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We study how the distribution of infectious periods influences the dynamics of epi-

demics on networks. In our recently developed framework, we use pairwise models

for network epidemics with non-Markovian recovery times. It is shown for typi-
cal families of distributions (such as gamma, uniform and lognormal) that higher

variance in the recovery times generates lower reproduction numbers and differ-

ent epidemic curves within each distribution family. We also show that knowing
the expected value and the variance of the recovery times is not sufficient to de-

termine the key characteristics of the epidemics such as initial growth rate, peak

size, peak time and final epidemic size. For accurate predictions, more detailed
information on the distribution of the infectious period is required, thus carefully

estimating this distribution in the case of real epidemics has paramount public
health importance.

1. Introduction

Networks (or graphs) offer a flexible framework to explicitly incorporate

various heterogeneities in how individuals within a population interact
2,7,13,22,23. This framework has led to a number of models where the strong

assumptions of random mixing of the classical compartmental models can

be relaxed. Because of the flexibility of the network approach, nodes can

represent not only single individuals but also groups of individuals or lo-

cations. Similarly, links can represent contacts between individuals along

1
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which diseases can spread, or interactions between groups such as flight

routes between different locations.

In standard epidemiological models, the population is divided into

classes depending on the status of individuals. In the simplest SIR

(susceptible-infected-recovered) model, S, I and R denote the number (or

proportion) of susceptible, infected and recovered individuals, respectively.

The most important quantity associated with most epidemic models is the

basic reproduction number (denoted by R0), which expresses the expected

number of secondary infections generated by a ’typical’ individual intro-

duced into a susceptible population 8. Naturally, if R0 < 1 the epidemic

will die out, while if R0 > 1 the disease will spread. The other useful

measure of epidemic severity is the final epidemic size, which is the total

number of individuals who become infected during an epidemic, and of-

ten these two quantities can be related implicitly to capture factors such

the network properties, and even properties of the transmission or recovery

process (e.g. Poisson processes with exponentially distributed waiting time

between events or general stochastic processes).

The transmission of epidemics on networks has been widely studied 23.

Most SIR models on networks assume that both the disease transmission

and recovery process are Markovian. In other words, time to next infection

along a link, where one node is susceptible and the other is infectious, is

exponentially distributed and so is the time spent by an infectious node

in the I state. Pairwise models have been very successful in capturing the

average behaviour of a stochastic epidemics on networks 14. These are for-

mulated in terms of the expected values for the number of susceptible ([S]),

infected ([I]) and recovered ([R]) nodes, which in turn depend on the ex-

pected values of (SS) pairs ([SS]) and (SI) pairs ([SI]) pairs. Introducing

the following general notations

(1) [X](t) is the expected number of nodes in state X at time t,

(2) [XY ](t) is the expected number of links which have a node in state

X at one end and a node in state Y at the other, and

(3) [XY Z](t) is the expected number of triplets in state X − Y − Z,

where, X,Y, Z ∈ {S, I,R}, and by accounting for all possible transitions,



April 5, 2016 7:55 Proceedings Trim Size: 9in x 6in biomat2015

3

the pairwise model is

˙[S](t) = −τ [SI](t),

˙[I](t) = τ [SI](t)− γ[I](t),

˙[SS](t) = −2τ [SSI](t), (1)

˙[SI](t) = τ [SSI](t)− τ [ISI](t)− τ [SI](t)− γ[SI](t),

where τ is the per contact infection rate and γ is the rate of recovery. Fur-

thermore, [S] + [I] + [R] = N and above we only listed equations which are

necessary to derive a full self-consistent system. It can be seen, that the

system is not closed, because the equations for links contain triplets, thus

we have to break the dependence on higher order terms. The closure ap-

proximation formula [XSY ] = n−1
n

[XS][SY ]
[S] , where n is the average number

of links per node and N is the number of nodes in the network, leads to

the self-consistent system

˙[S](t) = −τ [SI](t),

˙[I](t) = τ [SI](t)− γ[I](t),

˙[SS](t) = −2τ
n− 1

n

[SS](t)[SI](t)

[S](t)
, (2)

˙[SI](t) = τ
n− 1

n

(
[SS](t)[SI](t)

[S](t)
− [SI](t)[SI](t)

[S](t)

)
− (τ + γ)[SI](t).

Closing at the level of pairs with the approximation [XY ] = n[X] [Y ]
N , leads

to the so called mean-field model

Ṡ(t) = −τ n
N
S(t)I(t),

İ(t) = τ
n

N
S(t)I(t)− γI(t), (3)

and the network structure is less important at this point. For this model

the basic reproduction number is

R0 =
n

N
τE(I)S0, (4)

where, E(I) = 1/γ is the expected infectious period. Various results for the

Markovian case exist 14. For the pairwise model, the final epidemic size is

given by the following implicit relation

s
1
n∞ − 1

1
n−1

=
n− 1

N

τ

τ + γ
[S]0

(
s
n−1
n∞ − 1

)
, (5)
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where [S]0 is the number of susceptible individuals at time t = 0 and

s∞ = [S]∞/[S]0, where [S](∞) = [S]∞. The assumption of Markovianity in

both infection and recovery is a strong simplifying assumption, as especially

in the context of epidemiology, the period of infectiousness has paramount

importance 15,18, and often this is approximated from the empirical distri-

bution of observed infectious periods of various diseases by log-normal and

gamma (smallpox 9,20), fixed-length (measles 1) or Weibull distributions

(ebola 4). Newman 21, with his results later made more precise by Ke-

nah and Robins 16, gives a relation between the average transmission rate

and final epidemic size, using a bond percolation approach, and his result

is applicable for more general infection and recovery processes. Recently,

however there is renewed interest in modelling non-Markovian processes,

such as epidemics on networks 3,5,6,12,16,17,19,24,25, and random walks 11.

Kiss et al. 17 considered an SIR epidemic with deterministic infectious

period (i.e. the recovery time is constant) and derived the mean-field and

pairwise models for this case. The mean-filed model is given by, see 17,

S′(t) = −τ n
N
S(t)I(t),

I ′(t) = τ
n

N
S(t)I(t)− τ n

N
S(t− σ)I(t− σ). (6)

The pairwise model for fixed infectious period was derived 17 as

˙[S](t) = −τ [SI](t),

˙[SS](t) = −2τ
n− 1

n

[SS](t)[SI](t)

[S](t)
,

˙[I](t) = τ [SI](t)− τ [SI](t− σ),

˙[SI](t) = τ
n− 1

n

[SS](t)[SI](t)

[S](t)
− τ n− 1

n

[SI](t)[SI](t)

[S](t)
− τ [SI](t)

−τ n− 1

n

[SS](t− σ)[SI](t− σ)

[S](t− σ)
e−

∫ t
t−σ τ

n−1
n

[SI](u)
[S](u)

+τdu. (7)

We note that both models are now delay differential equations rather than

ordinary differential equations (ODEs), as is the case for Markovian epi-

demics. In the same paper Kiss et al. have shown that the for the final size

the following relation

s
1
n∞ − 1

1
n−1

=
n− 1

N

(
1− e−τσ

)
[S]0

(
s
n−1
n∞ − 1

)
(8)

holds, where a newly introduced basic reproduction-like number is defined

as Rp0 = n−1
N (1− e−τσ) [S]0. Furthermore, in 17 it has been presented that



April 5, 2016 7:55 Proceedings Trim Size: 9in x 6in biomat2015

5

for arbitrary infectious periods, the basic reproduction number associated

to the pairwise model is

Rp0 =
n− 1

N
(1− L[fI ](τ)) [S]0, (9)

where L[·] is the Laplace transform and fI is the probability density func-

tion of the recovery process. With this new definition, numerical tests (and

in special cases analytical results) have confirmed, see 17, that the following

implicit relation for the final epidemic size holds

s
1
n∞ − 1

1
n−1

= Rp0
(
s
n−1
n∞ − 1

)
=
n− 1

N
(1− L[fI ](τ)) [S]0

(
s
n−1
n∞ − 1

)
, (10)

and this can be applied for any general recovery time distributions.

Notice, while R0 depends on the expected value only, see (4), the pair-

wise reproduction number (9), uses the complete density function, thus the

average length of infectious period does not determine exactly the repro-

duction number. This remark implies, that for an epidemic we have to

know as precisely as possible the shape of the distribution. In the sequel

we denote by I the random variable that describes the recovery time, which

is, in the SIR-setting, the same as the distribution of the infectious period.

In this paper we exploit the generalised basic reproduction number (9)

and the general implicit relation for the final epidemic size (10) to determine

how these depend on the precise shape of recovery time distribution. We

give some analytic results, as well as results based on simulations to shed

light on the time evolution of the epidemics. The paper is structured as fol-

lows. Sections 2, 3, and 4 concern with recovery times of gamma, uniform

and lognormal distributions, respectively. The dependence of the reproduc-

tion number, as well as the shape of the epidemic curve, on the distribution

parameters is analysed in details in each case. In Section 5, by comparing

epidemics generated by different types of the recovery time distributions,

we illustrate that estimating the expected value and the variance of the re-

covery time is not sufficient to give a realistic description of the epidemics

and more detailed knowledge of the shape of the empirical distribution is

needed to give a reasonable approximation of a real epidemics.

2. Gamma distributed recovery time

The gamma distribution is one of the most commonly used distributions

in the epidemiology literature to approximate empirically observed latent



April 5, 2016 7:55 Proceedings Trim Size: 9in x 6in biomat2015

6

Figure 1. (a) Epidemic curves as averages of explicit stochastic simulations for non-

Markovian epidemics, where the transmission rate is τ = 0.3 and the initial number of

susceptibles is S0 = 999 on a homogeneous network with N = 1000 nodes and degree
n = 15. The circles/squares/diamonds correspond to simulations for gamma distributed

recovery time with parameters (a, b) = (2, 0.5)/(1, 1)/(0.5, 2), respectively. (b) The solid
curve shows the reproduction number Rp

0 as a function of variance v for fixed m = 1,

and the circle/square/diamond represent the cases simulated in Fig. (a). In the inset

figure, the shapes of the three corresponding probability density functions are presented.

periods and infectious periods, because of its flexibility and the possibility

of incorporating it into ordinary differential equation models by the method

of stages (also called linear chain) 18 . For example, it has been fitted to the

incubation period and infectious period of smallpox 9, bluetongue disease
10 and so on.

The usual notation of gamma distribution is Gamma(a, b), where a is

called the shape parameter and b is called the scale parameter. The prob-

ability density function and its Laplace transform are

fI(x) =
xa−1e−

x
b

Γ(a)ba
, L[fI ](s) =

(
1

1 + sb

)a
,

where Γ(a) is the gamma function evaluated at a. If the infectious period I
is gamma distributed with shape parameter a and scale parameter b, that

is I ∼ Gamma(a, b), then the expected value is m := E(I) = ab, and the

variance is v := Var(I) = ab2, and for simplicity later we shall use the

notation m and v to denote the mean (expected value) and the variance of

distributions.

Proposition 2.1. Consider two random variables I1 ∼ Gamma(a1, b1)

and I2 ∼ Gamma(a2, b2) such that E(I1) = E(I2) and Var(I1) ≤ Var(I2).

If I1 and I2 represent the recovery time distribution, then for the corre-

sponding reproduction numbers the relation Rp0,I1 ≥ R
p
0,I2 holds (i.e. for

gamma distributions with a given mean, the pairwise reproduction number

is monotonically decreasing in variance).
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Figure 2. Contour lines ofRp
0 as a two-variable function of the parameters of the gamma

distribution. The transmission rate is τ = 0.3, the network has N = 1000 nodes and

degree n = 15 and initial number of susceptibles is S0 = 999. In (a), the contour lines
are given as the function of the shape and scale parameter, while in (b) they are depicted

as the function of the mean and the variance of the gamma distribution.

Proof. Fix m as the same mean of I1 and I2, then the scale parameter

can be expressed as b = m
a . Using that v = Var(I) = ab2 and

L[fI ](τ) =

(
1

1 + τb

)a
,

we can express the parameters in terms of the mean m and variance v, and

thus the Laplace transform can be written as

λm(τ ; v) := L[fI ](τ) =

(
1

1 + τ
mv

)m2

v

,

where the notation λm(τ ; v) for the Laplace transform is meant to empha-

size that the Laplace transform evaluated at τ for a fixed m is a function

of v. For arbitrary 0 < x < y < 1 and 0 < a < b, the inequalities

x
m2

a < x
m2

b , x
m2

b < y
m2

b

hold. For v1 ≤ v2 and for τ > 0 we have 1
1+ τ

m v2
≤ 1

1+ τ
m v1

, and using the

relations above we obtain

(
1

1 + τ
mv1

)m2

v1

≤
(

1

1 + τ
mv1

)m2

v2

≤
(

1

1 + τ
mv2

)m2

v2

,

which means that λm(τ ; v) is monotone increasing in v. Therefore, the

pairwise reproduction number

Rp0,I =
n− 1

N
[S]0(1− λm(τ ; v))
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Figure 3. (a) Epidemic curves as averages of explicit stochastic simulations for non-

Markovian epidemics, where transmission rate is τ = 0.3 and initial number of suscep-
tibles is S0 = 999, on homogeneous network with N = 1000 nodes and degree n = 15.

The circles/squares/diamonds correspond to simulations for uniformly distributed recov-

ery time with parameters (a, b) = (0.9, 1.1)/(0.5, 1.5)/(0, 2), respectively. (b) The solid
curve shows the reproduction number Rp

0 as the function of variance v for fixed m = 1,

and the circle/square/diamond represent the cases simulated in Fig. (a). In the inset
figure, the three uniform density functions are depicted.

is monotone decreasing in v. �
The monotonicity of the reproduction number in the variance is de-

picted in Fig. 1(b). For a fixed mean but different variances of the gamma

distribution, we can observe different epidemic curves in Fig. 1(a), and

correspondingly different reproduction numbers (see Fig. 1(b)). The de-

pendence of Rp0,I on the distribution parameters is detailed in Fig. 2.

3. Uniformly distributed recovery time

Since its simplicity allows us to make explicit calculations, in this Section

we outline how the reproduction number and the disease dynamics behave

when the recovery time follows uniform distribution. Uniformly distributed

incubation and infectious periods have been used in the modeling of avian

influenza 26. Let Uniform(a, b) denote a uniform distribution corresponding

to the interval [a, b], where a ≥ 0, b > a. If I ∼ Uniform(a, b), then the

expected value is m = E(I) = a+b
2 , and the variance is v = Var(I) = (b−a)2

12 .

The probability density function and its Laplace transform are given as

fI(x) =

{
1
b−a for a ≤ x ≤ b
0 otherwise

, L[fI ](s) =
e−sa − e−sb

s(b− a)
.
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Figure 4. (a) Contour lines of Rp
0 as a two-variable function of the parameters of the

uniform distribution. (b) Contour lines of Rp
0 as a two-variable function of m and v for

uniform distribution. For both (a) and (b), the transmission rate is τ = 0.3, the network

has N = 1000 nodes and degree n = 15 with an initial number of susceptibles S0 = 999.

Proposition 3.1. Consider two random variables I1 ∼ Uniform(a1, b1)

and I2 ∼ Uniform(a2, b2) such that E(I1) = E(I2) and Var(I1) ≤ Var(I2).

If I1 and I2 represent the recovery time distribution, then for the corre-

sponding reproduction numbers the relation Rp0,I1 ≥ R
p
0,I2 holds (i.e. for

uniform distributions with a given mean, the pairwise reproduction number

is monotonically decreasing in variance).

Proof. Fixing the mean m, the right endpoint of the interval is b =

2m − a. Using that v = Var(I) = (b−a)2
12 and L[fI ](τ) = e−τa−e−τb

τ(b−a) , by

simple algebra we can express the parameters by m and the variance v,

and consequently the Laplace transform can be written as the function of

v:

λm(τ ; v) =
e−τm

2m

eτ
√
3v − e−τ

√
3v

τ
√

3v
,

where v ∈
(

0, m
2

3

]
from our assumptions on a and b. Expanding the ex-

ponentials in λm(τ ; v) into Taylor series, we can notice that the negative

terms cancel out, and we obtain

λm(τ ; v) =
e−τm

2m

(
1 + (τ

√
3v) + . . .

)
−
(
1− (τ

√
3v) + . . .

)
τ
√

3v

=
e−τm

2m

2τ
√

3v + 2 (τ
√
3v)3

3! + . . .

τ
√

3v

=
e−τm

m

∞∑
n=0

(τ
√

3v)2n

(2n+ 1)!
, (11)
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which is monotone increasing in v for m > 0 and τ > 0. Therefore, the

pairwise reproduction number Rp0,I = n−1
N [S]0(1 − λm(τ ; v)) is monotone

decreasing in v. �
The monotonicity of the reproduction number in the variance is de-

picted in Fig. 3(b). Similarly to the gamma distribution, for a fixed mean

but different variances of the uniform distribution we can observe different

epidemic curves in Fig. 3(a), and correspondingly different reproduction

numbers (see Fig. 3(b)). The dependence of Rp0,I on the distribution pa-

rameters is detailed in Fig. 4.

4. Lognormal distributed recovery time

Figure 5. (a) Epidemic curves as averages of explicit stochastic simulations for non-

Markovian epidemics, where transmission rate is τ = 0.3 and initial number of suscepti-
bles is S0 = 999, on homogeneous network with N = 1000 nodes and degree n = 15. The

circles/squares/diamonds correspond to simulations for lognormally distributed recovery

time with parameters (µ, σ) = (−0.03125, 0.25)/(− ln(3)
2
,
√

ln 3)/(0, 2), respectively. (b)

The solid curve shows the reproduction number Rp
0 as the function of variance v for

fixed m = 1, and the circle/square/diamond represent the cases simulated in Fig. (a).

Inset figure shows the shape of these three distributions.

The lognormal distribution is also widely used in epidemiology. They

have been fitted, among others, to the incubation and infectious periods

of smallpox 20. Let lnN (µ, σ2) denote a lognormal distribution, i.e. its

logarithm is a normal distribution with expected value µ and variance σ.

Then for the lognormal distribution m = E(I) = eµ+
σ2

2 , v = Var(I) =

e2µ+2σ2 − e2µ+σ2

, and the probability density function is, for x > 0,

f(x) =
1

x
√

2πσ
e−

(−µ+ln(x))2

2σ2 .

Unfortunately a closed form formula does not exist for its Laplace trans-

form, thus we can not repeat the analysis of the previous two sections.
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However, we can still investigate numerically the impact of m and v on

the reproduction number and the time course of the epidemic. The density

function can again be expressed in terms of m and v by the formula

fm(x; v) =
1

x
√

2π
√

ln
(
v
m2 + 1

)e− (ln(x)−ln(m)+ 1
2

ln( v
m2 +1))

2

2 ln( v
m2 +1) , for x > 0. (12)

By straightforward calculation, we can find µ = ln(m) − 1
2 ln

(
1 + v

m2

)
and σ2 = ln

(
1 + v

m2

)
, and then the formula above can be derived. Using

this formula for the density, we can plot the numerically determined pair-

wise reproduction number as a function of the variance for any given m, see

Fig. 5(b). The epidemic curves corresponding to these distributions can be

seen in Fig. 5(a), and the dependence of Rp0 on the distribution parameters

is detailed in Fig. 6.

Figure 6. (a) Contour lines of Rp
0 as a two-variable function of the parameters of the

lognormal distribution. (b) Contour lines of Rp
0 as a two-variable function of the mean

and variance for lognormal distribution. For both (a) and (b), the transmission rate is
τ = 0.3, the network has N = 1000 nodes and degree n = 15 with an initial number of

susceptibles is S0 = 999.

5. Discussion

We used our recently developed non-Markovian pairwise model 17 for net-

work epidemics to investigate the impact of the shape of the distribution of

the recovery times on SIR epidemics. In particular, we utilized our formula

for the reproduction number which includes the Laplace transform of the

probability density distribution of the infectious period17. We chose three

families of common distributions (gamma, uniform and lognormal), and in

each case we showed that (for the first two analytically, for the third one

only numerically) if the mean recovery time is given, then smaller variance
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Figure 7. (a) Comparison of three epidemic curves after averaging explicit

stochastic simulations with three different distributions of recovery times. The

diamond/circle/square corresponds to Gamma(0.5, 2), lnN
(

ln(3)
2
,
√

ln(3))
)

and

Weibull(0.72, 0.81) distributions, respectively. All three distributions have mean m = 1
and variance v = 2. (b) Probability density functions corresponding to the three distri-

butions.

leads to higher reproduction number, and consequently the epidemic curve

is characterised by faster initial growth rate and higher prevalence peak,

see Figs. 1, 3 and 5. We note that our simulations were done only for

homogeneous graphs, where the pairwise approximation works well 5. The

possible interplay of degree heterogeneity, or the clustering of the network,

and the distribution of recovery times is an interesting future question.

For two-parameter distribution families, it is possible to regard Rp0 as a

function depending on two variables, e.g. the mean m and variance v, see

Figs. 2, 4, 6. Since our general final size relation (10) is monotone in Rp0,

we conclude that smaller variance generates more infections.

It is important to observe that this statement, i.e. that smaller variance

implies higher Rp0 is true only if we compare distributions from the same

family. In Fig. 7, we compared three distributions from different families,

each having m = 1 and v = 2. Besides the gamma and the lognormal

distributions, for the sake of comparison we selected a third type of con-

tinuous distribution, namely Weibull distribution, which has been fitted to

the infectious period for the recent ebola outbreak 4. Fig. 7 illustrates that

the mean and the variance of the recovery times alone are not able to de-

termine the key characteristics of the epidemic curves, and a large variety

of outbreaks can be generated from having the same mean and variance.

This is especially the case in Fig. 7, where the gamma distributed infectious

period leads to a very different epidemic, compared to that corresponding

to the lognormally distributed infectious period, despite the mean and the

variance are being identical. Therefore, in a real life situation, it is crucial
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to estimate the empirical distribution of the infectious period as accurately

as possible, since the mean and the variance alone do not provide enough

information for accurate predictions.
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