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Abstract
The 2014 Ebola Virus Disease (EVD) outbreak in West Africa was the largest and longest

ever reported since the first identification of this disease. We propose a compartmental

model for EVD dynamics, including virus transmission in the community, at hospitals, and at

funerals. Using time-dependent parameters, we incorporate the increasing intensity of inter-

vention efforts. Fitting the system to the early phase of the 2014West Africa Ebola outbreak,

we estimate the basic reproduction number as 1.44. We derive a final size relation which

allows us to forecast the total number of cases during the outbreak when effective interven-

tions are in place. Our model predictions show that, as long as cases are reported in any

country, intervention strategies cannot be dismissed. Since the main driver in the current

slowdown of the epidemic is not the depletion of susceptibles, future waves of infection

might be possible, if control measures or population behavior are relaxed.

Introduction
Ebola virus was originally named Zaire Ebola Virus after the country Zaire (now the Demo-
cratic Republic of Congo), where it first appeared in 1976 [1, 2]. Nowadays five Ebola virus
strains have been identified, four of which cause severe hemorrhagic fever in humans [3, 4].
Fruit bats have been confirmed as natural Ebola virus hosts. The virus is transmitted to humans
through close contact with blood, secretions, organs or other bodily fluids of infected ill or dead
animals. Human-to-human transmission follows through direct contact with blood, secretions,
organs or other bodily fluids of infected people, as well as with materials (e. g., bedding, cloth-
ing) contaminated with these fluids [4]. Ebola virus may be transmitted even from dead
patients, indeed these remain infectious as long as their blood and body fluids contain the virus.

After an incubation period which varies from 2 to 21 days, the patient shows the first symp-
toms, such as fever, fatigue, muscular pains, headache and sore throat. The illness becomes
more acute with vomiting, diarrhea, body rash, tremors and in some cases, both internal and
external bleeding. Ebola Virus Disease (EVD) is fatal, with a case fatality around 50–70% [5].
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The 2014 EVD outbreak inWest Africa was the largest and longest ever reported since the
first identification of this disease [6]. Retrospective studies by theWorld Health Organization
(WHO) identified an 18-month-old boy, fallen ill in Guinea on 26 December 2013, as the first
Ebola victim. Since then, the virus spread and caused almost 30 deaths in Guinea, before being
identified as Ebola at the end of March 2014. The virus rapidly spread to Liberia (first case
reported on 30 March) and Sierra Leone (first case reported on 26 May) causing more and more
deaths. It was further imported via air travel into Nigeria, Mali, Senegal, Spain, the United King-
dom and the United States of America, causing minor outbreaks [6]. As of 25 January 2015, a
total of 22096 EVD cases and 8810 deaths were reported [7]. Out of these, only 35 cases and 15
deaths occurred outside of the most affected countries, Guinea, Liberia and Sierra Leone [7].

After a continuous increase in the case incidence, weekly case numbers started to decrease
in Liberia (from mid September), in Sierra Leone (from mid December) and finally in Guinea
(from the beginning of January 2015) [7]. The current situation in West Africa allows to hope
for the end of Ebola epidemic. Nevertheless, as long as cases are reported in any country, the
introduction of an infectious patient into unaffected regions remains a danger.

In 2014, huge efforts were made by international organizations to keep the West African
epidemic under control and avoid disease spread. Mathematical modeling has contributed to
the investigation of the disease dynamics, to understand how it evolved, and predict what
might come. Crucial results concern with the estimation of the so-called basic reproduction
number (denoted byR0), a metric which indicates the average number of secondary infections
generated in a fully susceptible population by one infected host over the course of his infection.
The basic reproduction number is a reference parameter in mathematical epidemiology used
to understand if, and in which proportion, a disease will spread among the population.

Mathematical models were developed already for the largest epidemics reported before
2014. Chowell et al. [8] proposed a stochastic SEIR (susceptibles—exposed—infected—recov-
ered) model to fit data from the 1995 and 2000 outbreaks in Congo and Uganda, respectively.
They estimated that, in the absence of intervention,R0 was 1.83 (with standard deviation 0.06)
for Congo and 1.34 (with standard deviation 0.03) for Uganda. In [9], a quite similar stochastic
SEIR model yields a lower estimate for Congo (R0 � 1.4). Data from the same epidemic were
recently reconsidered by Ndanguza et al. [10].

The stochastic SEIR model in [8] was extended by Legrand et al. [11] with two more com-
partments, one for hospitalized and one for dead patients who are not yet buried. The basic
reproduction number estimated with this model was 2.7 (95% Confidence Interval (CI): 1.9–
2.8) for the 1995 epidemic in Congo, and 2.7 (95% CI: 2.5–4.1) for the 2000 epidemic in
Uganda. Moreover, the authors studied various scenarios to estimate the effects of several
parameters, such as the duration of the time to interventions, the hospitalization rate of Ebola
cases after interventions, the efficacy of interventions at hospital. The basic reproduction num-
ber was split into three components, representing the virus transmission through non-hospital-
ized patients, hospitalized patients, and transmission following funeral attendance. Legrand’s
compartmental model was used in [12] to revisit data from the first known Ebola outbreak
(Congo, 1976), providingR0 � 1.34 (95% CI: 0.92–2.11).

The first mathematical models for 2014 EDV epidemics appeared around September of the
same year. In [13], time series of weekly reported EVD cases in Guinea, Sierra Leone, and Libe-
ria up to 8 September 2014, were used to estimateR0 and its dynamical changes, affected by
control measures. The data were fit with piecewise exponential curves. The basic reproduction
number varied from 1.2 (95% CI: 1.0–1.3) in Sierra Leone, to 2.3 (95% CI: 1.8–2.8). Similar
piecewise fit was provided in [14]. Althaus [15] uses a SEIR model with control measures
beginning immediately after the appearance of the first infected case in a country, and esti-
matesR0 to be 1.51 for Guinea, 2.53 for Sierra Leone and 1.59 for Liberia.

Transmission Dynamics and Final Size of EVD with Interventions

PLOS ONE | DOI:10.1371/journal.pone.0131398 July 21, 2015 2 / 21

program for Science, Technology and Innovation
Policy.

Competing Interests: The authors have declared
that no competing interests exist.



Legrand’s model was applied to Ebola by Rivers et al. [16], who estimatedR0 to be approxi-
mately 2.2 for Sierra Leone and 1.78 for Liberia, fitting data from December 2013 to October
2014. The same model was used in [17] to consider spatial spread of Ebola and exportation of
the virus to other countries. The results indicated that the outbreak was likely to spread further
among African countries, increasing the risk of pandemic on a longer time scale.

Focus was made on the reported EVD cases and deaths in Montserrado County, Liberia
[18–21]. Chowell et al. [20] used the logistic curve to fit the cumulative number of cases in
Liberia, up to 23 October 2014. In [18], data from 7 July to 22 September 2014 were used to fit
a stochastic model, which considers the level of infectiousness of ill patients or corpses. It was
estimated that patients who did not survive the disease had the highest potential for transmit-
ting the virus during disease progression.

In [21], a mathematical model was developed to investigate whether various intervention
strategies, such as the distribution of protective kits to households, could have an effect on con-
trolling the spread of Ebola virus in the country. The model parameters were obtained by fitting
data of reported cases and deaths as of 8 October 2014, andR0 was estimated to be 2.49 (95%
CI: 2.38–2.60). The model predicted that with allocation of kits on 31 October 2014 there would
have been between 46123 (95% CI: 37897–4295) and 78623 (95% CI: 71304–86442) EVD cases
by 15 December 2014. Effects of further preventive measures were considered in [19].

Drake et al. [22] developed a multitype branching process model that incorporates heteroge-
neities and time-varying parameters to reflect changes in the human behavior as well as in the
introduction of intervention strategies, e. g., in the rates of hospitalization, exposure of health-
care workers, and secure burial.

Following Legrand et al. [11], we propose a compartmental model for Ebola virus disease
outbreak. Key components of our model are compartments for hospitalized patients and for
patients who died of the disease but are not yet buried. Individuals in both compartments play
an important role in the chain of Ebola virus transmission. We fit our model to weekly inci-
dence data reported by WHO from 28 December 2013 to 3 October 2014 [23]. For this first
phase of the epidemic, we estimate the basic reproduction number.

While knowingR0 in the initial phase of the epidemic can help to understand the potential
rate of the spread, more detailed analysis is needed to identify efficient control measures.
Among the causes of 2014 EVD outbreaks are the delay in interventions and the reluctance in
the community to undertake preventive measures. For this reason, in the second part of this
work, we focus on the impact of intervention strategies which have been introduced to control
the spread of the disease. Using time-dependent parameters to describe intervention strategies,
we fit our model to weekly incidence data reported by WHO from 3 October 2014 to 13 Febru-
ary 2015 [7, 23, 24]. We derive a final size relation, valid from the time of intervention. This is
an analytic formula that can be used to predict the total number of cases during the whole out-
break, providing a reliable approximation when interventions are effective. Performing sensi-
tivity analysis, we study the effects of model parameters on the basic reproduction number and
on the final size of the epidemic. In this way we identify factors playing a key role in the spread
of Ebola virus, and intervention strategies resulting in effective control of the epidemic. To
assess the impact of the timing of interventions, we simulate different scenarios with the same
target control parameters, changing only the time of interventions.

As of February 2015, the number of new reported cases has significantly dropped, and it
seems that the current level of intervention has effectively stopped the outbreak. The risk of
infection might now be perceived to be lower, and this could induce community member and
healthcare workers to relax protective measures. We use our model to consider changes in the
community behavior and relaxation of interventions in the future, showing that ceasing cur-
rent controls has the potential risk of a new Ebola outbreak.
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Methods

Compartmental model
We develop a compartmental population model, following an earlier work by Legrand et al.
[11]. Individuals are classified as follows. Susceptible individuals (S) are those who can be
infected with Ebola virus. Exposed individuals (E) have been infected with Ebola virus, though
they are not yet infectious, nor symptomatic. After a latent phase (about 10 days from infection
[5]) the first symptoms appear and the exposed host becomes infective. We distinguish
between infective Ebola patients in the community (I) and hospitalized patients (H). Patients
who died of the disease and are not yet buried (D) are still carrying the virus and may transmit
the disease during traditional funerals. Hosts who recovered from the infection are removed
(R) from the chain of transmission.

Transmission of Ebola virus is due not only to contact with infectives in the community, but
also with hospitalized patients and dead Ebola patients. Indeed, a large part of infections
occurred at hospitals and funerals with post-mortem contacts [6]. In this view, the compart-
ments (H) and (D) are crucial components of our model. Our approach resembles the one in
[11], with the extension that we include patients who abandon healthcare facilities and return
to community, as it has been reported to happen in several cases [6]. We use two additional var-
iables to track the cumulative number of cases (C) and burials (B). The transmission diagram of
the model is depicted in Fig 1, and the governing equations are specified in Appendix A.1.

Modeling the impact of intervention
To prevent and control the spread of Ebola, intervention strategies were adopted already dur-
ing the 1995 Congo and the 2000 Uganda epidemics [8]. These include surveillance, isolation
of suspected cases, information and instructions for the community, introduction of protective
clothing for healthcare workers, and the rapid burial of patients who die from the disease [6].
Such control measures correspond to changes in certain model parameters. For example, an
increasing hospital capacity shall correspond to increasing the hospitalization rate; education
about Ebola transmission and distribution of protective kits for households might reduce the
transmission rate in the community; definition of a more rigorous protocol for health facilities
shall reduce transmission of the virus in the hospitals.

To describe the effect of intervention strategies in our model, we identify five control param-
eters, namely, the transmission rates in the community (β), in hospitals (θ) and at funerals (φ),
the hospitalization rate (η) and the burial rate (b). Drake et al. [22] used the same control
parameters to forecast the number of Ebola cases which should have been reported in the fall
of 2014. We assume that, once intervention strategies have been introduced, control parame-
ters are changing gradually in time. This is a realistic assumption, as intervention strategies are
indeed hard to be applied when the community refuses to cooperate. WHO reports show that,
as of February 2015, control indicators (such as the number of unsafe burial reported, the hos-
pitalization rate and transmission rate in hospitals) are still far from the target [24].

We illustrate the structure of our time-dependent control parameters by mean of the trans-
mission rate in the community. After intervention occurred at time T, this transmission rate

gradually changes from value β to value ~b, with ~b < b, according to

bðtÞ ¼ b for t < T

~b þ ðb� ~bÞe�qbðt�TÞ for t � T:

(

The parameter qβ describes how fast the transition from β to ~b occurs. The mean value ðbþ
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~bÞ=2 is reached at time T+tβ, where tβ = ln(2)/qβ. The same time-dependent transmission rate
was previously introduced in [8]. Similarly, we assume that after intervention the contact rates

φ and θ decrease from value φ to value ~φ (respectively, from θ to ~y), whereas the hospitalization

rate and the burial rate increase (from η to ~Z, and from b to ~b, respectively).

Parameter estimation and sensitivity
To isolate parameters of significant influence on the basic reproduction number, we perform
parameter sensitivity analysis as follows. Latin Hypercube Sampling (LHS), an efficient statisti-
cal sampling method permitting simultaneous variation of the values of all input parameters
[25], is used to generate a representative sample set of 10-tuples of parameters from the param-
eter ranges indicated in Table 1. Indeed, since the expression ofR0, see below, does not involve
the incubation time 1/α, only the remaining ten parameter-ranges in Table 1 are considered in
the Partial Rank Correlation Coefficients (PRCC) analysis for the basic reproduction number.
Using PRCC we can rank the effect that each parameter has on the outcome, when other
parameters are simultaneously varying in the given ranges. Calculation of PRCC allows to
determine which statistical relationships exist between each input parameter and the outcome
variable [26]. Parameters with PRCC larger than zero are positively correlated withR0, that is,

Fig 1. Model structure for 2014 Ebola outbreak in West Africa. Solid arrows indicate transition from one compartment to another, dashed arrows indicate
virus transmission due to contact with infectives. The virus can be transmitted to susceptible hosts (S) from infectious patients in the community (I),
hospitalized patients (H) or patients who died of the disease and are not yet buried (D). Upon infection, susceptible hosts enter a latent phase (E), in which
they are not yet infective. After symptoms onset, they become infective and might be hospitalized, recover from the disease or die and remain infectious until
buried (B). Hospitalized patients might abandon the healthcare facilities and return to community, otherwise they either recover or die of the disease. Hosts
who recovered from the infection are removed (R) from the chain of transmission.

doi:10.1371/journal.pone.0131398.g001
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the basic reproduction number increases as these parameter values are increased. Parameters
with negative PRCC will decreaseR0 as they are increased. Analogous parameter sensitivity
analysis is performed on the final size relation, using the parameter ranges indicated in Table 2.
With the help of PRCC we identify key intervention parameters and test their effects on the
total number of hosts who have been infected during the course of the epidemic. The sensitivity
of the final epidemic size to control parameters is also visualized in contour plots. Moreover,
we use the time of intervention as a parameter and investigate the sensitivity of the epidemic
outcome with respect to the delay in interventions.

Results

Basic reproduction number and the early phase of the outbreak
To capture the characteristics of the early phase of the 2014 West Africa outbreak, first we
identify the basic reproduction number (for the derivation, see Appendix A.2),

R0 ¼
bðgH þ kÞ

gHZþ gðgH þ kÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
RC

þ Zy
gHZþ gðgH þ kÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

RH

þ φðgHdHZþ gdðgH þ kÞÞ
bðgHZþ gðgH þ kÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

RF

; ð1Þ

with parameters as in Table 1. The basic reproduction number clearly breaks down to three
components: secondary infections generated in the community (RC), in hospitals (RH), and at
funerals (RF). Similar components ofR0 were identified in previous works [11, 17, 18, 27].

In order to obtain realistic parameter values, we fit our model solutions to the WHO dataset
for weekly case incidence up to week 40 of 2014 (ending 3 October) [23]. The cumulative num-
ber of cases reported in Fig 2 is the sum of confirmed, suspected and probable cases. Same data
were used, e.g., in [15, 22]. Starting from plausible ranges taken from the literature (see
Table 1), we use LHS to generate 10000 sample parameter sets for our model. We run a numer-
ical simulation for each sample and select the best fit, in the least-squares sense. Estimated
parameter values up to week 40 are reported in Table 1. The best fit provides the valueR0 =
1.44 varying in the range 0.75–1.92, and matching estimated values in previous works [8, 12,
13]. Reported cumulative incidence data and numerical solution are depicted in Fig 2 together
with the 95% confidence range, obtained by allowing for each parameter a 5% relative error
with respect to the best fit.

Table 1. Parameter estimates for the 2014 Ebola outbreak. Parameter descriptions, fitted values and ranges used for parameter sensitivity analysis. Com-
parable values can be found in references indicated in the last column.

Parameter Description Fitted value (Range) References

β Transmission rate in the community before intervention (per week) 0.532 (0.350–0.575) [11]

θ Transmission rate in hospitals before intervention (per week) 0.328 (0.100–0.480) [11]

φ Transmission rate at funerals before intervention (per week) 2.104 (1.402–2.475) [11]

1/η Mean time from symptoms onset to hospitalization 4.8 (4.8–5.3) days [5, 11, 17, 19]

1/b Mean time from death to burial 5.4 (4–6.6) days [6]

1/γ Mean duration of the infection 10.4 (9.5–10.5) days [6, 11, 17]

1/α Mean duration of the incubation period 10 (9.5–10.5) days [5, 19]

1/γH Average permanence in the hospital 4.6 (4.4–4.9) days [19]

δ Case fatality ratio in the community 73% (69%–73%) [5, 11, 15]

δH Case fatality ratio in hospitals 61% (52%–64%) [5]

κ Hospital leaving rate (per week) 0.0025 (0.0022–0.0028)

doi:10.1371/journal.pone.0131398.t001
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Using the formula (1) and the estimated parameter values, we find that the three compo-
nents of the basic reproduction number areRC = 0.25 (0.16–0.29),RH = 0.15 (0.04–0.23), and
RF = 1.05 (0.48–1.49). This indicates that the most important factor for the spread of the epi-
demic is the virus transmission occurring during traditional burial practices. We conjecture
that Ebola spread can be effectively controlled by a significant decrease in the funeral reproduc-
tion number, while control by other measures is not likely to stop the outbreak, as long as

Table 2. Estimates for intervention parameters. Parameter descriptions, fitted values and ranges used for parameter sensitivity analysis. Comparable val-
ues can be found in references indicated in the last column.

Parameter Description Fitted value (Ranges) Comments

~b Transmission rate in the community after
intervention (per week)

0.505 (0.425–0.532) Corresponds to 5% decrease in the transmission in the
community after interventions, cf. [11]

tβ Time to achieve ðbþ ~bÞ=2 12.5 days

~y Transmission rate in hospitals after
intervention (per week)

0.095 (0.033–0.328) Corresponds to 71% decrease in the transmission in hospitals
after interventions, cf. [11, 19]

tθ Time to achieve ðyþ ~yÞ=2 11.1 days

~φ Transmission rate at funerals after intervention
(per week)

1.115 (0.210–2.104) Corresponds to 47% decrease in the transmission at funerals
after interventions, cf. [11]

tφ Time to achieve ðφþ ~φÞ=2 10.3 days

1=~Z Mean time from symptoms onset to
hospitalization

4.1 (2–5) days cf. [11]

tη Time to achieve ðZþ ~ZÞ=2 27.1 days

1=~b Mean time from death to burial 4.9 (1–5.4) days cf. [6]

tb Time to achieve ðbþ ~bÞ=2 21.2 days

doi:10.1371/journal.pone.0131398.t002

Fig 2. Data fit for Ebola cases in West Africa fromweek 1 to week 40. The blue dots show the cumulative
number of cases reported by [23] from week 1 (ending 3 Jan 2014) to week 40 (ending 3 Oct 2014). The
cumulative number of cases reported is the sum of confirmed, suspected and probable cases. The red curve
shows the fit with parameter values in Table 1. The orange region shows the total number of cases predicted
by the model (95% CI).

doi:10.1371/journal.pone.0131398.g002
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funeral linked transmissions remain high. For the 1995 Ebola epidemic in Congo, Legrand
et al. [11] estimatedRC = 0.5,RH = 0.4,RF = 1.8, confirming funerals as the key factor for
virus spread. In contrast, Gomes et al.[17] estimatedRC = 0.8,RH = 0.4, andRF = 0.6, imply-
ing that the virus mostly transmitted in the community. Remarkably, in our work as in previ-
ous ones, the lowest component ofR0 is the one related to secondary infections generated in
hospitals.

In order to study sensitivity of the basic reproduction number to parameter variations, we
perform PRCC analysis on our sample set (parameter ranges in Table 1). The result, visualized
in Fig 3(a), confirms that the most important parameters in reducingR0 are, indeed, the
funeral transmission rate and the time to burial. On the other hand, the hospital abandonment
rate has not much influence onR0 in these parameter ranges.

Assessment of the interventions
Model predictions with parameter values in Table 1 yield a reasonably good fit in the early
phase of the epidemic, up to week 40. However, after week 40, the numerical solution curve

Fig 3. Partial rank correlation coefficients (PRCCs) of the ten parameters that influence disease spread. Parameter values from the ranges in Tables 1
and 2 are considered. Parameters with PRCC larger than zero are positively correlated withReff(t), that is, the effective reproduction number at time t
increases as these parameter values are increased. Parameters with negative PRCC will decreaseReff(t) as they are increased. Variations in the burial rate
and in the transmission rate at funerals have the greatest effect on the reproduction number, in particular at the beginning (t = 0) of the epidemic (a). Fig (b)
and (c) show how the relative importance of the parameters on the effective reproduction number changes in time.

doi:10.1371/journal.pone.0131398.g003
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deviates from the real data considerably (see the black dashed curve in Fig 4). This is due to the
fact that parameter values in Table 1 do not take into account control measures achieved
thanks to national and international public health efforts. In order to capture the dynamics of
the intervention phase of the epidemic, we extended the initial model to account for control
measures. As described in the Methods Section, we select five target control parameters: the
transmission rate in the community (β), the transmission rate in hospital (φ), the transmission
rate at funerals (θ), the hospitalization rate (η) and the time to burial (b). After intervention
strategies have been introduced, these intervention parameters change gradually in time from a
baseline parameter value to a target value. Baseline parameters are chosen according to the best
fit for the early phase (Fig 2). Target parameter values are estimated fitting our model solutions
to weekly case incidence reported by [7, 23, 24] from week 40 to week 59 (ending 13 Feb 2015).

As for the early phase of the epidemic, we use LHS to generate sample parameter sets for
our model (ranges in Table 2), run a numerical simulation for each sample and select the best
fit. Estimated parameter values for the intervention phase are reported in Table 2, indicating a
5% reduction in the transmission rate in the community, a 71% reduction in the transmission
rate in hospitals, and a 47% reduction in the transmission rate at funerals. On the other side,
the mean time to hospitalization decreased from 4.8 to 4.1 days (corresponding to higher hos-
pitalization rate) and the mean time from death to burial decreased from 5.4 to 4.9 days (corre-
sponding to increased burial rate). These estimates mostly agree with the results in [11, 19],
whereas Legrand et al [11] estimated a decrease of 75–100% for the 1995 and 2000 epidemics
in Congo and Uganda, respectively.

Fig 4 shows the best fit from week 40 to week 59, as well as predictions until week 120 (end-
ing 15 April 2016), and the 95% confidence range, obtained by allowing for each parameter a
5% relative error with respect to the best fit. Given current intervention measures, the

Fig 4. Data fit for Ebola cases in West Africa fromweek 1 to week 60 and prediction until week 120. The blue dots show the cumulative number of
cases reported by [7, 23, 24]. The cumulative number of cases reported in Fig 2 is the sum of confirmed, suspected and probable cases. The red curve
shows the fit obtained with parameter values in Table 1. At week 40 (ending 3 Oct 2014) intervention strategies are introduced. The green curve shows the
model fit from week 40 to week 59 (ending 13 Feb 2015), with parameter values in Table 2. The light green curve shows model prediction until week 120
(ending 15 April 2016). The orange region shows the model-predicted total number of cases (95% CI) from the introduction of intervention strategies. The
green charts on the right shows which proportion of the estimated cases at week 120 are due to contacts in the community (23%, 6191 out of 26809 cases),
contacts in the hospitals (8%, 2173 out of 26809 cases) and contacts at funerals (69%, 18445 out of 26809 cases). If intervention strategies are not
introduced at week 40 (black dashed curve), the numerical solution curve deviates from the real data considerably.

doi:10.1371/journal.pone.0131398.g004
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cumulative number of cases is predicted to be around 26800 until week 120 (95% CI: 23580–
31030). Out of these, we estimate ca. 23% of the cases to be due to contacts in the community,
ca. 8% to follow contacts in the hospitals, and ca. 69% to come from burial practices. WHO
estimated that in Guinea and Sierra Leone, 60–80% of the cases are linked to traditional funer-
als [6].

As time elapses, the dynamics of the outbreak together with the introduction of control
measures shift the relative importance of the parameters on the disease spread, as it is shown in
Fig 3b and 3c.

Final epidemic size after intervention
By mathematical analysis, we derived a final size relation after interventions. This is an analytic
formula that can be used to predict the total number of cases during the whole outbreak, pro-
viding a reliable approximation when the total population and the parameters do not change
much after some time T, as this is the case when the interventions are effective. The final size
relation is computed in Appendix A.3 as

ln ST � ln S1 ¼ Rc

ST
NT � S1ð Þ �Rc

ST
RT

þ ~φ
~bNT

DT þ HT

Rc

ST
1� z

y
þ xv
yu

� �
� v
uNT

� �
:

ð2Þ

Here the subindex T refers to the size of the given compartment at intervention time T, in par-
ticular NT is the population size at time T. Further,Rc is the effective reproduction number at
time T,

Rc ¼
~φu
~b

þ y

� �
1

uþ x
� ST
NT

;

and

x ¼ ~Zð1� dHÞgH þ ðgH þ kÞð1� dÞg; z ¼ ð1� dHÞgH~b � ð1� dÞg~y;
y ¼ ~Z~y þ ðgH þ kÞ~b; u ¼ ~ZdHgH þ ðgH þ kÞdg; v ¼ dHgH~b � dg~y;

with the parameters in Table 2. The notation S1 expresses the number of susceptibles at the
end of the outbreak. Thus, the total number of cases can be obtained as S0−S1, where S0 is the
number of susceptibles at time 0. Having an analytic formula for the final size, we can examine
the sensitivity of the total number of cases to the intervention parameters. The relative impor-
tance is shown by means of PRCC in Fig 5, while the sensitive region is plotted on two-parame-
ter planes in Fig 6. We conclude that the most important parameters in reducing the final size
are the funeral transmission rate and the time to burial.

Impact of the timing of interventions
To assess the impact of the timing of interventions, we investigate sensitivity of the solutions
with respect to the time of intervention T. We assume intervention strategies are optimally
introduced at time T. This means that there is no smooth transition from the baseline parame-
ter to the target parameter, but rather an instantaneous switch at time T, which approximates
very large values of exponents qβ, qφ, qθ, qη, qb. Hence we use the baseline parameters from
Table 1 up to time T, then fix the intervention parameters as in Table 2 and use them in the
model equations after time T. Then we let T vary. Fig 7 shows simulations for intervention at
weeks 25, 30, 35, 40, 45, as well as the case of no intervention, alongside with the predicted
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value of the total cases using our final size relation. One can see that for such parameter ranges,
the final size relation is indeed very accurate. The black curve in Fig 7 corresponds to model
prediction with baseline parameters and indicates that, in the absence of control measures,
Ebola reported cases would have grown exponentially in this time frame. The orange curve in
the same figure, corresponding to intervention at week 40, can be compared to reported cases
and to the fit in Fig 4. We observe that if control strategies gradually applied from week 40
were immediately effective, there would have been less than 22000 reported cases, instead of
the 26800 indicated in Fig 4. All in all, we find that the final epidemic size is very sensitive to
the timing of interventions: five weeks delay can roughly double the total number of cases.

Discussion
The 2014 epidemic in West Africa has been the most severe Ebola virus disease outbreak ever
reported. Several mathematical models have been developed to predict how the disease evolves,
and to assess strategies for mitigation and control. Our contribution aimed to understand the
dynamics of the 2014 EVD outbreak, taking into consideration the continuously changing con-
trol measures adopted by African institutions and international organizations. We proposed a
deterministic model based on the work by Legrand et al. [11], which is an extension of the
SEIR model. Classifying infective agents into three groups, the model kept track of infections
occurred in the community, in hospitals or during traditional funerals. To capture the key
characteristics of the initial growth phase, we fitted our model to weekly incidence data
reported by [23] for the first 40 weeks of 2014, until 3 October. Parameter values were esti-
mated by generating sample sets from previously proposed parameter ranges. For the first
phase of the epidemic, we estimatedR0 to be 1.44, in accordance with previously estimated val-
ues [8, 12, 13]. The basic reproduction number could be split into three components, for the
virus transmission through non-hospitalized patients, hospitalized patients, and transmission
following funeral attendance. Similarly to the results in [11, 18], we found that the most impor-
tant factor for the spread of the epidemic was virus transmission during traditional burial prac-
tices. PRCC analysis confirmed that funeral transmission rate and time to burial are the most
important parameters in reducingR0 (Fig 3).

Fig 5. Partial rank correlation coefficients (PRCCs) of the five intervention parameters that influence the cumulative number of cases. Parameter
values from the ranges in Table 2 are considered. Parameters with PRCC larger than zero are positively correlated with the total number of hosts who have
been infected over the course of the epidemic. Parameters with negative PRCC will decrease the number of hosts who have been infected over the course of
the epidemic, as they are increased. The greatest effect will be observed with variations in the burial rate, in the transmission rate at funerals and in the
transmission rate in hospitals.

doi:10.1371/journal.pone.0131398.g005
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In accordance with WHO reports [6], we identified 10 October 2014 as the time at which
control strategies were introduced. For the intervention phase we selected five control parame-
ters (β, φ, θ, η and b) which change gradually in time. The model was fitted to weekly incidence
to data from October 2014 to February 2015. The best fit suggested that control measures

Fig 6. The effects of intervention on the cumulative number of cases. Sensitivity analysis of the total number of cases during the course of the epidemic.
The key intervention parameters, namely, the transmission rate at funerals (φ), the transmission rate in hospitals (θ) and the time from death to burial (1/b)
help to control the attack rate of the epidemic. Blue area corresponds to lower cumulative number of cases, the orange area corresponds to higher
cumulative number of cases.

doi:10.1371/journal.pone.0131398.g006
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could effectively reduce the transmission rate in hospitals (θ) and the transmission rate at
funerals (φ), whereas the transmission rate in the community (β) was barely affected. Indeed,
the observation of a stricter protocol in healhcare facilities as well as safe burial practices are
most likely to be controlled than community behaviors and interactions. The fitted control
parameter values could be compared with WHO indicators [24] for intervention measures,
such as the time from symptom onset to isolation, the number of reported safe burials, or the
number of districts in which the community was reluctant to cooperate. The WHO report [24]
stated that months after interventions, control indicators were shown to be yet far from the tar-
get. In accordance, we found that certain control parameters, such as η or b, needed 40 to 60
days to switch from the baseline value to the intervention target value. Using the fitted inter-
vention parameters, the model could predict about 26800 total cumulative cases until Arpil
2016 (Fig 4), out of which ca. 70% would come from burial practices. This result matches
WHO estimates [6].

It is not an easy task to predict the final size of an ongoing epidemic [20]. From the time of
intervention on, our final size relation (2) holds. Its computation is an innovative result for
Ebola disease models, which has not been presented before and will be useful for the investiga-
tions of possible outbreaks in the future as well. The analytic formula (2) is a reliable instru-
ment for predictions on the total number of cases during the whole outbreak. The final size
relation was also used to show that the burial rate, the transmission rate at funerals and the
transmission rate in hospitals are key factors in controlling the total number of cases.

In the last part of the work we investigated the importance of timely intervention, showing
that few weeks delay can result into twice as large total number of cases.

Fig 7. The importance of timely intervention in 2014 Ebola outbreak. Predicted number of cumulative cases: numerical simulations of the mathematical
model (solid lines) and values estimated by the final size formula (2) (dashed lines). The later intervention occurs, the higher the number of Ebola cases.
Simulations were done for hypothetical and immediately effective intervention at week 25 (blue), week 30 (light blue), week 35 (yellow), week 40 (orange),
week 45 (red). If no intervention strategies are introduced (black curve), the number of Ebola cases grows exponentially.

doi:10.1371/journal.pone.0131398.g007
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Using a relatively simple deterministic compartmental model naturally has several limita-
tions. We assumed homogeneous mixing for the whole West Africa region, while in reality spa-
tially heterogeneous epidemic patterns arose. Especially in the initial phase of the epidemics,
there was much uncertainty regarding the reliability of data collection.

The quality of reporting and surveillance might have changed significantly as the epidemic
progressed, but the real number of Ebola cases is still difficult to estimate. Here we have consid-
ered the reported number of confirmed, probable, and suspected Ebola cases (for the defini-
tions, see [28]) from official WHO reports, as it was done in [15, 22]. Though we have not
accounted for underreporting and other unreliabilities, our confidence bands cover a plausible
range that likely captures the real trends.

Timely intervention strategies played a key role for the dynamics of the 2014 Ebola outbreak
in West Africa. As of February 2015, the number of new reported cases has significantly
dropped, and it seems that the current level of intervention has effectively stopped the out-
break. As the Ebola epidemic appears to be over, the risk of infection might now be perceived
to be lower. This could induce community members and healthcare facilities to relax protective
measures, for example, by reintroducing traditional burial practices. Relaxation of control mea-
sures can be easily incorporated into our compartmental model by time variance of the relevant
parameters. Such a scenario is shown in Fig 8, using our current fits to weekly cases together
with a future scenario in the case of relaxed control measures. This result shows that dismissing
current intervention measures has the potential risk of a second outbreak. The phenomenon of
such a resurgence has already been observed on local levels: in late November, several areas in

Fig 8. A new Ebola outbreak is possible if control is relaxed.Model fit for the number of new weekly reported cases, corresponding to the cumulative
cases in Fig 4. The blue dots show new weekly cases reported by [7, 23, 24]. The red curve shows the fit obtained with parameter values in Table 1 up to
week 40 (ending 3 Oct 2014). The dark green curve shows the model fit from the introduction of control measures at week 40 to week 59 (ending 13 Feb
2015), with parameter values in Table 2. The light green curve shows model prediction until week 200 (ending 27 October 2017). The gray curve shows the
model prediction assuming that, at week 120 (ending 15 April 2016), intervention strategies are relaxed to the following values: ~b ¼ 0:521, ~y ¼ 0:235,
~� ¼ 1:708, 1=~b ¼ 5:2 and 1=~Z ¼ 4:6.

doi:10.1371/journal.pone.0131398.g008
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Guinea that had been reporting no new cases were affected again [6]. We stress that protective
measures among the community and healthcare workers shall not be relaxed too early. Since
the majority of the population in the affected regions are still susceptible, as long as the virus
was not eradicated, the risk of a new outbreak would persist.

A Appendix

A.1 The governing equations
In accordance with the structure diagram in Fig 1 and the description of the parameters in
Table 1, the governing equations of the compartmental system can be written as

S0ðtÞ ¼ � lðtÞSðtÞ;
E0ðtÞ ¼ lðtÞSðtÞ � aEðtÞ;
I 0ðtÞ ¼ aEðtÞ � gIðtÞ � ZIðtÞ þ kHðtÞ;
R0ðtÞ ¼ ð1� dÞgIðtÞ þ ð1� dHÞgHHðtÞ;
D0ðtÞ ¼ dgIðtÞ þ dHgHHðtÞ � bDðtÞ;
H 0ðtÞ ¼ ZIðtÞ � gHHðtÞ � kHðtÞ;

ð3Þ

where the force of infection is

lðtÞ ¼ b
1

NðtÞ IðtÞ þ φ
1

NðtÞDðtÞ þ y
1

NðtÞHðtÞ;

and N(t) = S(t)+E(t)+I(t)+R(t) denotes the total population in the community. Initial value for
the system (3) shall be nonnegative values.

This system is analogous to earlier works [11, 12, 16], with the addition of κ representing
the rate at which patients abandon hospitals. To facilitate the analysis, we consider the auxiliary
equations

B0ðtÞ ¼ bDðtÞ
C0ðtÞ ¼ aEðtÞ;

to monitor the cumulative number of burials and the cumulative number of cases.

A.2 Derivation of the basic reproduction number
To calculate the basic reproduction number, we apply the method established by Diekmann
et al. [29]. In this way we obtainR0 number as the dominant eigenvalue of the next generation
matrix FV−1, where F is the transmission matrix and −V is the transition matrix of the infection
subsystem at the disease-free state of the population. In our case, these matrices are

F ¼

0 b φ y

0 0 0 0

0 0 0 0

0 0 0 0

0
BBBB@

1
CCCCA and V ¼

a 0 0 0

�a gþ Z 0 �k

0 �dg b dHgH
0 �Z 0 kþ gH

0
BBBB@

1
CCCCA:
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Hence, the next generation matrix takes the form

R0 � � �
0 0 0 0

0 0 0 0

0 0 0 0

0
BBBB@

1
CCCCA;

where

R0 ¼
Zy

gHZþ gðgH þ kÞ þ
bðgH þ kÞ

gHZþ gðgH þ kÞ þ
φðgHdHZþ gdðgH þ kÞÞ
bðgHZþ gðgH þ kÞÞ

and asterisks denote the entries of the next generation matrix which do not influence the domi-
nant eigenvalue. Since our parameters can be time-dependent, the effective reproduction num-
ber can be expressed as

ReffðtÞ ¼ R0ðtÞ
SðtÞ
NðtÞ ;

whereR0(t) means that we substitute the parameter values at time t into theR0 formula
above.

A.3 Epidemic final size with intervention
In this section we assume that effective interventions are in place from time T, and for t> T

our control parameters have the fixed values ~b; ~φ; ~y; ~Z; ~b. To obtain the final size relation (2),
first we show the existence of two invariants (first integrals) for system (3) under the assump-
tion that N is constant for t� T, denoted by NT: = N(T). First, we point out that all model vari-
ables remain nonnegative. Indeed, e.g., if for some time �t > 0, the number of infectives Ið�tÞ is
zero while all other variables are nonnegative, then I 0ð�tÞ ¼ aEðtÞ þ kHðtÞ � 0. Similar consid-
erations on the other variables show that, given nonnegative initial data, the solution of the sys-
tem remain nonnegative.

As next we show that the populations in the compartments E, I, D and H all die out as t!
1. To see that E(t)! 0 as t!1, we consider

ðSðtÞ þ EðtÞÞ0 ¼ �aEðtÞ:
Obviously, if E(t) remains positive, then S(t)+E(t) drops below 0, which contradicts what
shown above. To see that the compartments I andH die out, consider

ðIðtÞ þ HðtÞÞ0 ¼ aEðtÞ � gIðtÞ � gHHðtÞ:
Again, it is easy to see that if either I(t) orH(t) does not tend to 0 then I(t)+H(t) drops below 0
which is not possible. The statement for compartment D follows from the previous assertions.
Let us define the quantities

x ≔ ~Zð1� dHÞgH þ ðgH þ kÞð1� dÞg;
y ≔ ~Z~y þ ðgH þ kÞ~b;
z ≔ ð1� dHÞgH~b � ð1� dÞg~y;
u ≔ ~ZdHgH þ ðgH þ kÞdg;
v ≔ dHgH~b � dg~y;
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and the functions

V1ðtÞ ¼ x ln SðtÞ þ y
NT

RðtÞ þ z
NT

HðtÞ þ ~φ
~bNT

xBðtÞ;

V2ðtÞ ¼ u ln SðtÞ þ y
NT

DðtÞ þ v
NT

HðtÞ þ ~φ
~bNT

uþ y
NT

 !
BðtÞ:

To show that V1(t) and V2(t) are invariants for t� T, we calculate the derivatives along the
solutions of (3) to find, indeed,

V 0
1ðtÞ ¼ ½~Zð1� dHÞgH þ ðgH þ kÞð1� dÞg� �

~b
NT

IðtÞ � ~φ

NT

DðtÞ �
~y
NT

HðtÞ
 !

þ ~Z
~y
NT

þ ðgH þ kÞ
~b
NT

" #
ðð1� dÞgIðtÞ þ ð1� dHÞgHHðtÞÞ

þ ð1� dHÞgH
~b
NT

� ð1� dÞg
~y
NT

" #
ð~ZIðtÞ � gHHðtÞ � kHðtÞÞ

þ ~φ
~bNT

½~Zð1� dHÞgH þ ðgH þ kÞð1� dÞg�~bDðtÞ

¼ 0

and

V 0
2ðtÞ ¼ ½~ZdHgH þ ðgH þ kÞdg� �

~b
NT

IðtÞ � ~φ

NT

DðtÞ �
~y
NT

HðtÞ
 !

þ ~Z
~y
NT

þ ðgH þ kÞ
~b
NT

" #
ðdgIðtÞ þ dHgHHðtÞ � ~bDðtÞÞ

þ dHgH
~b
NT

� dg
~y
NT

" #
ð~ZIðtÞ � gHHðtÞ � kHðtÞÞ

þ ~φ
~bNT

½~ZdHgH þ ðgH þ kÞdg� þ ~Z
~y
NT

þ ðgH þ kÞ
~b
NT

 !
~bDðtÞ

¼ 0:

In the sequel, for the sake of simplicity, we write ST for S(T) and similarly for each compart-
ment. In this notation, the control reproduction numberRc: =Reff(T) is

Rc ¼
~φu
~b

þ y

� �
1

uþ x
� ST
NT

: ð4Þ

We calculate the final epidemic size from the time of interventions. From the invariance of
V1(t) and V2(t), we have that V1(T) = V1(1) and V2(T) = V2(1). Further, E1 = 0, I1 = 0, D1
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= 0, andH1 = 0, so we have

x ln ST þ
y
NT

RT þ
z
NT

HT þ
~φ

~bNT

xBT ¼ x ln S1 þ y
NT

R1 þ ~φ
~bNT

xB1; ð5Þ

u ln ST þ
y
NT

DT þ
v
NT

HT þ
~φ

~bNT

uþ y
NT

 !
BT ¼ u ln S1 þ ~φ

~bNT

uþ y
NT

 !
B1: ð6Þ

Multiply Eq (5) by u/x,

u ln ST þ
yu
xNT

RT þ
zu
xNT

HT þ
u~φ
~bNT

BT ¼ u ln S1 þ yu
xNT

R1 þ u~φ
~bNT

B1 ð7Þ

and subtract Eq (6) from Eq (7):

uy
xNT

RT þ
zu
xNT

� v
NT

� �
HT �

y
NT

DT �
y
NT

BT ¼ yu
xNT

R1 � y
NT

B1 ð8Þ

For simplicity of notation, let us define

Q≔QT ¼ yu
x
RT þ

zu
x
� v

� �
HT � yDT � yBT ; ð9Þ

and the total number of individuals at time T

M≔MT ¼ NT þ DT þ BT þ HT : ð10Þ

Then, relation Eq (8) implies

B1 ¼ u
x
R1 � Q

y
: ð11Þ

Further, from the invariance properties we have thatM = R1 + S1 + B1, hence

u
x
R1 � Q

y
¼ M � S1 � R1:

Solving for R1,

R1 ¼ x
x þ u

M � S1 þ Q
y

� �
;

and substituting this into Eq (11), we obtain

B1 ¼ ðM � S1Þuy � Qx
yðuþ xÞ : ð12Þ

Now we go back to Eq (6), divide by u and use the relation (12) to get

ln ST þ y
uNT

DT þ
v

uNT

HT þ
~φ

~bNT

þ y
uNT

 !
BT

¼ ln S1 þ ~φ
~bNT

þ y
uNT

 !
ðM � S1Þuy � Qx

yðuþ xÞ :

Transmission Dynamics and Final Size of EVD with Interventions

PLOS ONE | DOI:10.1371/journal.pone.0131398 July 21, 2015 18 / 21



Using Eq (4), we find

ln ST þ y
uNT

DT þ
v

uNT

HT þ
~φ

~bNT

þ y
uNT

 !
BT

¼ ln S1 þRc

ST
M � S1 � Qx

yu

� �
:

ð13Þ

Substitute Q from Eq (9) into Eq (13) and obtain

ln ST þ y
uNT

DT þ
v

uNT

HT þ
~φ

~bNT

þ y
uNT

 !
BT

¼ ln S1 þRc

ST
ðM � S1Þ �

Rc

ST
RT þ

z
y
� xv
yu

� �
HT �

x
u
DT �

x
u
BT

� �
:

We use the definition (10) and reorganize the last relation in a more convenient form:

ln ST � ln S1 ¼ Rc

ST
ðNT � S1Þ �

Rc

ST
RT

þDT

Rc

ST
1þ x

u

� �
� y
uNT

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼
~φ

~bNT

þBT

Rc

ST
1þ x

u

� �
� y
uNT

� ~φ
~bNT

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ 0

þHT

Rc

ST
1� z

y
þ xv
yu

� �
� v
uNT

� �
:

All in all we have

ln ST � ln S1 ¼ Rc

ST
ðNT � S1Þ �

Rc

ST
RT

þ ~φ
~bNT

DT þ HT

Rc

ST
1� z

y
þ xv
yu

� �
� v
uNT

� �
:

Note that in the special case T = 0, we may assume S0 � N0, D0 � H0 � R0 � 0, and we retain
the standard final size relation

ln
S0
S1

� �
¼ R0 1� S1

S0

� �
;

where the index zero indicates the initial value of the variable.
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