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Abstract—During infectious disease outbreaks, people
may modify their contact patterns after realizing the risk
of infection. In this paper, we assume that individuals
make the decision of reducing a fraction of their links
when the density of infected individuals exceeds some
threshold, but the decision is made with some delay. Under
such assumption, we study the dynamics of a delayed SIS
epidemic model on homogenous networks. By theoretical
analysis and simulations, we conclude that the density of
infected individuals periodically oscillate for some range
of the basic reproduction number. Our results indicate
that information delays can have important effects on the
dynamics of infectious diseases.
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I. I NTRODUCTION

A great deal of research in mathematical epidemiology
has been done for complex networks during the past
years [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12]. These works focus mostly on two different
complex networks: the Watts-Strogatz model and the
Barab́asi-Albert model. The first model is a relatively
homogeneous network exhibiting small-world properties
[1], and the second one is a typical example of a scale-
free network [2]. On these networks, the SIS model

is generally used to study the spread of infections via
connections between the nodes of the networks.

In disease transmission models, time delay plays an
important role in many epidemiological mechanisms.
Various delayed epidemic models have been extensively
studied (see, for example, Refs. [13], [14], [15], [16],
[17], [18], [19]). Recently there have been some results
about delay epidemic models on complex networks.
In the paper [20], the authors present a modified SIS
model with the effect of time delay in the transmission
on small-world and scale-free networks. They found
that the presence of the delay may enhance outbreaks
and increase the prevalence of infectious diseases in
these networks. Whereas in [21], the authors consider
a delayed SIR epidemic model on uncorrelated complex
network and addressed the effect of time lag on the shape
and number of epidemic waves. They showed that even
when the transmission rate is below the critical threshold,
a larger delay can cause that the disease takes off while
the force of infection is not increased. Otherwise, a large
delay can cause multiple waves with larger amplitudes
in the second and subsequent waves.

In fact, on one hand, during infectious disease out-
breaks, individuals may reduce their activities after
receiving information about the risk of infection. For
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example, people will reduce the time that they go out,
students will not attend school, and so on, and such
information on the ongoing epidemics may impact the
dynamics itself [22], as the contact network changes
[23]. Social distancing can be used as a control measure
as well. On the other hand, due to the latent period of
diseases, the concealment of infected individuals, or the
time needed for collecting and analyzing epidemic data,
the exact number of infected individuals is hard to be
known in real time. Based on the above facts, in this
paper we assume that individuals adjust their connections
according to some information delay concerning the
actual disease prevalence. For simplicity, we work with
the assumption that individuals uniformly and randomly
reduce the number of their connections by some factor
whenever the density of infected individuals exceeds a
given threshold. We study the effects of time-delayed
information on the decision-making of individuals, and
then we study the dynamics of the spread of the dis-
ease under such circumstances. By theoretical analysis
and simulations, we conclude that the disease will be
eradicated under some conditions, or tend to an endemic
state, but it can also oscillate in a periodic pattern when
the structure of networks and the time delay are properly
given. All these behaviors are completely characterized
by the basic reproduction number.

The paper is organized as follows. In the following
section, we set up a delayed SIS model on homogenous
networks and analyse the existence of equilibria. We
also give some results on stability, permanence and
oscillation of the disease in Section 2. In Section 3, some
numerical simulations illustrating the key points of the
theoretical analysis are given. At the last section we offer
a discussion of our results.

II. M ODEL AND ANALYSIS

A. The Model

In this section, we consider a susceptible-infected-
susceptible (SIS) model on homogenous networks. In the
SIS model, infectious (I) individuals contaminate their
susceptible (S) neighbors with some transmission rate.
Meanwhile, infected individuals recover at some rate
and return to the susceptible state again. By using the
mean-field approach on homogenous networks, in [6] the
authors arrived to the following epidemic model:

dI(t)
dt

= −µI(t) + β〈k〉I(t)(1− I(t)). (1)

Here I(t) ∈ [0, 1] denotes the density of infected
nodes at timet. The first term considers infected nodes

recovering with rateµ. The second term of the right-hand
side of Eq. (1) represents the newly infected nodes. This
is proportional to the transmission rateβ, the number of
links emanating from each node〈k〉, and the probability
that a given link points to a healthy node, which is
1− I(t). Hereµ, β, 〈k〉 are positive constants.

We suppose that individuals will reduce their links
according to the information they learn on the disease
spread. If the disease is not widespread, people remain
in contact with others as usual. With the increasing
number of the infected individuals, people reduce their
activities and temporarily terminate some of their links.
We assume this is governed by the following function:

h(I) =
{

1, I ≤ p,
q, I > p,

Fig. 1. The graph ofh(I).

where0 < p, q < 1. As shown in Fig. 1, whenI ≤ p the
number of links of individuals are the same as usual〈k〉;
whenI > p (i.e. the density of infectious nodes exceeds
the thresholdp), the links of individuals are reduced to
a lower levelq〈k〉. By assuming a time delayτ > 0 in
making this reduction, we obtain the following epidemic
model with discontinuous right hand side:

dI(t)
dt

= −µI(t) + β〈k〉h(I(t− τ))I(t)(1− I(t)). (2)

For the sake of simplicity, we rescale time byĨ(t) =
I(µ−1t), then writing the equation for̃I(t) and dropping
the tilde to use the notationI(t) for the variable in the
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rescaled time, Eq. (2) is transformed into

dI(t)
dt

= −I(t) + R0h(I(t− τ))I(t)(1− I(t)), (3)

where R0 = β〈k〉
µ is the basic reproduction number,

which expresses the number of secondary infections
generated by a single infected node in a fully suscep-
tible homogenous network. Eq. (3) is a scalar delay
differential equation, which are known to be able to
exhibit complicated behaviour if the nonlinearity is non-
monotone [24]. The technical complications due to the
discontinuity of the right hand side can be avoided if by
a solution of Eq. (3) we mean a continuous functionI(t)
satisfying

I(t) = I(t−τ)+
∫ t

t−τ
I(s)(R0h(I(s−τ))(1−I(s))−1)ds

for all t ≥ τ . Throughout the paper byI ′(t) we mean the
right derivative whenI(t − τ) = p, this will not cause
any confusion. Given the interpretation of the model, we
only consider solutionsI(t) ∈ [0, 1]. Clearly solutions
from this interval remain in[0, 1] for all future time. For
the existence of the equilibria, we have the following
statement.

Proposition 2.1.
(a) The disease free equilibriumI∗0 = 0 always exists,
(b) if 1 < R0 ≤ 1

1−p , Eq. (3) has a positive equilibrium
I∗1 ,

(c) if R0 > 1
q(1−p) , Eq. (3) has a different positive

equilibrium I∗2 ,
(d) if R0 < 1 or 1

1−p < R0 < 1
q(1−p) , there is no

positive equilibrium.
Proof. To obtain the equilibria of Eq. (3), we set

I(t) ≡ I(t − τ) ≡ I∗, and let the right hand side of
Eq. (3) be zero, so

R0h(I∗)I∗(1− I∗) = I∗. (4)

First we haveI∗ = 0, which corresponds to the disease
free equilibrium. IfI∗ 6= 0, then from Eq. (4) we get

R0h(I∗)(1− I∗) = 1. (5)

This does not have a positive solution forR0 < 1. If
R0 > 1, we distinguish two cases. WhenI∗ ≤ p, we
have I∗ = 1 − 1

R0
(let’s denote it byI∗1 ), and when

I∗ > p, we haveI∗ = 1 − 1
qR0

(denoted byI∗2 ). To
satisfyI∗1 ≤ p, we obtain1− 1

R0
≤ p, which isR0 ≤ 1

1−p .
Similarly, I∗2 > p is equivalent toR0 > 1

q(1−p) .
Proposition 2.2. If R0 < 1, then I0 is globally

asymptotically stable. IfR0 > 1, then I0 is unstable.

Proof. If R0 < 1, the statement easily follows from the
comparison

dI(t)
dt

≤ I(t)[R0 − 1]. (6)

As
dI(t)
dt

= I(t)[R0 − 1] (7)

is the linear variational equation around zero, the disease
free equilibrium is unstable ifR0 > 1.

B. Permanence

For the permanence of Eq. (3), we find the following
result.

Theorem 2.3: If R0 > 1, system (3) is permanent.
More precisely,

1− 1
qR0

≤ lim inf
t→∞

I(t) ≤ lim sup
t→∞

I(t) ≤ 1− 1
R0

. (8)

Proof: First we showI∞ = lim inf
t→∞

I(t) ≥ 1 − 1
qR0

.

Suppose that0 < I(t1) ≤ 1− 1
qR0

for somet1. Thus, by
the definition ofh,

(1− I(t1))R0h(I(t1 − τ)) ≥ 1

and from Eq. (3) we have

I ′(t1) = I(t1)
(
− 1 + R0h(I(t1 − τ))(1− I(t1))

)
≥ 0,

that is to say, the solution att1 is increasing, and since by
Proposition 2.1. a positive equilibrium less than1− 1

qR0

can not exist, we obtain

I∞ ≥ 1− 1
qR0

. (9)

Next we showI∞ = lim sup
t→∞

I(t) ≤ 1 − 1
R0

. Using

similar argument, supposingI(t2) ≥ 1 − 1
R0

for some
t2, we obtain

(1− I(t2))R0h(I(t2 − τ) ≤ 1,

and from Eq. (3) we have

I ′(t2) = I(t2)
(
− 1 + R0h(I(t2 − τ))(1− I(t2))

)
≤ 0.

The solution att2 is decreasing, and by the nonexistence
of equilibrium greater than1− 1

R0
, we obtain

I∞ ≤ 1− 1
R0

. (10)

The graph showing the relation ofI∗ and R0 is
depicted in Fig.2. From Fig.2, we can also see the effect
of the structure of the network. By increasing the average
degree〈k〉, R0 is also increasing, and the equilibrium
will change from zero to nonzero, then to oscillation,
then back to a nonzero equilibrium again; thus system
(3) will experience different dynamical behaviors.
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Fig. 2. The relation ofI∗ andR0, herea = 1
1−p

, b = 1
q(1−p)

. The
solutions are oscillating whena < R0 < b.

C. Stability and Oscillation

For the stability of the positive equilibria and oscilla-
tions of solutions, we have the following results.

Proposition 2.4: For Eq. (3), the following claims are
true:

(a) If 1 < R0 < 1
1−p , the positive equilibriumI∗1 is

locally asymptotically stable.
(b) If R0 > 1

q(1−p) , the positive equilibriumI∗2 is
locally asymptotically stable.

Proof: (a) If 1 < R0 < 1
1−p , Eq. (3) has a positive

equilibriumI∗1 = 1− 1
R0

< p, thus we can choose a small
neighborhood ofI∗1 such thatI(t) < p as long as the
solution is in this neighborhood. Thus, restricted to this
neighborhoodh ≡ 1 and Eq. (3) becomes an ordinary
differential equation, and we can easily obtain that the
positive equilibriumI∗1 is locally asymptotically stable.
Using the same argument, we can prove (b).

Theorem 2.5: If 1
1−p < R0 < 1

q(1−p) , then all
solutions of Eq. (3) oscillate aroundp.

Proof: Let 1
1−p < R0 < 1

q(1−p) , and suppose that a
solutionI(t) of Eq. (3) does not oscillate aroundp, then
there must existT1 such that

I(t) ≤ p, for t ≥ T1

or a T2 such that

I(t) ≥ p, for t ≥ T2.

In the following we show that none of them is possible.
If I(t) ≤ p for t ≥ T1, we have

I ′(t) = −I(t) + R0I(t)(1− I(t))

for t ≥ T1 + τ . In this case the solutionI(t) converges
to 1− 1

R0
> p, which is a contradiction.

Similarly, if I(t) > p for t larger than someT3, we
have

I ′(t) = −I(t) + qR0I(t)(1− I(t))

for t ≥ T2 + τ . In this case the solutionI(t) converges
to 1 − 1

qR0
< p, this is also a contradiction. We finish

by demonstrating that ifI(t) ≥ p for all t > T2, then
there is aT3 such thatI(t) > p for all t > T3. If that is
not true, then we can find arbitrarily largetk such that
I(tk) = p. If I(tk − τ) > p, thenI ′ is continuous attk
andI ′(tk) = 0 must hold, but thenh(I(tk−τ)) = q and
so

I ′(tk) = p(R0q(1− p)− 1) 6= 0.

To exclude the remaining case whenI(tk − τ) = p, we
impose the additional assumption that on some interval
of lengthτ our solution takes the valuep at most finitely
many times, then this property ofI(t) will be inherited
to any interval [t − τ, t] for future t by the integral
representation. By integration we also obtain

I(tk)
I(tk − τ)

= exp
[∫ tk

tk−τ
R0h(I(s− τ))(1− I(s))− 1ds

]
,

which implies that the integral in the exponent should
be zero. However,R0h(I(s − τ))(1 − I(s)) − 1 ≤ 0
wheneverI(s − τ) > p and h(I(s − τ)) = q. By our
assumption the equalityI(s − τ) = p holds on a set of
measure zero, thus the integral is negative, which is a
contradiction.

III. S IMULATIONS

In this section, we discuss some examples and sim-
ulations. Our purpose is to illustrate the sharpness of
the results of the previous section. Here we set initial
data as constant functions. First we setp = 0.8, q = 0.6
and demonstrate the stability of the zero equilibrium, as
shown in Fig. 3 withR0 = 0.8.

In the caseR0 = 2, as shown in Fig.4, the posi-
tive equilibrium I∗1 is asymptotically stable. While for
R0 = 3.6, p = 0.5, q = 0.4 and τ = 1.2, as shown
in Fig.5, solutions of Eq.(3) are oscillatory. In the case
R0 = 2.7, p = 0.1, q = 0.6, as shown in Fig.6, the
positive equilibriumI∗2 is asymptotically stable.

If 1
1−p < R0 < 1

q(1−p) , then all solutions of Eq. (3)
oscillate aroundp. In this case, to illustrate the effect of
the time delay, we consider distinct values of the delay
while other parameters are fixed. In the first case the
delay is small, depicted in Fig. 7 , withτ = 0.3, and the
amplitude of the solution aroundp is apparently small.
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Fig. 3. The time evolutions of the density of infection withI(0) =
0.1 and0.8, R0 = 0.8, p = 0.8, q = 0.6, andτ = 0.

Fig. 4. The time evolutions of the density of infection withI(0) =
0.1 and0.8, R0 = 2, p = 0.8, q = 0.6 andτ = 0.

In the second case, if the delay is larger than in the
first case (τ = 3.6), we observe increased amplitude
in Fig. 8. However, for all delays, the solutions always
oscillate between1− 1

R0
and1− 1

qR0
. These values are

represented by the straight lines in Fig. 7 and Fig. 8,
and one can see that the bounds are rather sharp for
large delays.

IV. CONCLUSION

In this paper, we studied a delayed model for an
SIS epidemic process in a population of individuals on
a homogenous network. We assumed that individuals
temporarily reduce the number of their links by a factor

Fig. 5. The time evolutions of the density of infection withI(0) =
0.8,R0 = 3.6, p = 0.5, q = 0.4 andτ = 1.2.

Fig. 6. The time evolutions of the density of infection withI(0) =
0.1 and0.8, R0 = 2.7, p = 0.1, q = 0.6 andτ = 0.

q when the density of infections exceeds the threshold
numberp, but this modification in the contact pattern
is done with some delayτ . When the basic reproduc-
tion number is smaller than one, the disease will be
eradicated. For reproduction numbers larger than one,
we showed that the disease persists in the population.
If the endemic state is lower than the threshold, then
the reduction of contacts will never be triggered and the
solution converges to an endemic equilibriumI∗1 . If there
is an endemic state even with the reduction of contacts
which is at higher level than the threshold, then the
terminated links remain inactive for all future time and
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Fig. 7. The time evolutions of the density of infection withI(0) =
0.8, R0 = 3.6, p = 0.5, q = 0.4 andτ = 0.3.

Fig. 8. The time evolutions of the density of infection withI(0) =
0.8, R0 = 3.6, p = 0.5, q = 0.4 andτ = 3.6.

the solution converges to a different endemic stateI∗2 .
There is an interesting intermediate situation though for a
range of basic reproduction numbers, when the reduction
is triggered, but with such reduced transmission the
endemic state is below the threshold, thus the links will
be reactivated again, which helps the disease to spread
more, thus triggering the reduction and so on, forming
an interesting periodic oscillatory pattern. The time delay
has significance in determining the characteristics of this
oscillation: longer delay leads to larger amplitudes. Our
results indicate that the structure of the network (which
influences the reproduction number), the threshold type

reduction in contacts and the delayed decision in reduc-
tion interestingly interplay on influencing the spreading
dynamics of infectious diseases.
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