volterra-type Lyapunov functions, we use the method
of Dulac functions, which allows us to extend the previous global stability

results to a wider class of SIR and SIRS systems, including nonlinear (density-

dependent) removal terms as well. We show that this method is useful in cases
that cannot be covered by Lyapunov functions, such as bistable situations. We

completely describe the global attractor even in the scenario of a backward

bifurcation, when multiple endemic equilibria coexist.

1. Introduction. One of the key questions in the analysis of compartmental mod-
els in epidemiology with demographic turnover is whether the basic reproduction
number R0 completely determines the global dynamics of the system. Typically, in
the case R0 ≤ 1 the global asymptotic stability of the disease-free equilibrium can
be shown relatively easily (provided it is the unique equilibrium). The question is
usually more challenging if R0 > 1. Korobeinikov [7] applied Lyapunov functions
of Volterra type to prove the global asymptotic stability of the endemic equilibrium
for a class of SIR and SIRS models with nonlinear transmission functions. In this
work we use the method of Dulac functions, and show that we can not only recover
the previous global stability results, but generalize to a wider class of systems with
nonlinear incidence and nonlinear removal terms, which cannot be treated by the
usual Lyapunov functions. By means of Dulac functions and dynamical systems
theory, we can completely describe the global attractor of SIR models with multiple
stable equilibria as well. The structure of the paper is the following. In Section 2,
we show how simple Dulac functions and Poincaré–Bendixson type arguments can
be used to prove the global asymptotic stability of the disease-free, resp. endemic
equilibrium for general SIR- and SIRS-type models. Our results can be extended
to models for which global stability has not been proved in the literature, such as
models with density-dependent nonlinear removal terms (Section 3). In Section 4
we study an SIR model describing the dynamics of an infectious disease against
which individuals can acquire resistance that is only temporary and only partially
protective. In [11] the authors identified the basic reproduction number and an
exact condition for the occurrence of a backward bifurcation. In the present paper
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we recall these results and give a complete characterization of the global dynamics
of the system describing the structure of the global attractor in all possible cases,
depending on the reproduction number and the presence of a backward bifurcation.

2. Global stability for SIR and SIRS models with nonlinear incidence.
In this section we show that it is possible to use simple Dulac functions in the
proof of global asymptotic stability for a wide class of SIR- and SIRS-type models
following [7], where Korobeinikov proves global stability via Lyapunov functions.
As in [7], we consider an SIR model where a population of constant size (assumed
to be equal to 1) is divided into three compartments: susceptibles (denoted by S),
infected (I) and recovered (R). Once getting infected, an individual moves from the
class S to the class I, and then to the recovered compartment. It is assumed that
after recovery, individuals obtain permanent immunity. The transmission of the
infection is governed by the incidence rate f(S, I). Using the notations µ for birth
rates of the susceptible and recovered classes, as well as for the death rate of the
susceptible class and δ for the sum of the death rate of the infected compartment
(which we now assume to be equal to the death rate of susceptibles) and the recovery
rate, we obtain the basic SIR model

S′ = µ− f(S, I)− µS,
I ′ = f(S, I)− δI,
R′ = (δ − µ)I − µR.

(1)

Note that δ − µ is the recovery rate of the infected compartment, following the
notations of [7]. The equation for R′(t) can be omitted, as the population size is
constant and we consider only the two-dimensional system

S′ = µ− f(S, I)− µS,
I ′ = f(S, I)− δI.

(2)

Due to the biological meaning, we assume that f(S, I) is a positive and mono-
tonically growing function for all S, I > 0 and f(S, 0) = f(0, I) = 0 holds. The
nonnegative quadrant of the SI plane is invariant with respect to system (2). De-
pending on the parameters, the system might have two equilibria, the disease-free
equilibrium Q0 = (S0, I0) = (1, 0) and the endemic equilibrium Q∗ = (S∗, I∗) such
that µ = f(S∗, I∗) + µS∗ and δI∗ = f(S∗, I∗) hold.

For model (2), the basic reproduction number (i.e. the average number of sec-
ondary cases produced by a single infective individual introduced into an entirely
susceptible population) is [7, 12]

R0 =
1

δ

∂f(S0, I0)

∂I
. (3)

It is shown in [7, Theorem 2.1] that if the function f(S, I) monotonically grows

with respect to both variables and it is concave with respect to I (i.e. ∂2f
∂I2 ≤ 0)

and if R0 > 1, then system (2) has a unique positive endemic equilibrium state Q∗

which is globally asymptotically stable, while if R0 ≤ 1, then there is no endemic
equilibrium and the infection-free equilibrium Q0 is globally asymptotically stable.

The proof of the theorem is based on the construction of a Lyapunov function
and LaSalle’s invariance principle.
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In the following, we will show that the above results on the global stability
properties of (2) can be shown for a more general class of incidence functions by
proving the existence of an appropriate Dulac function.

Let us consider a differentiable function F (I) with the property

F ′(I) ≤ F (I)

I
. (L)

For a function F (I) with F (0) = 0, this property means that the slope of the
secant line connecting any point of the graph of the function with the origin is
greater than that of the tangent line at the same point of the graph. Clearly, this
property holds for any concave function h(I) with h(0) = 0. It is also easy to see
that this property is more general than concavity.

Example 1. The function F (I) = I3 − αI2 with α ∈ (2, 3) possesses the property
(L) on the interval [0, 1]. The function is concave on the interval [0, α/3], but convex
on the interval [α/3, 1].

Property (L) can also be characterized the following way.

Lemma 2.1. Let F (I) be such that F (0) = 0 and F (I) > 0 for I > 0. Then
F (I) possesses the property (L) if and only if F (I) is sublinear (in the sense of
Krasnoselskii [9]), i.e.

cF (I) ≤ F (cI) for c ∈ [0, 1].

Proof. Let us first suppose that F (I) is sublinear, i.e. cF (I) ≤ F (cI) for c ∈ [0, 1]
and let c ∈ (0, 1) be arbitrary. Then cF (I) ≤ F (cI) implies

F (I)− F (cI)

I − cI
≤ F (I)

I
.

By letting c → 1, the left-hand side of this inequality tends to F ′(I), from which
we obtain that F (I) has the property (L).

Now let us assume that F (I) possesses the property (L). We have to show that
cF (I) ≤ F (cI) for c ∈ [0, 1]. Let us suppose that this does not hold, i.e. there exists
an I1 and c ∈ (0, 1) such that cF (I1) > F (cI1). This implies

F (cI1)

cI1
<
F (I1)

I1
,

which means that the secant line connecting the origin with the point (cI1, F (cI1))
lies below the secant line connecting the origin with the point (I1, F (I1)). As the
function F possesses the property (L), we have

F ′(cI1) ≤ F (cI1)

cI1
.

This means that there exists a neighbourhood of cI1 such that the graph of the func-
tion F (I) lies below the secant line connecting the origin with the point (cI1, F (cI1)).
As the point (I1, F (I1)) lies above this secant line, the function F (I) has to cross
this line at least once. Let us suppose that the function F (I) crosses this secant line
in the point (I2, F (I2)). In this point, the derivative F ′(I2) is greater than the slope
of the secant line connecting the origin with the point (cI1, F (cI1)) and with the

point (I2, F (I2)). However, from the property (L) it follows that F ′(I2) ≤ F (I2)
I2

,
which is a contradiction.
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Let us introduce the notation

fS(I) := f(S, I) for 0 ≤ S, I ≤ 1.

Definition 2.2. A function f(S, I) which is partially differentiable with respect to
I will be called uniformly sublinear if fS(I) is sublinear for every 0 ≤ S ≤ 1.

Lemma 2.3. If the function f(S, I) is uniformly sublinear and monotonically grows
with respect to S and I then equation (2) has a unique endemic equilibrium if R0 > 1
and there is no endemic equilibrium if R0 ≤ 1.

Proof. The first step of our proof (i.e. that an endemic equilibrium exists if and
only if R0 > 1) is identical to the first part of the proof of [7, Theorem 1], while the
proof of the uniqueness is different. For the readers’ convenience, here we include
the complete proof.

At a fixed point, the equalities δI + µS = µ and δI = f(S, I) hold. These two
equalities define a negatively sloped straight line q1, resp. a curve q2 in the IS plane.

The equality δI + µS = µ also defines a function S = h(I). If ∂f(S,I)
∂S is strictly

positive, then the implicit function theorem implies that the function h(I) is defined
and continuous for I > 0. It is easy to see that if h(0) = S∗ ≤ S0 = 1 then there
exists at least one intersection point of the line q1 and the curve q2 defined by the
two equalities. As the function f(S, I) grows monotonically with respect to both of
its variables, we have S0/S∗ > 1 if

lim
I→0

f(S0, I)

f(S∗, I)
= lim
I→0

f(S0, I)

δI
=

1

δ

∂f(S0, 0)

∂I
= R0 > 1.

Now we turn to the proof of the uniqueness of the endemic equilibrium. In [7],
this is proved using the Lyapunov function, so the method used there does not apply
here. At an equilibrium of system (2), the equalities δI = µ− µS and δI = f(S, I)
hold. Let us suppose that there exist two endemic equilibria, (S∗, I∗) and (S1, I1).
Let us suppose that I1 > I∗, or, equivalently, I∗ = cI1 for some 0 < c < 1. Then
δI∗ = µ − µS∗ and δI1 = µ − µS1 are satisfied, so S∗ > S1 must hold. Using the
fact that f(S, I) has the property (L) and that it is monotonically growing in both
variables, by Lemma 2.1 we have

cδI1 = cfS1
(I1) ≤ fS1

(I∗) < fS∗(I∗) = δI∗,

from which we would obtain I∗ > cI1, which contradicts I∗ = cI1, and this contra-
diction implies the uniqueness of the endemic equilibrium.

Before proving our first theorem, we recall the notions of ω- and α-limit sets.

Definition 2.4. Consider a flow x′ = G(x) on a metric space X, and a point
x0 ∈ X. We call a point y ∈ X an ω-limit point of x0 if there exists a sequence
{tn} in R such that limn→∞ tn = ∞ and limn→∞ x(tn;x0) = y. An α-limit point
is defined similarly with limn→∞ tn = −∞. The set of all ω-limit points of x0

(resp. α-limit points) for a given orbit is called ω-limit set (resp. α-limit set) and
is denoted by ω(x0) (resp. α(x0)).

In the proofs of our theorems on global asymptotic stability, we will use the
following result.

Theorem 2.5. Let us consider a system x′ = G(x) on a forward invariant domain
D ⊂ R2. Let us suppose that there exists an x∗ ∈ intD such that for any y ∈ D,
ω(y) = {x∗} and there are no homoclinic orbits in D. Then x∗ is a stable equilibrium
of x′ = G(x).
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Proof. Let us suppose that x∗, which is the only equilibrium in D, is not stable.
We use the notation S(x, ε) for the set {x̄ ∈ Rn, |x̄−x| = ε} and B(x, ε) for the set
{x̄ ∈ Rn, |x̄ − x| < ε}. Because of the instability of x∗, there exists an ε > 0 and
a sequence {xn} ⊂ D, xn → x∗ (n→∞) such that the solutions x(t;xn) will leave
B(x∗, ε). We can suppose that ε is such that B(x∗, ε) ⊂ intD. Let zn := x(tn;xn),
where tn := min{t > 0 : x(t;xn) ∈ S(x∗, ε)}. The sequence {zn} has a convergent
subsequence, let us denote the limit of this subsequence by z∗. We will show that
α(z∗) = {x∗}. Consider the negative orbit γ−(z∗) started from z∗ and let ε̂ > ε
be such that B(x∗, ε̂) ⊂ intD. There are two possible cases: either there exists a
t∗ < 0 such that x(t∗; z∗) ∈ S(x∗, ε̂), or the negative orbit started from z∗ stays in
B(x∗, ε̂) for all t < 0.

Let us suppose the first case holds, in this case there exists a δ > 0 such that
|x(t; z∗)− x∗| > δ for t∗ < t < 0. From the continuous dependence of the solutions
on the initial conditions we obtain that there exists an N ∈ N such that if n > N ,
then |xn − x∗| < δ

2 and the solution x(t; zn) reaches S(x∗, ε) at some time t∗n while

|x(t; zn)− x∗| > δ
2 for t∗n < t < 0. However, we defined zn as the first exit point of

the solution x(t;xn) from B(x∗, ε), which leads to a contradiction.
In the second case, the negative orbit started from z∗ stays inside B(x∗, ε̂) for all

t < 0 and thus the negative limit set α(z∗) ⊂ B(x∗, ε) exists. Using the Poincaré–
Bendixson theorem, we obtain that α(z∗) = {x∗}. By assumption, ω(z∗) = {x∗},
contradicting the non-existence of homoclinic orbits.

Theorem 2.6. Let the function f(S, I) be uniformly sublinear and monotonically
growing with respect to S and I. Then the following assertions hold.

(i) If R0 ≤ 1 then the disease-free equilibrium Q0 is globally asymptotically stable
on the state space

X :=
{

(S, I) ∈ R2
+ | 0 ≤ S + I ≤ 1

}
.

(ii) If R0 > 1 then the endemic equilibrium Q∗ is globally asymptotically stable on
the phase space X with the exception of the disease-free subspace

XI :=
{

(S, 0) ∈ R2
+ | 0 ≤ S ≤ 1

}
.

On the subspace XI the disease-free equilibrium Q0 is globally asymptotically
stable.

Proof. First we will show that if the function f(S, I) is uniformly sublinear and
monotonically grows with respect to S and I then equation (2) does not have any
periodic solutions in the positive quadrant of the SI plane.

According to the Bendixson–Dulac theorem [4] we have to construct a continuous
function Ψ(S, I) for the system (2) such that the expression

∂(Ψ(S, I)(µ− f(S, I)− µS))

∂S
+
∂(Ψ(S, I)(f(S, I)− δI))

∂I

has the same sign almost everywhere in the positive quadrant of the SI plane. We
define the Dulac function as Ψ(S, I) = 1/I. With this choice, the above expression
takes the form

∂

∂S

(
µ

I
− f(S, I)

I
− µS

I

)
+

∂

∂I

(
f(S, I)

I
− δ
)

= −1

I

∂

∂S
f(S, I)− µ

I
+

∂
∂I f(S, I)I − f(S, I)

I2
.
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Using the assumption ∂
∂S f(S, I) > 0, we obtain that the first two terms of this

expression are negative, thus, if we can show that the last term is also negative,
then the assertion of the theorem holds. The negativity of this term is equivalent
to the relation

∂

∂I
f(S, I) <

f(S, I)

I
,

which holds for any uniformly sublinear function f(S, I).
Assertion (i) follows immediately from the Poincaré–Bendixson theorem using

the above result and Theorem 2.5.
To show assertion (ii), we can again apply our previous result and the Poincaré–

Bendixson theorem to conclude that all solutions with positive initial data converge
to one of the two equilibria Q0 and Q∗. Let us suppose that there exists a so-
lution which converges to the disease-free equilibrium, i.e. limt→∞ S(t) = 1 and
limt→∞ I(t) = 0. We can write the equation for I ′(t) in the form

I ′(t) = f(S, I)− δI =

(
f(S, I)− f(S, 0)

I
− δ
)
I(t).

However, for t sufficiently large, the multiplier of I(t) is positive if R0 > 1, which
contradicts limt→∞ I(t) = 0. Thus, all solutions with positive initial data converge
to the endemic equilibrium Q∗, while stability follows from Theorem 2.5. The
statement concerning solutions started from the disease-free subspace is obvious.

Corollary 1. If the function f(S, I) monotonically grows with respect to S and I

and it is concave with respect to the variable I (i.e. ∂2f
∂I2 ≤ 0) then the endemic

equilibrium Q∗ is globally asymptotically stable for R0 > 1. If R0 ≤ 1 then the
disease-free equilibrium Q0 is globally asymptotically stable.

This means that [7, Theorem 1] follows from our Theorem 2.6. However, let us
point out that the proof of [7, Theorem 1] also applies in the case of a uniformly
sublinear incidence function f(S, I) instead of concavity in the second variable.

Proof. As we have already seen, uniform sublinearity follows from the concavity of
f(S, I) with respect to the variable I.

In the following corollary we show that the results of Theorem 2.6 can be extended
from SIR-type models to SIRS-type models.

Corollary 2. Let us consider the SIRS-type model

S′ = µ− f(S, I) + rR− µS,
I ′ = f(S, I)− δI,
R′ = (δ − µ)I − rR− µR.

(4)

Let the function f(S, I) be uniformly sublinear and monotonically growing with re-
spect to S and I, then the following assertions hold.

(i) If R0 ≤ 1 then there exists a unique disease-free equilibrium which is globally
asymptotically stable on the state space

X :=
{

(S, I,R) ∈ R3
+ | S + I +R = 1

}
.

(ii) If R0 > 1 then there exists a disease-free equilibrium and a unique endemic
equilibrium which is globally asymptotically stable on the phase space X with
the exception of the disease-free subspace

XI :=
{

(S, 0, R) ∈ R3
+ | S +R = 1

}
.
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On the subspace XI , the disease-free equilibrium is globally asymptotically sta-
ble.

Proof. It is easy to see that system (4) can be transformed and reduced to the form
(2). After substituting 1−S− I into the place of R, we obtain the two-dimensional
reduced system

S′ = µ− f(S, I) + r(1− S − I)− µS,
I ′ = f(S, I)− δI.

By introducing the notations f̃(S, I) := f(S, I) + rI, µ̃ := µ+ r and δ̃ := δ + r, we
obtain the system

S′ = µ̃− f̃(S, I)− µ̃S,

I ′ = f̃(S, I)− δ̃I.
(5)

It is easy to see that f̃(S, I) is also uniformly sublinear, i.e. system (5) is equivalent
to system (2), from which the assertions of the corollary follow.

3. Global stability for SIR and SIRS models with nonlinear (density-
dependent) removal terms. In this subsection we will show that the method
seen above can also be applied for more general systems. For example, we can
consider the system

S′ = µ− f(S, I)− µS,
I ′ = f(S, I)− g(I),

(6)

where, in comparison to (2), instead of the removal term δI we use the nonlinear
function g(I) for the sum of the death rate and the recovery rate for the infected
individuals, where the function g(I) satisfies g(0) = 0 and g(I) > 0 for I > 0.
Such a nonlinear g(I) term appears in various models, for example when recovery
is facilitated by treatment. When the health care resources are constrained, the
recovery rate will be naturally dependent on the number of infected individuals (see
[13]). Clearly, equation (6) always has the disease-free equilibrium Q0 = (S0, I0) =
(1, 0). The basic reproduction number can be calculated as

R0 =
∂
∂I f(S0, I0)

g′(I0)
.

We can state the following theorem for system (6).

Theorem 3.1. Let the function f(S, I) be such that f(S, 0) = f(0, I) = 0 for
0 ≤ S, I ≤ 1 and f(S, I) > 0 for S, I > 0, let g(I) satisfy g(0) = 0 and g(I) > 0 for
I > 0 and let us suppose that

d

dI

(
log

g(I)

fS(I)

)
≥ 0 holds for all 0 < S, I ≤ 1. (7)

Then the following assertions hold for equation (6).

(i) If R0 < 1 then the disease-free equilibrium Q0 is globally asymptotically stable
on the state space

X :=
{

(S, I) ∈ R2
+ | 0 ≤ S + I ≤ 1

}
.
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(ii) Let us suppose that there exists a unique endemic equilibrium Q∗ if R0 > 1.
Then the endemic equilibrium is globally asymptotically stable on the phase
space X with the exception of the disease-free subspace

XI :=
{

(S, 0) ∈ R2
+ | 0 ≤ S ≤ 1

}
.

On the subspace XI , the disease-free equilibrium Q0 is globally asymptotically
stable.

Proof. The proof is similar to that of Theorem 2.6. We will use the Dulac function
1/g(I) to show that equation (6) does not have any periodic solutions:

∂

∂S

µ− f(S, I)− µS
g(I)

+
∂

∂I

f(S, I)− g(I)

g(I)

=
− ∂
∂S f(S, I)

g(I)
− µ

g(I)
+

∂
∂I f(S, I)g(I)− f(S, I)g′(I)

g2(I)
,

(8)

which is negative if
∂

∂I
f(S, I)g(I) ≤ f(S, I)

d

dI
g(I).

This is equivalent to condition (7). From here we can proceed just as in the proof
of Theorem 2.6 using the Poincaré–Bendixson theorem and Theorem 2.5.

Example 2. Epidemic models with nonlinear incidence rates of the form

βSpIs

1 + αIq

with p, q, s > 0 have been investigated by several authors (see e.g. [1, 3, 6, 10, 14]).
Let us now consider the system with s = 1,

S′ = µ− βSpI

1 + αIq
− µS,

I ′ =
βSpI

1 + αIq
− µI − Ir

(9)

where q < 1 and r > 1. The basic reproduction number for system (9) can easily be
calculated as R0 = β/µ. For any parameter setting, the system has the disease-free
equilibrium Q0 = (1, 0). To find an endemic equilibrium, let us note that for any

Ĩ ∈ [0, 1], there exists a unique S̃ ∈ [0, 1] such that

0 = µ− βS̃pĨ

1 + αĨq
− µS̃

holds for S̃ and Ĩ. This can easily be seen as the right-hand side of this equation
takes µ > 0 in S̃ = 0 and takes a negative value in S̃ = 1 and it is strictly decreasing
in S̃. Let us introduce the function u(I) : [0, 1]→ [0, 1] such that u(Ĩ) is this unique

S̃ for any Ĩ ∈ [0, 1]. One can see that u(I) is strictly decreasing if q < 1. As for the
equation

0 =
βS̃pĨ

1 + αĨq
− µĨ − Ĩr,

for Ĩ 6= 0 we can express S̃ as ((µ + αµĨq + Ĩr−1 + αĨq+r−1)/β)1/p =: v(Ĩ). The

function v(Ĩ) is strictly increasing and limĨ→0 v(Ĩ) = µ/β. Clearly, v(1) > u(1),
thus, if R0 > 1, then there exists a unique I ∈ [0, 1] such that u(I) = v(I), i.e. there
exists a unique endemic equilibrium of (9).
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If condition (7) holds, we can apply Theorem 3.1 to obtain that the disease-free
equilibrium Q0 is globally asymptotically stable if R0 ≤ 1, while if R0 > 1, then
the endemic equilibrium Q∗ is globally asymptotically stable. In the special case of
this example, this condition takes the form

d

dI

(
log

g(I)

fS(I)

)
=
αµqIq+1 + (r − 1)Ir + α(q + r − 1)Iq+r

I (1 + αIq) (µI + Ir)
,

which is nonnegative if r > 1, thus, condition (7) is satisfied.

Similarly as in Corollary 2.3, we can extend the result of Theorem 3.1 from
SIR-type models to SIRS-type models in the case of a nonlinear removal rate g(I)
instead of δI. Thus we obtain the following corollary.

Corollary 3. Let us consider the following SIRS-type model with nonlinear removal
term.

S′ = µ− f(S, I) + rR− µS,
I ′ = f(S, I)− g(I),

R′ = g(I)− µI − µR.
(10)

Assume that condition (7) holds. Then the following assertions hold for equation
(10).

(i) If R0 < 1 then the disease-free equilibrium Q0 = (1, 0, 0) is globally asymptot-
ically stable on the state space

X :=
{

(S, I,R) ∈ R3
+ | S + I +R = 1

}
.

(ii) Let us suppose that there exists a unique endemic equilibrium Q∗ if R0 > 1.
Then the endemic equilibrium is globally asymptotically stable on the phase
space X with the exception of the disease-free subspace

XI :=
{

(S, 0, R) ∈ R3
+ | S +R = 1

}
.

On the subspace XI the disease-free equilibrium Q0 is globally asymptotically
stable.

4. Global dynamics of SIR models with bistability.

4.1. Formulation of the model. In this section we will show that Dulac func-
tions similarly simple to those used in the previous section can be applied even in
the case of multiple endemic equilibria, in which case the method of Lyapunov func-
tions described in [7] cannot be used. As an example, we will perform a complete
global stability analysis of a model by Reluga and Medlock [11] which describes the
dynamics of an infectious disease against which individuals can acquire resistance
that is only temporary and only partially protective. The population, which is di-
vided into susceptible (S), infected (I), and recovered and resistant (R) classes, is
assumed to be a constant: S(t) + I(t) +R(t) = N . The disease transmission rate is
denoted by β, recovery rate by γ, and µ stands for birth and death rate. Individuals
in the resistant class have a reduced risk: they become infected at a fraction σ of
the rate of susceptible individuals. Susceptible individuals directly acquire resis-
tance at rate v, presumably through some public health intervention, but resistant
individuals revert to the susceptible class at rate a. Of those individuals recovering
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from infection, the fraction 1− f enter the resistant class and the fraction f enter
the susceptible class. Using these notations, one obtains the system

S′(t) = µN − βS(t)I(t)

N
+ fγI(t) + aR(t)− νS(t)− µS(t),

I ′(t) = β
(S(t) + σR(t))I(t)

N
− γI(t)− µI(t),

R′(t) = −σβR(t)I(t)

N
+ (1− f)γI(t)− aR(t) + νS(t)− µR(t).

(11)

In the following, we will present some basic properties of this model. The for-
mula for the basic reproduction number and the condition for the occurrence of
a backward bifurcation (with no details on the proof) can also be found in [11],
however, to make our paper self-contained, we will also present these results and
we also prove the condition for backward bifurcation in details (see Theorem 4.2).

The basic reproduction number can easily be obtained as

R0 =
β(a+ µ+ νσ)

(γ + µ)(a+ µ+ ν)
. (12)

The system has one disease-free equilibrium given by

S0 = N
a+ µ

a+ µ+ ν
,

I0 = 0,

R0 = N
ν

a+ µ+ ν
,

(13)

which is locally stable for R0 < 1 and locally unstable for R0 > 1, as can easily be
seen by calculating the equilibria of the Jacobian of system (11) at the disease-free
equilibrium.

As the sum of the three compartments is constant, we might express S(t) as
S(t) = N − I(t)−R(t) to obtain the two-dimensional system

I ′(t) =
βI(t)(N − I(t)−R(t) + σR(t))

N
− γI(t)− µI(t),

R′(t) = − σβR(t)I(t)

N
+ (1− f)γI(t)− aR(t)

+ ν(N − I(t)−R(t))− µR(t).

(14)

To find the endemic equilibria of this system, we have to solve the algebraic
system of equations

0 =
βÎ(N − Î − R̂+ σR̂)

N
− γÎ − µÎ,

0 = −βσ R̂Î
N

+ (1− f)γÎ − aR̂+ ν(N − Î − R̂)− µR̂.

We can express R̂ from the first equation as

R̂ =
βÎ − βN + γN + µN

β(σ − 1)

and by substituting this into the second equation we obtain the quadratic equation

AÎ2 +BÎ + C = 0 (15)
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with

A =
βσ

N
, B = a+ γ − fγ + µ+ σ(fγ + µ+ ν − β)

and

C =
N((γ + µ)(a+ µ+ ν)− β(a+ µ+ νσ))

β
.

It is easy to see that C = N
β (1 −R0)(µ + γ)(a + µ + ν). From this we obtain the

following lemma.

Lemma 4.1. If R0 > 1 then there exists a unique positive equilibrium of system
(14), given by

Î =
−B +

√
B2 − 4AC

2A
.

At R0 = 1 we have C = 0 while A is always positive. This means that to have a
positive solution of (15), B has to be negative. Let us suppose that this is in fact the

case, i.e. equation (15) has the unique solution Î = −B/A > 0 at R0 = 1. Because
of the continuous dependence on the parameters, we have B < 0 and B2−4AC > 0
on the interval Rc < R0 < 1 for some Rc < 1. As C > 0 holds for R0 < 1, equation
(15) has exactly two positive roots on this interval implying that there exist two
endemic equilibria of system (14) for R0 < 1, i.e. a backward bifurcation occurs at
R0 = 1. We give the condition (can also be found in [11]) on the parameters for
this backward bifurcation in the following theorem.

Theorem 4.2. If the condition

1 +
(a+ σν)2 + µνσ(1 + σ) + 2aµ+ µ2

γ(1− σ)(a+ µ)
<

(
1 +

σν

a+ µ

)
f (16)

holds then a backward bifurcation occurs at R0 = 1. Otherwise, the bifurcation is
forward.

Proof. The condition B < 0 can be written as

a+ γ + µ+ σ(fγ + µ+ ν) < fγ + βσ,

while the condition C = 0 (which holds at R0 = 1) is equivalent to

β =
(a+ µ+ ν)(γ + µ)

a+ µ+ νσ
.

If we substitute this into the previous condition, we obtain

a+ γ + µ+ µσ + νσ − σ(a+ µ+ ν)(γ + µ)

a+ µ+ νσ
< fγ(1− σ).

Multiplying by (a+ µ+ νσ)/(γ(1− σ)(a+ µ)), we obtain

(a+ γ + µ+ µσ + νσ)(a+ µ+ νσ)− σ(a+ µ+ ν)(γ + µ)

γ(1− σ)(a+ µ+ νσ)
<
a+ µ+ νσ

a+ µ
f.

By rearranging the terms in the numerator on the left-hand side, we obtain the
condition (16).

Now we will calculate the value Rc, i.e. the value for which the two endemic
equilibria appear at R0 = Rc if the backward bifurcation condition (16) holds.
It is obvious from our calculations so far that the condition B2 − 4AC > 0 has
to be fulfilled for (15) having two positive solutions. We have already seen that
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C = N
β (1−R0)(µ+ γ)(a+µ+ ν), thus, we obtain that B2− 4AC = 0 is equivalent

to

B2 = 4σ(1−R0)(γ + µ)(a+ µ+ ν),

B2

4σ(γ + µ)(a+ µ+ ν)
= 1−R0,

R0 = 1− B2

4σ(γ + µ)(a+ µ+ ν)
,

where B = a+ γ− fγ+µ+ σ(fγ+µ+ ν − β). Thus, we have proved the following
lemma.

Lemma 4.3. If there is a backward bifurcation taking place at R0 = 1, then system
(14) has two endemic equilibria if Rc < R0 < 1, where

Rc = 1− (a+ γ − γf + µ+ σ(fγ + µ+ ν − β))2

4σ(γ + µ)(a+ µ+ ν)
.

4.2. Local stability of the endemic equilibria. As we have seen earlier, the
disease-free equilibrium (S0, I0, R0) is locally stable for R0 < 1 and locally unstable
for R0 > 1. In this subsection we will discuss the local stability of the endemic
equilibria. The calculations performed in a similar way as in [8]. The Jacobian of

system (14) evaluated at (Î , R̂) is given by

J =

(
β − γ − µ− 2βÎ

N + β(σ−1)R̂
N

β(σ−1)Î
N

(1− f)γ − ν − R̂βσ
N −(a+ µ+ ν)− βσÎ

N

)
,

which – using that in the endemic equilibria γ + µ = −βÎ/N + β + βR̂(σ − 1)/N
holds – can be written in the simpler form

J =

(
−βÎN

β(σ−1)Î
N

(1− f)γ − ν − R̂βσ
N −(a+ µ+ ν)− βσÎ

N

)
.

The characteristic polynomial has the form λ2 + b1λ+ c1, where

b1 = a+ µ+ ν +
β(1 + σ)Î

N

and

c1 =
βÎ

N2
(aN + βσÎ + βσ(σ − 1)R̂+ µN +N(f − 1)γ(σ − 1) + νσN).

From the Routh–Hurwitz stability criterion (see, e.g. [5]) we know that for all solu-
tions of the characteristic equation to have negative real parts, all coefficients have
to be of the same sign. Clearly, the leading coefficient and b1 are positive for a
positive Î. As for the third coefficient, we can use the fact that at an equilibrium
(Î , R̂), the equality β(Î+(1−σ)R̂)/N = β−γ−µ holds, which allows us to rewrite
c1 as

c1 =
βÎ

N

(
2βσÎ

N
+ a+ σ(µ+ γ − β) + µ+ fγσ − fγ − γσ + γ + νσ

)

=
βÎ

N
(2AÎ +B).

From this, we easily obtain the following lemma.
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Lemma 4.4. The endemic equilibrium (I+, R+) with I+ = −B+
√
B2−4AC
2A is always

locally asymptotically stable when it exists, i.e. when R0 > 0 as well as when Rc <
R0 < 1 and there is a backward bifurcation. The endemic equilibrium (I−, R−) with

I− = −B−
√
B2−4AC
2A is always unstable when it exists, i.e. when there is a backward

bifurcation and Rc < R0 < 1.

Proof. The assertion follows from the previous observation, i.e. that the sign of c1
depends on the sign of 2AÎ + B. It is easy to see that this expression is positive
for Î = I+ and negative for Î = I−, from which we obtain the assertion of the
lemma using the Routh–Hurwitz criterion. Let us also note that in the latter case,
as c1 < 0, both roots of the characteristic equation are real with one of them being
positive and the other one negative.

4.3. Global dynamics. In this subsection, we will describe the global behaviour
of the solutions of the system (11). First, we prove that all solutions of the system
tend to one of the equilibria. Similarly to the previous subsection, we reduce the
system to the two-dimensional system (14).

According to the Bendixson–Dulac theorem [4] we have to construct a continuous
function Φ(I,R) for the system (14) such that the expression

∂

∂I

[
Φ(I,R)

(
βI(N − I − (1− σ)R)

N
− (γ + µ)I

)]
+

∂

∂R

[
Φ(I,R)

(
−σβRI

N
+ (1− f)γI + ν(N − I −R)− (µ+ a)R

)]
(17)

has the same sign almost everywhere in the positive quadrant of the SI plane for an
appropriate Dulac function Φ(I,R). By choosing the Dulac function Φ(I,R) = 1/I,
expression (17) takes the form

− β
N
− βσ

N
− a− µ− νN,

which is clearly negative. Thus, all solutions of system (14) tend to one of the
equilibria.

Theorem 4.5. The following assertions hold for system (14).

(i) If no endemic equilibrium exists (i.e. if R0 ≤ 1 in the case of a forward
bifurcation, resp. if R0 < Rc in the case of a backward bifurcation), then the
disease-free equilibrium is globally asymptotically stable.

(ii) If there is a backward bifurcation taking place, then for Rc < R0 < 1, all
solutions converge to one of the three equilibria.

(iii) If R0 > 1, then the unique endemic equilibrium is globally asymptotically
stable.

Proof. The first assertion of the theorem follows directly from the above result and
Theorem 2.5.

In the case of a backward bifurcation, on the interval Rc < R0 < 1 there exist
three equilibria, the disease-free equilibrium and two endemic equilibria, one of
which being unstable and the other locally asymptotically stable, as seen in the
previous subsection. As R0 < 1, the disease-free equilibrium is locally stable, so on
the interval Rc < R0 < 1 we have bistability.

In the case R0 > 1, only one endemic equilibrium exists. We have to prove that
no solution can converge to the disease-free equilibrium. Let us suppose this is not
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true, i.e. there exists a solution converging to the disease-free equilibrium. If this
holds, i.e.

lim
t→∞

I(t) = 0 and lim
t→∞

R(t) = N
ν

a+ µ+ ν
,

then there exists a T > 0 such that for all ε > 0

I(t) < ε and R(t) < N
ν

a+ µ+ ν
+ ε

holds for all t > T . Thus, for t > T , we can estimate I ′(t) as follows:

I ′(t) = (N − I(t)−R(t)(1− σ))
βI(t)

N
− (γ + µ)I(t)

>

(
N − βε−

(
Nν

a+ µ+ ν
+ ε

)
(1− σ)

)
βI(t)

N
− (γ + µ)I(t)

=

(
β(a+ µ+ νσ)

a+ µ+ ν
− (γ + µ)

)
I(t)− βε(2− σ)I(t)

N
> 0

for ε small enough, asR0 > 1. This implies that I(t) cannot converge to 0 ifR0 > 1,
which means that all solutions converge to the endemic equilibrium, while stability
follows from Theorem 2.5.

4.4. Structure of the global attractor. Let X be a metric space and M ⊂ X.
Following the notation of [2, 1.1.7], by Mt we denote the set consisting of the states
at time t of the solutions started from all of the points x ∈M and we use standard
terminology for global attractors (see the following definition).

Definition 4.6. Let X be a metric space and A be a compact invariant subset of
X. If A attracts each bounded subset of X, i.e. for any bounded subset M ⊂ X
and any neighbourhood U of A there exists a T < ∞ such that Mt ⊂ U for all
t > T , then A is called the global attractor.

Theorem 4.7. If there is no backward bifurcation and R0 ≤ 1 then the global at-
tractor consists of the disease-free equilibrium. If R0 > 1 then the global attractor
consists of the disease-free equilibrium, the endemic equilibrium and a connecting
orbit from the disease-free equilibrium to the endemic equilibrium. If there is a back-
ward bifurcation taking place, then for Rc < R0 < 1, the global attractor consists
of the three equilibria and two orbits: one connecting the unstable endemic equi-
librium and the disease-free equilibrium, the other connecting the unstable endemic
equilibrium and the stable endemic equilibrium.

Proof. The first assertion follows from the fact that if R0 < 1 and there is no back-
ward bifurcation taking place, then the disease-free equilibrium is globally asymp-
totically stable on the whole phase space.

In the case of a backward bifurcation (Rc < R0 < 1), we have two endemic
equilibria. In Subsection 4.2 we showed that one of the two endemic equilibria is
stable, while the other one is unstable with one stable and one unstable eigenvector.
Thus, the unstable manifold of the unstable equilibrium is one-dimensional. From
our results so far, it is clear that the ω-limit set of any solution started from the
unstable manifold is one of the two stable equilibria, while the α-limit set is the
unstable equilibrium, as the existence of a homoclinic orbit is ruled out by the
Bendixson–Dulac criterion. We need to show that there exists a connecting orbit
from the unstable equilibrium to both stable equilibria. Let us suppose that this
is not true, i.e. solutions started from both branches of the unstable manifold of
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the unstable equilibrium tend to the same stable equilibrium. Let us now start a
solution from the stable manifold of the unstable equilibrium. The ω-limit set of
this solution is the unstable equilibrium, while – according to the Bendixson–Dulac
criterion – its α-limit set is one of the equilibria. Because of the stability of the
other two equilibria, the α-limit set can only be the unstable equilibrium, which
means that this is a homoclinic orbit. However, the existence of such an orbit is
ruled out by the Bendixson–Dulac criterion. Thus, there exists a connecting orbit
from the unstable equilibrium to both stable equilibria. Since the unstable manifold
of the unstable equilibrium is one-dimensional, no other connections exist.

We have seen that if R0 > 1, then the unique endemic equilibrium is globally
asymptotically stable on the whole phase space with the exception of the extinction
space of the infected compartment, where the disease-free equilibrium is globally
asymptotically stable. By standard linearization, we calculate the eigenvalues and
eigenvectors of the Jacobian of the reduced two-dimensional system

S′(t) = µN − βS(t)I(t)

N
+ fγI(t) + a(N − S(t)− I(t))

− νS(t)− µS(t),

I ′(t) = β
(S(t) + σ(N − S(t)− I(t)))I(t)

N
− γI(t)− µI(t)

(18)

in the disease-free equilibrium: the eigenvalues are λ1 = −a − µ − ν with corre-
sponding eigenvector (1, 0) and λ2 = (γ+µ)(R0−1) with corresponding eigenvector(

− a2 + aβ − aγf + aµ+ aν + βµ− γfµ− γfν
a2 + aβ − aγ + aµ+ 2aν + βµ+ βνσ − γµ− γν + µν + ν2

, 1

)
.

It is easy to see that the first of these eigenvectors is always stable, while the second
is stable for R0 < 1 and unstable for R0 > 1. Thus for R0 > 1, the disease-
free equilibrium has a one-dimensional unstable manifold. If we start a solution
from this unstable manifold, according to our results, that solution converges to the
endemic equilibrium, from which we can conclude the existence of a heteroclinic
orbit connecting the disease-free equilibrium and the endemic equilibrium.
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Figure 1. The structure of the global attractor for different pa-
rameter values
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Figure 2. I(t) coordinate of solutions with different initial values
converging to two different equilibria. The dashed line denotes the
unstable equilibrium. Parameter values are a = 0.001, f = 1,
n = 1, β = 2.75, γ = 0.909, µ = 0.15, ν = 0.546, σ = 0.212

The three possible scenarios characterized by Theorem 4.7 are depicted in Fig-
ure 1. The bistable case is illustrated by numerical simulation of solutions of (11)
converging to two different equilibria in Figure 2.
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[2] N. P. Bhatia and G. P. Szegö, Dynamical Systems: Stability Theory and Applications, Lecture

Notes in Mathematics, No. 35, Springer-Verlag, Berlin–New York, 1967.

[3] V. Capasso and G. Serio, A generalization of the Kermack–McKendrick deterministic epidemic
model, Math. Biosci., 42 (1978), 43–61.

[4] H. Dulac, Recherche des cycles limites, C. R. Acad. Sci. Paris, 204 (1937), 1703–1706.

[5] L. Edelstein-Keshet, Mathematical Models in Biology, The Random House/Birkhäuser Math-
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