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Abstract. We analyse a four-dimensional compartmental system that describes

the spread of ectoparasites and a disease carried by them in a population. We

identify three threshold parameters that determine which of the four potential

equilibria exist. These parameters completely characterize the stability proper-

ties of the equilibria and also the global behaviour of solutions. We provide a

detailed description of the global attractor in each possible scenario. The key

mathematical tools of the proofs are Lyapunov–LaSalle theory, persistence the-

ory, Poincaré–Dulac criteria and unstable manifolds. In the most complicated

case, the global attractor consists of four equilibria and various heteroclinic

orbits connecting those equilibria, forming a two-dimensional manifold in the

phase space.

1 Introduction

Lice, fleas, mites and other ectoparasites cause serious problems in many human and
animal populations. Besides infestation, these parasites also carry various diseases
through the contact network of the population [1,5]. A basic model with three com-
partments was outlined and analysed in [2, 3] for the spread of ectoparasite-borne
diseases. Here we extend our previous work by incorporating an additional com-
partment, thus our model becomes a system of four nonlinear differential equations.
We consider a single population that is invaded by infectious and non-infectious
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parasites, so we distinguish infestation and infection. The four compartments are
the following: susceptibles (those who are neither infested nor infected, denoted by
S(t)), those who are infested by non-infectious parasites (denoted by T (t)), those
who are infested by infectious parasites, and thus infected with the disease as well
(denoted by Q(t)), and those who are infected with the disease but not infested by
the parasites, denoted by I(t). Accordingly, we shall use the phrase Z-individual,
where Z ∈ {S, T,Q, I}.

For the transmission dynamics of the parasites and the disease, we assume
the following. A T -individual can transmit the parasites to susceptibles, while a
Q-individual can transmit both the parasites and the disease to susceptibles. Thus
S-individuals, upon adequate contact with a T - or Q-individual, become T - or Q-
type. We assume that an infested individual is infected by the disease if and only
if infested by infectious parasites. Hence, a T -individual can become Q-individual
after being in contact with a Q-individual that transmits the infected parasites to
the already infested individual. We assume that Q-individuals transmit the disease
at the same rate to S- and to T -individuals. Denote this transmission rate by βQ,
and denote the transmission rate for non-infectious parasites (to susceptibles) by
βT . The rate of disinfestation is denoted by µ for the infected compartment and by
θ for the non-infected compartment. After disinfestation, a T -individual moves back
to the S-class, while a Q-individual becomes I-individual before recovering from the
disease. We exclude reinfestation of I-individuals, which is a reasonable assumption:
after disinfestation a still infected individual can be assumed to be kept isolated
from the source of parasites until recovery. The recovery rate for the compartment
I is denoted by α and b stands for the natural birth and death rates. We assume
that the disease is not fatal, thus the population size is constant. Without loss of
generality we can assume that N(t) = S(t) + T (t) +Q(t) + I(t) = 1 holds for the
total population. In the model equations we use mass action incidence.

Summarizing, we have the following system of differential equations, with all
parameters being positive:

S′(t) = −βTS(t)T (t)− βQS(t)Q(t) + θT (t) + αI(t) + b− bS(t),

T ′(t) = βTS(t)T (t)− βQQ(t)T (t)− θT (t)− bT (t),

Q′(t) = βQS(t)Q(t) + βQQ(t)T (t)− µQ(t)− bQ(t),

I ′(t) = µQ(t)− αI(t)− bI(t).

(1)

Figure 1.1 shows the transmission diagram of the model. All solutions with
nonnegative initial values remain nonnegative for all forward time.
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Figure 1.1. Transmission diagram.

In previous works [2, 3] it was assumed that upon disinfestation an infected
individual immediately recovers from the disease as well. However, it is expected
that it takes some time until such an individual fully recovers from the disease
after the parasites are removed. To make the basic model more realistic, here we
introduce the I-compartment to account for this phenomenon. This way, the new the
model is higher dimensional. While many of the techniques used in [2,3] (Lyapunov
functions, LaSalle’s invariance principle, persistence theory) can be applied to system
(1) in an analogous, but more complicated manner, due to the increased number
of dimensions we need some new methods as well, such as Dulac’s criterion and
Poincaré–Bendixson theorem to analyse the dynamics on the extinction spaces.
In this paper we provide a complete description of the global dynamics and the
global attractors for this four-dimensional system, characterized by three threshold
parameters which have clear biological interpretation.

2 Equilibria, reproduction numbers, local stability

To determine the positive equilibria of system (1), we solve the system of algebraic
equations

0 = −βTS
∗T ∗ − βQS

∗Q∗ + θT ∗ + αI∗ + b− bS∗,

0 = βTS
∗T ∗ − βQQ

∗T ∗ − θT ∗ − bT ∗,

0 = βQS
∗Q∗ + βQQ

∗T ∗ − µQ∗ − bQ∗,

0 = µQ∗ − αI∗ − bI∗.
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We get the four equilibria

ES = (1, 0, 0, 0),

ET =
(b+ θ

βT

, 1− b+ θ

βT

, 0, 0
)

,

EQI =
(b+ µ

βQ

, 0,
(b+ α)(βQ − b− µ)

βQ(b+ α+ µ)
,
µ(βQ − b− µ)

βQ(b+ α+ µ)

)

and

ETQI

=
( (b+ α)(βQ + θ) + µ(θ − α)

βT (b+ α+ µ)
,

(b+ µ)(b+ α+ µ)βT − (b+ θ)(b+ α+ µ)βQ − βQ(b+ α)(βQ − (µ+ b))

βQβT (b+ α+ µ)
,

(b+ α)(βQ − b− µ)

βQ(b+ α+ µ)
,
µ(βQ − b− µ)

βQ(b+ α+ µ)

)

.

Various reproduction numbers can be calculated by introducing a single in-
fested (infectious or non-infectious) individual into a completely susceptible popula-
tion (ES), into a population where only non-infected parasites (ET ) or only infected
parasites are present (EQI), and calculating the expected number of secondary cases
generated by this individual.

By introducing a T -individual into the disease- and infestation-free equilibrium
ES , we obtain the reproduction number

R1 =
βT

b+ θ

as a product of the average time spent in the T compartment and the transmission
rate. Similarly, by introducing a Q-individual into the same equilibrium we get the
reproduction number

R2 =
βQ

b+ µ
.

We obtain exactly the same reproduction number R2 by calculating the ex-
pected number of secondary infections caused by the introduction of a Q-individual
into a population in the equilibrium ET as the transmission rate from Q-individuals
is the same for the S- and T -compartment.

To calculate the last reproduction number, we introduce a T -individual into
a population in the equilibrium EQI . Then by (1), the expected sojourn time in
the T -compartment is (βQQ

∗ + θ+ b)−1, and the number of generated new T -cases
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by this single individual per unit time is βTS
∗. Multiplying these two expressions

and substituting the values of Q∗ and S∗ at the equilibrium EQI , we obtain the
reproduction number

R3 =
βT (b+ µ)(b+ α+ µ)

βQ(b+ θ)(b+ α+ µ) + βQ(b+ α)(βQ − (b+ µ))
.

Proposition 2.1. The equilibrium ES always exists. The equilibrium ET exists if and

only if R1 > 1. The equilibrium EQI exists if and only if R2 > 1. The equilibrium

ETQI exists if and only if R2 > 1 and R3 > 1.

Proof. The first coordinate of ET is less than 1 if and only if R1 > 1. In this case
also the second coordinate of ET is between 0 and 1. For the first coordinate of
EQI to be less than 1, we need R2 > 1. If this holds, then the third and fourth
coordinates are both positive, and as the sum of all coordinates is equal to 1, all of
the coordinates of EQI are between 0 and 1. As the last two coordinates of ETQI

are the same as those of EQI , the condition R2 > 1 is necessary and sufficient for
them to be between 0 and 1, and the sum of the first and the second coordinates is
(b+ µ)/βQ < 1. It remained to prove that these two coordinates are positive if and
only if R3 > 1. The first coordinate can be written as

θ

βT

+
bβQ + αβQ − αµ

βT (b+ α+ µ)
,

which is positive as βQ > b + µ follows from R2 > 1. The denominator of the
second coordinate is always positive, while one can check that the positivity of the
numerator is equivalent to R3 > 1.

Proposition 2.2. The local stability of the four equilibria is determined by the re-

production numbers in the following way.

(i) ES is locally asymptotically stable if R1 < 1 and R2 < 1, and unstable if

R1 > 1 or R2 > 1.

(ii) ET is locally asymptotically stable if R1 > 1 and R2 < 1, and unstable if

R2 > 1.

(iii) EQI is locally asymptotically stable if R2 > 1 and R3 < 1, and unstable if

R3 > 1.

(iv) ETQI is locally asymptotically stable if R2 > 1 and R3 > 1 (i.e. always when

it exists).

Proof. (i) To prove the first statement, we compute the eigenvalues of the Jacobian
of the linearized equation around the equilibrium ES : λ1 = −b, λ2 = −b − α,
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λ3 = −b− θ + βT = (b+ θ)(R1 − 1) and λ4 = −b− µ+ βQ = (b+ µ)(R2 − 1). The
first two eigenvalues are always negative, while the last two are negative if R1 < 1

and R2 < 1, and one of them is positive if R1 > 1 or R2 > 1.
(ii) The Jacobian of the linearized equation at the equilibrium ET has the

four eigenvalues λ1 = −b, λ2 = −b − α, λ3 = b + θ − βT = (b + θ)(1 − R1),
λ4 = −b− µ+ βQ = (b+ µ)(R2 − 1), i.e. the same as in case (i) with the exception
of λ3, which means that we can prove the second statement of the proposition in a
similar way as in the first case.

(iii) If we linearize around the steady state EQI we get the following eigenvalues
of the Jacobian:

λ1 = −b, λ2 = −θ +
βT (b+ µ)

βQ

− (b+ α)βQ − αµ

b+ α+ µ

and

λ3,4 = −
(b + α)(α + βQ)

2(b + α + µ)
±

±
√
b + α

√

(b + α)(2b + α − βQ)2 + 4(b + α)(3b + α − 2βQ)µ + 4(3b + 2α − βQ)µ2 + 4µ3

2(b + α + µ)
.

The relation R2 < 1 is necessary for the existence of the equilibrium EQI . If we add
the terms in λ2, some calculations show that the numerator of the fraction is the
difference of the numerator and the denominator of the reproduction number R3,
which means that it is negative if and only if R3 < 1. As for λ3 and λ4, by taking
the difference of the squares of the first resp. the second term of the nominator,
we obtain 4(b+ α)(b+ α+ µ)2(βQ − (b+ µ)), which is greater then zero, as from
R2 > 1 we have βQ > b+ µ. From this follows that λ3 and λ4 always have negative
real parts for R2 > 1.

(iv) Local stability properties of the fourth equilibrium ETQI can be seen in
a similar way as in case (iii). By linearization we obtain the following eigenvalues
of the Jacobian:

λ1 = −b, λ2 = θ − βT (b+ µ)

βQ

+
(b+ α)βQ − αµ

b+ α+ µ

and

λ3,4 = −
(b + α)(α + βQ)

2(b + α + µ)
±

±
√
b + α

√

(b + α)(2b + α − βQ)2 + 4(b + α)(3b + α − 2βQ)µ + 4(3b + 2α − βQ)µ2 + 4µ3

2(b + α + µ)
,

i.e. λ1, λ3 and λ4 are the same as the corresponding eigenvalues in case (iii). The
eigenvalue λ2 is the negative of the second eigenvalue in case (iii). This yields the
statement of the proposition.
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3 Persistence

To prove various persistence results, we use some definitions and results from [6].

Definition 3.1. Let X be a nonempty set and ρ : X → R+. A semiflow Φ: R+×X →
X is called uniformly weakly ρ-persistent, if there exists some ε > 0 such that

lim sup
t→∞

ρ(Φ(t, x)) > ε for all x ∈ X, ρ(x) > 0.

Φ is called uniformly (strongly) ρ-persistent if there exists some ε > 0 such that

lim inf
t→∞

ρ(Φ(t, x)) > ε for all x ∈ X, ρ(x) > 0.

A set M ⊆ X is called weakly ρ-repelling if there is no x ∈ X such that
ρ(x) > 0 and Φ(t, x) → M as t → ∞.

System (1) generates a continuous flow Φ on the feasible state space

X := {(S, T,Q, I) ∈ R
4
+ : S + T +Q+ I = 1} ⊂ R

4
+.

Theorem 3.1. S(t) is always uniformly persistent. T (t) is uniformly persistent if

R1 > 1 and R2 < 1 as well as if R2 > 1 and R3 > 1. Q(t) and I(t) are uniformly

persistent if R2 > 1.

Proof. We use the method of fluctuation to prove the persistence of S(t) (see
e.g. Appendix A of [6]). We denote by S∞ the limit inferior of S(t) (t → ∞). Using
the fluctuation lemma it follows that there exists a sequence tk → ∞ such that
S(tk) → S∞ and S′(tk) → 0 as k → ∞. We apply this for the equation for S(t):

S′(tk) + βTS(tk)T (tk) + βQS(tk)Q(tk) + bS(tk) = θT (tk) + αI(tk) + b,

and using 0 ≤ T (tk), Q(tk) ≤ 1 we obtain

(βT + βQ + b)S∞ ≥ b, i.e. S∞ ≥ b

βT + βQ + b
> 0.

To prove the persistence of T (t) and Q(t) we use some theory from [6]. For the
sake of simplicity, for the state of the system we use the notation x = (S, T,Q, I) ∈ X.
The ω-limit set of a point x ∈ X is defined in the usual way by

ω(x) := {y ∈ X : ∃{tn}n≥1 such that tn → ∞, Φ(tn, x) → y as n → ∞}.

Let ρ(x) = T and consider the extinction space

XT := {x ∈ X : ρ(x) = 0} = {(S, 0, Q, I) ∈ R
4
+ : S +Q+ I = 1}.
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Clearly XT is invariant. Following [6, Chapter 8], we examine the set Ω :=

∪x∈XT
ω(x).

Substituting S(t) = 1−Q(t)− I(t), on the extinction space our system takes
the form

Q′(t) = βQ(1−Q(t)− I(t))Q(t)− µQ(t)− bQ(t),

I ′(t) = µQ(t)− αI(t)− bI(t).
(2)

This system has two possible equilibria, (0, 0) and ((b+ α)(βQ − (b+ µ))/(βQ(b+

α+µ)), µ(βQ− (b+µ))/(βQ(b+α+µ))), corresponding to ES and EQI . We claim
that the limit of each solution of the reduced system is one of these two equilibria.
According to the Poincaré–Bendixson theorem, all we have to prove is that system
(2) does not have periodic solutions. To show this, we will use Dulac’s criterion [4]
using the Dulac function D(Q, J) = 1/Q. Then

∂

∂Q

(βQ(1−Q− I)Q− µQ− bQ)

Q
+

∂

∂I

µQ− αI − bI

Q
= −b+ α+QβQ

Q
< 0,

if Q > 0, which, using Dulac’s criterion implies that system (2) has no periodic
solutions.

First we show weak ρ-persistence for the case R1 > 1 and R2 < 1. To apply
Theorem 8.17 of [6], we let M1 = {ES} as in this case EQI does not exist. Then
Ω ⊂ M1, and M1 is isolated (by Proposition 2.2), compact, invariant and acyclic. It
remained to show that M1 is weakly ρ-repelling, then by [6, Chapter 8], the weak
persistence follows.

Let us suppose that M1 is not ρ-repelling, i.e. there exists a solution such that
limt→∞(S(t), T (t), Q(t), I(t) = (1, 0, 0, 0) and T (t) > 0. Then for any ε > 0, for
sufficiently large t, S(t) > 1 − ε, Q(t) < ε and I(t) < ε hold and we can give the
following estimation for T ′(t):

T ′(t) = T (t)(βTS(t)− βQQ(t)− θ − b) > T (t)(βT − βT ε− βQε− θ − b).

R1 > 1 means βT > b+ θ, so if ε is small enough then βT − βT ε− βQε− θ− b > 0,
contradicting T (t) → 0.

Let us now suppose that R2 and R3 are both greater than 1. We proceed
similarly as before. In this case also EQI exists, so Ω = {ES , EQI}. We let M1 =

{ES} and M2 = {EQI}. Then Ω ⊂ M1 ∪M2 and {M1,M2} is acyclic and M1 and
M2 are invariant, isolated and compact. Similarly to the previous case, we have to
show that M1 and M2 are both weakly ρ-repelling.

First assume that M1 is not weakly ρ-repelling, so there exists a solution such
that limt→∞(S(t), T (t), Q(t), I(t)) = (1, 0, 0, 0) and T (t) > 0. From

R2 =
βQ

b+ µ
> 1 and R3 =

βT (b+ µ)(b+ α+ µ)

βQ(b+ θ)(b+ α+ µ) + βQ(b+ α)(βQ − (b+ µ))
> 1
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we have

R2R3 =
βT (b+ α+ µ)

(b+ θ)(b+ α+ µ) + (b+ α)(βQ − (b+ µ))
> 1,

i.e. βT (b+ α+ µ) > (b+ θ)(b+ α+ µ) + (b+ α)(βQ − (b+ µ)) > (b+ θ)(b+ α+ µ),
from which βT > b + θ follows. As for any ε > 0, for t large enough S(t) > 1 − ε

and Q(t) < ε hold, similarly to the previous case we can estimate T ′(t):

T ′(t) = T (t)(βTS(t)− βQQ(t)− θ − b) > T (t)(βT − βT ε− βQε− θ − b) > 0

for ε small enough, as R2 > 1, contradicting to T (t) → 0.
To show the repelling property of M2, assume that there exists a solution such

that

lim
t→∞

(S(t), T (t), Q(t), I(t)) =
(b+ µ

βQ

, 0,
(b+ α)(βQ − b− µ)

βQ(b+ α+ µ)
,
µ(βQ − b− µ)

βQ(b+ α+ µ)

)

and T (t) > 0. Similarly to the previous case, for any ε > 0, for t large enough we
can estimate T ′(t) as

T ′(t) = T (t)(βTS(t)− βQQ(t)− θ − b)

> T (t)
(

βT

(b+ µ

βQ

− ε
)

− βQ

( (b+ α)(βQ − b− µ)

βQ(b+ α+ µ)
+ ε

)

− θ − b
)

> T (t)
(βT (b+ µ)(b+ α+ µ)− (b+ α)(βQ − (b+ µ))βQ

βQ(b+ α+ µ)
−

− (b+ θ)(b+ α+ µ)βQ

βQ(b+ α+ µ)
− (βT + βQ)ε

)

,

which is positive for sufficiently small ε as the positivity of the first term in the last
line follows from R3 > 1. This contradicts T (t) → 0.

To prove the persistence of Q(t), we choose ρ(x) = Q. We have the equilibrium
ES if R1 ≤ 1 and the two equilibria ES and ET if R1 > 1. We define the extinction
space as

XQ := {x ∈ X : ρ(x) = 0} = {(S, T, 0, I) ∈ R
4
+ : S + T + I = 1}.

Similarly to the previous case, we will show that Ω consists of ES or ES and ET . It
is easy to see that if Q(t) = 0, then limt→∞ I(t) = 0, i.e. Ω ⊂ {(S, T, 0, 0) ∈ R

4
+ :

S + T = 1}. On this set, our system takes the form

S′(t) = −βTS(t)T (t) + θT (t) + b− bS(t),

T ′(t) = βTS(t)T (t)− θT (t)− bT (t).
(3)
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This system has two equilibria, the unstable equilibrium (1, 0) and for R1 > 1 the
locally stable equilibrium ((b+θ)/βT , 1−(b+θ)/βT ). If T = 0, then S = 1. If T > 0,
then T is decreasing if S < (b+ θ)/βT , i.e. if T > 1− (b+ θ)/βT and increasing if
S > (b+ θ)/βT , i.e. if T < 1− (b+ θ)/βT , thus we obtain that

Ω :=
⋃

x∈XT

ω(x) = M1

if R1 ≤ 1, and
Ω :=

⋃

x∈XQ

ω(x) = M1 ∪M2

if R1 > 1, where

M1 = {(1, 0, 0, 0)} and M2 =
{(b+ θ

βT

, 1− b+ θ

βT

, 0, 0
)}

.

Similarly, as in the proof of the persistence of T (t), M1 and M2 contain only one
equilibrium, which means that these sets are invariant. These two equilibria are
isolated in XT ; M1 is acyclic if R1 ≤ 1 and {M1,M2} is acyclic if R1 > 1.

We can prove that M1 is weakly ρ-repelling similarly in the two cases R1 ≤ 1

and R1 > 1. Assume it does not hold, i.e. there exists a solution such that
limt→∞(S(t), T (t), Q(t), I(t)) = (1, 0, 0, 0) with Q(t) > 0. For any ε > 0, for suffi-
ciently large t we have S(t) > 1− ε, so we can estimate Q′(t):

Q′(t) = Q(t)(βQS(t) + βQT (t)− µ− b) > Q(t)(βQ(1− ε)− µ− b) > 0

for ε small enough, as R2 > 1, i.e. βQ > b+ µ. This contradicts Q(t) → 0.
Now let us consider the case R1 > 1, i.e. when also ET exists. Suppose that

M2 is not weakly ρ-repelling, i.e. there exists a solution such that

lim
t→∞

(S(t), T (t), Q(t), I(t)) =
(b+ θ

βT

, 1− b+ θ

βT

, 0, 0
)

and Q(t) > 0. For any ε > 0, for t large enough we have

S(t) >
b+ θ

βT

− ε, T (t) > 1− b+ θ

βT

− ε.

Using these relations, we can give the following estimation for the derivative Q′(t):

Q′(t) = Q(t)(βQS(t) + βQT (t)− µ− b)

> Q(t)
(

βQ

(b+ θ

βT

− ε
)

+ βQ

(

1− b+ θ

βT

− ε
)

− µ− b
)

= Q(t)(βQ − (µ+ b)− 2βQε) > 0
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for ε small enough, which follows from R2 > 1, i.e. βQ > b + µ. This contradicts
Q(t) → 0.

We have proved uniform weak persistence for T (t) resp. Q(t) in all of the cases,
and for the transition to uniform (strong) persistence, we use [6, Theorem 4.5].

Clearly, our flow is continuous, and the subspaces XT , XQ, X \XT and X \XQ

are all invariant. The existence of a compact attractor is also obvious, as the phase
space X is compact. Thus, all the conditions of [6, Theorem 4.5] hold.

To prove the uniform persistence of I(t), it is enough to show that the persis-
tence of Q(t) implies that of I(t). If Q(t) is persistent, then there exists an ε > 0

such that Q(t) > ε for all t > t∗ for some t∗ > 0. Thus from the equation for I ′(t)

we obtain
I ′(t) > µε− αI(t)− bI(t). (4)

Let I∞ denote the limit inferior of I(t) (t → ∞). From the fluctuation lemma it
follows that there exists a sequence tk → ∞ such that I(tk) → I∞ and I ′(tk) → 0

as k → ∞. Applying this to (4) we obtain

I∞ ≥ εµ

b+ α
,

which shows the uniform persistence of I(t).

4 Global stability

In this section we extend the statements about local stability in Section 2 to
global asymptotic stability by means of Lyapunov functions and LaSalle’s invariance
principle, where we also apply the persistence results of the previous section.

Theorem 4.1. Equilibrium ES is globally asymptotically stable if R1 ≤ 1 and

R2 ≤ 1.

Proof. Let us choose V1(S, T,Q, I) = T +Q as a Lyapunov function. The derivative
of the Lyapunov function along solutions of (1) is

V̇1 = TβT

(

S − b+ θ

βT

)

+QβQ

(

S − b+ µ

βQ

)

≤ TβT

(

1− 1

R1

)

+QβQ

(

1− 1

R2

)

,

which is less than or equal to zero if R1 ≤ 1 and R2 ≤ 1. From LaSalle’s invariance
principle [7] we know that the limit set of each solution is a subset of the set V̇1 = 0.
The first term of the derivative can be equal to zero if and only if T is zero or
S = (b+ θ)/βT . The latter case is only possible if (b+ θ)/βT = S = 1, as R1 ≤ 1.
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However this also implies T = 0. Similarly, the second term is equal to zero if Q = 0

or S = (b+ µ)/βQ. The latter case only holds if (b+ µ)/βQ = S = 1 which yields
Q = 0. The only remaining possibility for V̇1 = 0 is that T = Q = I = 0. Thus, the
limit set of any solution is the equilibrium ES .

Theorem 4.2. Equilibrium ET is globally asymptotically stable on X \XT if R1 > 1

and R2 ≤ 1. On XT , ES is globally asymptotically stable.

Proof. We choose the Lyapunov function V2(S, T,Q, I) = Q2, the derivative of
which is

V̇2 = −2Q2βQ

(b+ µ

βQ

− (S + T )
)

along the solutions. This is less than or equal to zero as R2 ≤ 1 and S + T ≤ 1.
Thus V̇2 = 0 if Q = 0 or (b+µ)/βQ − (S +T ) = 0. The second case is only possible
if R2 = 1 and S + T = 1, from which Q = I = 0 follows. Hence, V̇2 is equal to zero
if and only if Q = 0. We use LaSalle’s invariance principle to get that the limit set
of each solution is a subset of the set V̇2 = 0.

For Q = 0 we know that limt→∞ I(t) = 0, i.e. the limit set lies in the set
{(S, T,Q, I) ∈ R

4
+ : S + T = 1}. On this set, the equations for S and T have the

form (3). We have already shown in Theorem 3.1 how the solutions of this system
behave: if T = 0, then S = 1, while if T > 0, then T is decreasing if S < (b+ θ)/βT ,
i.e. if T > 1−(b+θ)/βT and increasing if S > (b+θ)/βT , i.e. T < 1−(b+θ)/βT .

Theorem 4.3. Assume R2 > 1. Then the following statements hold:

(i) If R3 ≤ 1 and R1 ≤ 1, then EQI is globally asymptotically stable on X \XQ

and ES is globally asymptotically stable on XQ.

(ii) If R3 ≤ 1 and R1 > 1, then EQI is globally asymptotically stable on X \XQ

and ET is globally asymptotically stable on XQ.

(iii) If R3 > 1, then ETQI is globally asymptotically stable on X \ (XQ ∪ XT ),

ET is globally asymptotically stable on XQ and EQI is globally asymptotically

stable on XT .

Proof. Let us rewrite the equation for Q′(t) in the following way:

Q′(t)=βQS(t)Q(t)+βQT (t)Q(t)−µQ(t)−bQ(t)=βQ(1−Q(t)−I(t))−µQ(t)−bQ(t).

This way we get system (2) for Q(t) and I(t), which is independent from S(t) and
T (t). In Theorem 3.1 we have already shown that the limit set of any solution of this
system is one of the two equilibria (0, 0) and ((b+α)(βQ− (b+µ))/(βQ(b+α+µ)),
µ(βQ− (b+µ))/(βQ(b+α+µ))). However, in the same theorem we also proved that
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Q(t) and I(t) are uniformly persistent if R2 > 1, which excludes the equilibrium
(0, 0) for solutions started from X \XQ.

Thus, the limit set of each solution in X \XQ of the four-dimensional system
is contained in the set

{(

S, T,
(b+ α)(βQ − b− µ)

βQ(b+ α+ µ)
,
µ(βQ − b− µ)

βQ(b+ α+ µ)

)

∈ R
4
+ : S + T =

b+ µ

βQ

}

.

The equations for S′(t) and T ′(t) take the form

S′(t) = − βTS(t)T (t)− βQS(t)
(b+ α)(βQ − b− µ)

βQ(b+ α+ µ)
+ θT (t)+

+ α
µ(βQ − b− µ)

βQ(b+ α+ µ)
+ b− bS(t),

T ′(t) = βTS(t)T (t)− βQT (t)
(b+ α)(βQ − b− µ)

βQ(b+ α+ µ)
− θT (t)− bT (t)

(5)

on the limit set. This system might have two equilibria, one of them is ((b+µ)/βQ, 0),
the other, which only exists for R3 > 1 is (S∗, T ∗) with

S∗ =
(b+ α)(βQ + θ) + (−α+ θ)µ

βT (b+ α+ µ)

and

T ∗ =
(b+ α)(bβT − βQ(βQ + θ)) + (2bβT + α(βQ + βT )− βQθ)µ+ βTµ

2

βQβT (b+ α+ µ)
,

i.e. the first and second coordinates of the equilibrium ETQI . Using Dulac’s criterion
for system (5) with Dulac function 1/T we obtain

∂

∂S

−βTST − βQS
(b+α)(βQ−b−µ)

βQ(b+α+µ) + α
µ(βQ−b−µ)
βQ(b+α+µ) + b− bS

T
+

+
∂

∂T

βTST − βQT
(b+α)(βQ−b−µ)

βQ(b+α+µ) − µT (t)− bT

T
=

= − b

T
− bT − (b+ α)(βQ − µ− b)

(b+ α+ µ)T
< 0,

showing that there is no periodic solution in the region {(S, T ) ∈ R
2
+}. This means

that in the case R3 ≤ 1 the only equilibrium ((b+µ)/βQ, 0) is globally asymptotically
stable. This implies the global asymptotic stability of EQI in X \XQ for the four-
dimensional system in the case R3 ≤ 1. In the other case, if R3 > 1, we know



Acta Scientiarum Mathematicarum 80:3–4 (2014) c© Bolyai Institute, University of Szeged

566 A. Dénes and G. Röst

from Theorem 3.1 that T (t) is uniformly persistent, which excludes the equilibrium
((b+ µ)/βQ, 0) as a limit set of any solution with T (0) > 0, and implies that for all
such solutions the limit set is the equilibrium (S∗, T ∗), and thus ETQI is globally
asymptotically stable on X \ (XQ ∪XT ). The solution with initial value T (0) = 0

is a constant solution for system (5), thus solutions started from XT tend to EQI

in case (iii).
For Q = 0 we can proceed similarly as in the previous theorem: if T = 0, then

S = 1, while if T > 0, then T is decreasing if S < (b+θ)/βT , i.e. if T > 1−(b+θ)/βT

and increasing if S > (b+θ)/βT , i.e. T < 1−(b+θ)/βT . This means that for R1 ≤ 1

(case (i)), T always decreases to 0, thus solutions started from XQ tend to ES , while
for R1 > 1 (cases (ii) and (iii)), T (t) → 1− (b+ θ)/βT , i.e. solutions started from
XQ tend to ET .

Reproduction Existing Global
number equilibria stability

(i) R1 ≤ 1, R2 ≤ 1 ES ES GAS
(ii) R1 > 1, R2 ≤ 1 ES , ET ET GAS on X \XT ,

ES GAS on XT

(iii) R1 ≤ 1, R2 > 1, ES , EQI EQI GAS on X \XQ,
R3 ≤ 1 ES GAS on XQ

(iv) R1 > 1, R2 > 1, ES , ET , EQI GAS on X \XQ,
R3 ≤ 1 EQI ET GAS on XQ

(v) R1 > 1, R2 > 1, ES , ET , ETQI GAS on X \ (XT ∪XQ),
R3 > 1 EQI , ETQI ET GAS on XQ,

EQ GAS on XT

Table 4.1. Reproduction numbers and global stability: summary of Proposi-

tion 2.1 and Theorems 4.1, 4.2, 4.3.

5 Structure of the global attractor

In this section we give a complete description of the structure of the global attractor
in all possible cases depending on the three reproduction numbers.

Theorem 5.1. The global attractor A for system (1) has the following structure:

(i) If R1 ≤ 1 and R2 ≤ 1 then A = {ES}.
(ii) If R1 > 1 and R2 ≤ 1 then A = {ES , ET } ∪ γ1 where γ1 is a connecting orbit

from ES to ET .
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(iii) If R2 > 1, R3 ≤ 1 and R1 ≤ 1, then A = {ES , EQI} ∪ γ2 where γ2 is a

connecting orbit from ES to EQI .

(iv) If R2 > 1, R3 ≤ 1 and R1 > 1 then A = {ES , ET , EQI} ∪ γ1 ∪ γ2 ∪ γ3 ∪ A1,

where γ3 is a connecting orbit from ET to EQI and A1 is a two-dimensional

manifold consisting of connecting orbits from ES to EQI .

(v) If R2 > 1, R3 > 1 and R1 > 1 then A = {ES , ET , EQI , ETQI}∪γ1∪γ2∪γ4∪
γ5 ∪A2, where γ4 is a connecting orbit from EQI to ETQI , γ5 is a connecting

orbit from ET to ETQI and A2 is a two-dimensional manifold consisting of

connecting orbits from ES to ETQI .

Proof. (i) In the previous section we showed that ES is globally asymptotically
stable on the whole phase space, from which it follows that the global attractor
consists of the only point ES .

For the proof of the further cases we substitute S(t) by 1− T (t)−Q(t)− I(t)

to decrease the number of dimensions to three. We obtain the system

T ′(t) = βT (1− T (t)−Q(t))T (t)− βQQ(t)T (t)− θT (t)− bT (t),

Q′(t) = βQ(1− T (t)−Q(t))Q(t) + βQQ(t)T (t)− µQ(t)− bQ(t),

I ′(t) = µQ(t)− αI(t)− bI(t).

(6)

Throughout this section we will denote the equilibria of this system by the same
notation as the corresponding equilibria of system (1). The eigenvalues and eigen-
vectors of the Jacobian of the linearized system at the four equilibria are listed in
Table 7.1.

(ii) If R1 > 1 and R2 < 1 then ES has the two stable eigenvectors v
S,1

and
v
S,3

and the unstable eigenvector v
S,2

, implying that ES has a one-dimensional un-
stable manifold, which coincides with the segment (ES , ET ) and a two-dimensional
stable manifold coinciding with the extinction space XT , while ET has three stable
eigenvectors.

If R2 = 1, then from Theorem 4.2 we know that all solutions started from XT

tend to ES , while those started from X \XT tend to XT , which means that the
stable and unstable sets of the two equilibria are the same as for R2 < 1.

(iii) If R2 > 1, R3 < 1 and R1 < 1, then ES has two stable eigenvectors (v
S,1

and v
S,2

) and the unstable eigenvector v
S,3

, which lies in the QI-plane, while EQI

has three stable eigenvectors. The second and third coordinates of the unstable
eigenvector v

S,3
are positive for R2 > 1, thus the vector points inside the phase

space X. From this follows that the unstable manifold of ES intersects the phase
space. A similar argument holds for v

S,3
, v

T,3
and v

QI,1
in cases (iv) and (v).
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If R1 = 1 then λ
S,2

= 0. In this case the equation for T ′(t) has the form

T ′(t) = −βTT
2(t) < 0

on the invariant extinction space XQ implying that all solutions on the center
manifold belonging to the zero eigenvalue (i.e. the extinction space XQ) tend to
ES .

If R3 = 1 then the eigenvalue λ
QI,1

is zero with eigenvector (1, 0, 0). The line
given by the equations

Q =
(b+ α)(βQ − b− µ)

βQ(b+ α+ µ)
,

I =
µ(βQ − b− µ)

βQ(b+ α+ µ)

is invariant, this can be seen by substituting these values for Q and I into the
equation for Q′(t) and I ′(t). This means that the center manifold belonging to the
zero eigenvalue coincides with this line. If R3 = 1 then the equation for T ′(t) has
the form

T ′(t) = −βTT
2(t) < 0

on this line. From this follows that all solutions started from this line tend to EQI .
γ2 is the connecting orbit from ES to EQI lying in the QI-plane.

(iv) If R1 > 1, R2 > 1 and R3 ≤ 1, then v
S,2

becomes unstable and v
T,2

becomes stable. Thus, ES has a one-dimensional stable manifold and ET has a
two-dimensional stable manifold coinciding with the extinction space XQ. From
Theorem 4.3 we know that all solutions started from the one-dimensional unstable
manifold of ET tend to EQI , from which the existence of a connecting orbit from
ET to EQI follows. The eigenvectors belonging to EQ have the same stability as in
case (iii). The independence of the equations for Q′(t) and I ′(t) from S(t) and T (t)

implies that the area bordered by the connecting orbits from ES to EQI , from ES

to ET and from ET to EQT is a two-dimensional surface. We have to show that
this area A1 consists of heteroclinic orbits connecting ES and EQT . From Theorem
4.3 it is clear that a solution started from an arbitrary pont p in this area tends to
EQ. We have to show that the negative limit set α(p) is the equilibrium ES . The
existence and nonemptiness of the negative limit set follows from the fact that the
backward orbit is bounded by γ1, γ2 and γ3. If we apply the Poincaré–Bendixson
theorem to the two-dimensional surface A1, we have that α(p) is one of the three
equilibria ES , ET and EQI (the independence of the equations for Q′(t) and I ′(t)

from the equation for T ′(t) excludes the existence of periodic orbits). We can rule
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out EQI , as it has a three-dimensional stable manifold, while ET can be excluded
by considering that it has a one-dimensional unstable manifold which coincides with
the connecting orbit from ET to EQI .

(v) The stability of the eigenvectors belonging to ES and ET is the same as
in case (iv). The eigenvector v

QI,1
loses its stability implying that EQI has a two-

dimensional stable manifold (coinciding with the QI-plane) and a one-dimensional
unstable manifold. The equilibrium ETQI has three stable eigenvectors and thus a
three-dimensional stable manifold. From Theorem 4.3 it follows that all solutions
started from X\(XT∪XQ) tend to ETQI , which assures the existence of a connecting
orbit γ4 from ET to ETQI and a connecting orbit γ5 from EQI to ETQI . We can
show that the two-dimensional domain A2 consists of connecting orbits from ES to
ETQI similarly to the previous case.

Figure 5.1. Representation of the flow on the TQI-space in the five cases

(see Table 4.1). Dots denote equilibria.



Acta Scientiarum Mathematicarum 80:3–4 (2014) c© Bolyai Institute, University of Szeged

570 A. Dénes and G. Röst

6 Discussion

In this paper we constructed a new, four-dimensional system of differential equations
to simultaneously model the spread of an ectoparasite and a disease transmitted by
it. The results described in the paper are an extension of our previous works [2, 3].
In these papers we established and examined a basic model, which was made more
realistic in the present work. Our paper is self-contained: we show the proofs in full
detail.

We calculated three reproduction numbers and four potential equilibria of the
system. We gave a complete description of the global dynamics of the system for all
of the different cases provided by Ri ≤ 1 or Ri > 1 for i = 1, 2, 3: we showed that
all solutions of the system converge to one of the four equilibria, depending on the
reproduction numbers as listed in Table 4.1. (The number of different cases is five,
as four of the eight possibilities given by Ri ≤ 1 or Ri > 1 for i = 1, 2, 3 are covered
by cases (i) and (ii), while we showed that R2 > 1 and R3 > 1 imply R1 > 1, thus
excluding the case R1 ≤ 1, R2 > 1, R3 > 1.) The tools used in the proof include
persistence theory, Lyapunov stability theory, LaSalle’s invariance principle and
Dulac’s criterion. The different cases depending on the reproduction numbers are
shown in Figure 2.

The biological interpretation of the stability results are the following: by
decreasing R1 to be less than or equal to 1 (possible by decreasing βT or increasing
µ) we can eliminate the non-infectious parasites. To eradicate the disease, we have
to decrease R2 to be less than or equal to 1, which is possible by decreasing βQ

or increasing µ. If we have R1 ≤ 1 and R2 ≤ 1, we can eliminate both types of
parasites and the disease as well. The reproduction number R3 only determines
whether besides infectious parasites non-infectious parasites are present as well.
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Equilibria and corresponding eigenvalues and eigenvectors
ES λ

S,1
= −b− α, v

S,1
= (0, 0, 1)

λ
S,2

= βT − (b+ θ), v
S,2

= (1, 0, 0)

λ
S,3

= βQ − (b+ µ), v
S,3

=
(

0,
βQ+α−µ

µ
, 1
)

ET λ
T,1

= −b− α, v
T,1

=
(

βT−(b+θ)
2b+α+θ−βT

, 0, 1
)

λ
T,2

= b+ θ − βT , v
T,2

= (1, 0, 0)

λ
T,3

= βQ − (b− µ), v
T,3

=
(

(b+θ−βT )(αβQ+β2
Q+αβT+βQβT−βQµ)

βT (−2b+βQ+βT−θ−µ)µ ,
βQ+α−µ

µ
, 1
)

EQI λ
QI,1

= −θ + βT (b+µ)
βQ

− (b+α)βQ−αµ

b+α+µ
, v

QI,1
= (1, 0, 0)

λ
QI ,2 = − (b+α)(α+βQ)+

√
b+α

√
(b+α)(2b+α−βQ)2+4(b+α)(3b+α−2βQ)µ+4(3b+2α−βQ)µ2+4µ3

2(b+α+µ)

v
QI,2

=

(

0,
(b+α)(2b+α−βQ+2µ)−

√
b+α

√
(b+α)(2b+α−βQ)2+4(b+α)(3b+α−2βQ)µ+4(3b+2α−βQ)µ2+4µ3

2µ(b+α+µ) , 1

)

λ
QI,3

= − (b+α)(α+βQ)−
√
b+α

√
(b+α)(2b+α−βQ)2+4(b+α)(3b+α−2βQ)µ+4(3b+2α−βQ)µ2+4µ3

2(b+α+µ)

v
QI,3

=

(

0,
(b+α)(2b+α−βQ+2µ)+

√
b+α

√
(b+α)(2b+α−βQ)2+4(b+α)(3b+α−2βQ)µ+4(3b+2α−βQ)µ2+4µ3

2µ(b+α+µ) , 1

)

ETQI λ
TQI,1

= θ − βT (b+µ)
βQ

+
(b+α)βQ−αµ

b+α+µ
, v

TQI,1
= (1, 0, 0)

λ
TQI,2

= − (b+α)(α+βQ)+
√
b+α

√
(b+α)(2b+α−βQ)2+4(b+α)(3b+α−2βQ)µ+4(3b+2α−βQ)µ2+4µ3

2(b+α+µ)

v
TQI,2

=
(

−
((b+α)(bβT −βQ(βQ+θ))+(2bβT +α(βQ+βT )−βQθ)µ+βT µ2)

βT µ(b+α+µ)
×

×
−b(3α−βQ)(βQ+βT )+αβQ(βQ+βT )−2b(βQ+2βT )µ−2α(βQ+2βT )µ−2βT µ2+(βQ+βT )

(√
A−2b2−α2

)

α2βQ−2b2βT +αβQ(3βQ+2θ)−2α(βQ+βT )µ+2βQθµ−2βT µ2+b
(

3β2
Q

+α(βQ−2βT )+2βQθ−4βT µ
)

+βQ

√
A

,

(b+α)(2b+α−βQ+2µ)−
√

A

2µ(b+α+µ)
, 1

)

λ
TQI,3

= − (b+α)(α+βQ)−
√
b+α

√
(b+α)(2b+α−βQ)2+4(b+α)(3b+α−2βQ)µ+4(3b+2α−βQ)µ2+4µ3

2(b+α+µ)

v
TQI,3

=
(

((b+α)(bβT −βQ(βQ+θ))+(2bβT +α(βQ+βT )−βQθ)µ+βT µ2)

βT µ(b+α+µ)
×

×
b(3α−βQ)(βQ+βT )−αβQ(βQ+βT )+2b(βQ+2βT )µ+2α(βQ+2βT )µ+2βT µ2+(βQ+βT )

(√
A+2b2+α2

)

α2βQ−2b2βT +αβQ(3βQ+2θ)−2α(βQ+βT )µ+2βQθµ−2βT µ2+b
(

3β2
Q

+α(βQ−2βT )+2βQθ−4βT µ
)

−βQ

√
A

,

(b+α)(2b+α−βQ+2µ)+
√

A

2µ(b+α+µ)
, 1

)

with A = (b + α)
(

(b + α)(2b + α − βQ)2 + 4(b + α)(3b + α − 2βQ)µ + 4(3b + 2α − βQ)µ2 + 4µ3
)

Table 7.1. Equilibria, eigenvalues and eigenvectors
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