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Abstract

Background: The emergence of neuraminidase inhibitor resistance has raised concerns about the prudent use of antiviral
drugs in response to the next influenza pandemic. While resistant strains may initially emerge with compromised viral
fitness, mutations that largely compensate for this impaired fitness can arise. Understanding the extent to which these
mutations affect the spread of disease in the population can have important implications for developing pandemic plans.

Methodology/Principal Findings: By employing a deterministic mathematical model, we investigate possible scenarios for
the emergence of population-wide resistance in the presence of antiviral drugs. The results show that if the treatment level
(the fraction of clinical infections which receives treatment) is maintained constant during the course of the outbreak, there
is an optimal level that minimizes the final size of the pandemic. However, aggressive treatment above the optimal level can
substantially promote the spread of highly transmissible resistant mutants and increase the total number of infections. We
demonstrate that resistant outbreaks can occur more readily when the spread of disease is further delayed by applying
other curtailing measures, even if treatment levels are kept modest. However, by changing treatment levels over the course
of the pandemic, it is possible to reduce the final size of the pandemic below the minimum achieved at the optimal
constant level. This reduction can occur with low treatment levels during the early stages of the pandemic, followed by a
sharp increase in drug-use before the virus becomes widely spread.

Conclusions/Significance: Our findings suggest that an adaptive antiviral strategy with conservative initial treatment levels,
followed by a timely increase in the scale of drug-use, can minimize the final size of a pandemic while preventing large
outbreaks of resistant infections.
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Introduction

The use of antiviral drugs to mitigate the impact of a nascent

influenza pandemic has been evaluated in several recent modelling

studies [1–7], with significant public health implications for

identifying effective preparedness strategies. These studies suggest

that early diagnosis and prompt onset of treatment of clinical cases

is crucial for possible containment of a pandemic. A key

assumption is that the virus remains less transmissible than

pandemic viruses of the last century, so that the reproduction

number of disease transmission stays below 1.8 [1,6,7]. However,

the effectiveness of antiviral drugs may be diminished by several

factors, including a delay in start of treatment, and more

importantly, the emergence and transmission of drug-resistant

viral mutants in the population [8–12].

While antiviral therapy appears to be central in any containment

strategy, it will impact the emergence of drug-resistance in a complex

manner. On one hand, early application of antiviral drugs will

largely inhibit generation of resistant viruses by suppressing viral

replication. On the other hand, it results in a longer time for selection

in favour of pre-existing resistant mutants to restore their impaired

replication fitness through compensatory mutations [13,14]. With

sufficiently increased fitness, resistant viruses may gain a competitive

advantage in the spread of infection and establish a self-sustaining

epidemic of viral resistance [8,9,14]. Strategic use of antiviral drugs is

therefore crucial for not only mitigating the impact of the wild-type

strain, but also preventing the occurrence of pandemic waves of

drug-resistant infections.

The dynamics of competition between the wild-type and

resistant strains is in general complex. If treatment is poorly

administered, then the wild-type strain spreads rapidly and

depletes the pool of susceptibles in the population, which would

afford little chance for resistant strains to evolve or cause an

outbreak of drug-resistance [8,9]. It has been suggested that

intensive antiviral treatment may eliminate the wild-type infection

(when transmission of the virus is largely interrupted) without
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promoting the spread of resistant strains if transmissibility of

resistant strains is sufficiently low [9]. Regardless of the feasibility

of such antiviral strategy, high treatment levels can exert strong

selective pressures that confer resistance that frequently evolves far

more rapidly than the natural rate. The evolution of such mutants

is influenced by several factors, including the duration of

treatment, the delay in onset of therapy, and the rate at which

de novo resistant mutations occur [8]. Combined with compen-

satory mutations that raise fitness of resistant viruses [13,14],

intensive treatment may indeed result in a devastating pandemic of

resistant viral mutants. Understanding the dynamics of the

emergence of drug-resistance is therefore crucial for implementa-

tion of effective mitigation strategies.

In this paper, we extend previous work [8,15] to illustrate the

possible scenarios of disease outbreak in the population, including

single-strain infections and co-existence of wild-type and resistant

infections. By incorporating compensatory mutations into a

mathematical model, we discuss the role of the transmission

fitness of resistant mutants in determining the outcomes of

antiviral strategies with constant and varying treatment levels. In

the following, we describe the model based on the existing

frameworks [8,15], and provide details of the equations and

analysis in ‘‘Text S1’’. We derive the control reproduction number

of the wild-type strain and use it for delineating the results and

their epidemiological consequences for the strategic use of antiviral

drugs in response to a future pandemic.

Methods

The model
To develop a population dynamical model, we followed

previous work [8,15] and divided the population into several

compartments comprising susceptible, exposed, asymptomatic,

and symptomatic infected individuals. In our model, exposed

individuals undergo a latent period, during which viral titers

increase to detectable and transmissible levels [16]. An exposed

individual may become infectious after the latent period and shed

virus without showing clinical symptoms; this is referred to as

asymptomatic infection. Considering the kinetics of influenza

infection in humans [16], we divided the clinical course of

infection into three stages: (i) pre-symptomatic infection, (ii)

primary stage of symptomatic infection (referred to as the window

of opportunity for start of treatment); and (iii) secondary stage of

symptomatic infection (Figure 1). The relative transmissibility of

the virus at each stage is estimated by superposing a step-function

on the log-normal curve fitted to household longitudinal data on

influenza viral shedding [1,17]. Antiviral treatment, as a single

containment strategy, may be initiated upon diagnosis of a clinical

case within the window of opportunity; however, those who have not

started treatment in this window will receive no antiviral therapy

during the secondary stage of symptomatic infection. The probability

of an individual receiving treatment decreases with the time elapsed

since the onset of symptoms, which is reflected in the functional form

of the treatment rate with delay in seeking healthcare [8,15]. We

assumed that treatment reduces the infectiousness level of the wild-

type disease by 60% (reflected as a reduced transmission rate in the

model since initiation of treatment), but has no effect on individuals

infected with resistant viruses.

We considered a two-day window of opportunity for initiating

treatment of indexed cases following the onset of clinical disease. It

is assumed that resistant mutants with low transmission fitness (dr)

emerge during treatment of individuals infected with the wild-type

strain. With continuous replication of the virus, the rate of

developing de-novo resistance is greatest when treatment is started

near the peak of viral titers [8]. Although resistant mutants may

initially emerge with compromised fitness and growth [18],

mutations that compensate for this impaired fitness may arise

[13,14]. These compensatory mutations can generate variants with

Figure 1. Model structure for the emergence of drug-resistance during treatment of symptomatic infections. The clinical course of
disease is divided into three stages: pre-symptomatic; primary; and secondary stages of symptomatic infections. Drug-resistance with low
transmission fitness can emerge during treatment of individuals infected with the wild-type virus. It is assumed that compensatory mutations may
result in generation of resistant mutants with high transmission fitness during the secondary stage of treated symptomatic infection. The
compartments of untreated and treated individuals infected with the wild-type strain are represented by IU and IT, respectively. The corresponding
compartments for the resistant strain with low (high) transmission fitness are denoted by sub-index r (rH).
doi:10.1371/journal.pone.0001839.g001
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high transmission fitness (drH), comparable to that of the wild-type

strain. Such mutations are more likely to occur during the

secondary stage of symptomatic infection, as resistant mutants in

viruses isolated from treated patients were mostly detected 3 days

after the onset of treatment [19,20]. We extended the model to

include compartments of individuals who are carriers of highly

transmissible resistant viruses (either evolved during treatment or

transmitted through direct person-to-person contacts) in both

asymptomatic and symptomatic infection. We incorporated

parameters for the treatment and emergence of drug-resistance

(Table 1) into a deterministic epidemic model formulated by a

system of delay differential equations (see ‘‘Text S1’’).

Reproduction numbers
In order to evaluate the effect of parameters described in Table 1

on disease propagation, we calculated the control reproduction

number of the wild-type strain (Rw
c ), as a function of treatment

level and delay in onset of therapy. In the absence of treatment,

the quantity Rw
c reduces to the basic reproduction number (Rw

0 ),

defined as the number of new infections generated by a single

infected case introduced into a wholly susceptible population [21],

and given by

Rw
0 ~bS0

1{pð ÞdA

mA

z
pdU

mUzdU

zpdPtzp n{tð Þ
� �

,

where b is the baseline transmission rate of the wild-type virus; S0

is the size of the susceptible population at the onset of pandemic; p

represents the probability of developing clinical disease; mA and mU

are, respectively, the recovery rate of asymptomatic and symptom-

atic infections (secondary stage); dA, dP, and dU represent the relative

transmissibility of the virus during asymptomatic, pre-symptomatic,

and secondary stage of symptomatic infections; dU is the disease-

induced death rate; t is the period of pre-symptomatic infection; and

n represents the period of the primary stage of symptomatic infection

(see Table 1 in ‘‘Text S1’’). We also derived the expressions for the

number of new infections generated through direct transmission of

resistant viruses with low fitness (Rr
0) and high fitness (RrH

0 ), and

obtained a criterion for the control of disease (see ‘‘Text S1’’).

Results

We considered the scenario in which a novel transmissible

pandemic virus arises (at time t = 0) in a susceptible population of

size S0 = 100 000 with no pre-existing immunity. We assumed that

the treatment of indexed cases begins one day after the onset of

clinical disease. The rate of de novo resistance (aT) that generates

mutants with low fitness ranges from 0.018 to 0.072 day21

[11,12], and we assumed a baseline value of aT = 0.018 day21. In

our model, this rate results in the emergence of drug-resistance in

approximately 4.8% of treated patients during secondary stage of

symptomatic infection, with very marginal dependence on

treatment level. We used the same rate for resistance emergence

in the primary stage of symptomatic infection, which allows for the

development of approximately 1% resistant infections during the

primary stage of symptomatic infection. These rates contribute to

an overall (approximately) 5.8% resistance emergence, which lies

within the estimated range 1%–18% incidence of neuraminidase

resistance reported in clinical samples [18,19,20].

We assumed that the fraction of treated individuals (hosting

resistant viruses with low fitness) which undergoes compensatory

mutations and subsequently generates resistant strains with high

fitness lies between 1/5000 and 1/500 [9]. This is 10-fold greater

than the corresponding fraction of untreated resistant cases [14].

We used these fractions to determine the ranges of conversion

rates between low and high fitness resistant strains. To illustrate

the typical outbreaks of wild-type and resistant infections, we

inserted the following parameter values: cT = 0.0036 day21;

cU = 0.00036 day21; dr = 0.2; drH = 0.9; which correspond to

probability 561024 that a treated individual infected with the

wild-type virus develops drug-resistance with high transmission

fitness. Baseline values of these parameters and their respective

ranges used for simulations and sensitivity analyses are given in

Table 1, and details are provided in ‘‘Text S1’’.

Constant treatment strategy
Assuming Rw

0 ~1:6 and RrH
0 ~1:44, Figure 2 shows the

occurrence of disease outbreaks for constant treatment levels

during the entire course of the pandemic. For 50% treatment level

of clinical cases, the wild-type strain spreads quickly and depletes

the susceptible population, and therefore a limited number of

resistant cases is generated (Figure 2a). Increasing treatment level

to 78% leads to a reduction in the clinical attack rate of the wild-

type virus from 22% (at 50% treatment level) to 16%, and lowers

Rw
c from 1.38 to 1.25 (Figure 2b). In this case, however, the

emergent resistant mutants begin to invade the susceptible hosts

and establish a self-sustaining epidemic. Further increase in the

treatment level to 90% enhances the spread of resistant mutants

and leads to the co-existence of outbreaks (Figure 2c). With higher

treatment level (95%), Rw
c is reduced considerably below RrH

0 , and

the resistant outbreak substantially dominates that of the wild-type

strain (Figure 2d). Transmission of wild-type infections is

Table 1. Description of transmission, mutation, and treatment parameters of the model with their baseline values and ranges used
for simulations and sensitivity analyses.

Symbol Description Value (Range) Reference

dr relative transmissibility of resistant strain with low fitness 0.2 (,0.4) [8,9,11]

drH relative transmissibility of resistant strain with high fitness variable (.0.6) [8,9,11]

rmax maximum rate of emergence of drug-resistance within the window of opportunity 0.018 (0.018–0.072) day21 [11,12]

aT rate of emergence of drug-resistance during secondary stage of symptomatic infection 0.018 (0.018–0.072) day21 [11,12]

cU rate of conversion between resistant mutants in untreated symptomatic infection 3.661024 (1026–1021) day21 [14]

cT rate of conversion between resistant mutants in treated symptomatic infection 3.661023 (1026–1021) day21 [14]

12q fraction of infected individuals which receives treatment (treatment level) variable (0–1) 2

Rw
0 reproduction number of the wild-type strain 1.6 (1.4–2) [1,2,4,6,7]

doi:10.1371/journal.pone.0001839.t001
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dramatically reduced, resulting in a 4% clinical attack rate.

However, the wide-spread presence of resistant strains results in a

higher overall attack rate than would have been the case if

treatment were administered at a lower rate. We observed similar

patterns for outbreaks of wild-type and resistant infections with

higher values of Rw
0 . However, in these cases, wide-spread drug-

resistance is less probable and requires higher levels of treatment to

significantly interrupt the transmission of wild-type infections.

Although the use of antiviral drugs appears to be essential for

combating the wild-type strain, it can potentially lead to the

population-wide spread of drug-resistance. To demonstrate the

interplay between these opposing effects, we simulated the model

to determine the final size of the epidemic, using Rw
0 ~1:6 and

Rw
0 ~1:8, as a function of treatment level. The solid curves in

Figures 3a–b show the total number of clinical infections and

deaths during the entire course of an outbreak. As is evident,

increasing the treatment level decreases the overall number of

infections to a minimum, beyond which the compensated resistant

mutants gain a competitive advantage and spread widely through

the population (Figure 3d), thereby increasing the final size of the

outbreak. The treatment level at which this minimum is achieved

will be referred to as the optimal constant level. Although this

pattern is qualitatively preserved for different reproduction

numbers, the optimal treatment level is lower for smaller Rw
0

(Figure 3a), and therefore the outbreaks of drug-resistant infections

become more likely even with moderate treatment levels. This

suggests that reducing Rw
0 through application of other mitigation

strategies may compromise the overall impact of antiviral therapy

[9], should compensated mutants emerge (Figure 3d). However, in

the absence of compensatory mutations, increasing treatment level

would continue to decrease the epidemic size (Figure 3a, dashed

curves), as resistant strains exist only at significantly lower

Figure 2. Time-courses of clinical infections with one day delay in onset of treatment of indexed cases, with Rw
0 ~1:6. Simulations were

run, when a single case infected with the wild-type virus is introduced into the susceptible population of size S0 = 100 000. Treatment levels are: (a)
50%; (b) 78%; (c) 90%; and (d) 95%. The corresponding reproduction numbers of the wild-type strain are: (a) Rw

c ~1:38; (b) Rw
c ~1:25; (c) Rw

c ~1:18;
and (d) Rw

c ~1:15.
doi:10.1371/journal.pone.0001839.g002

Figure 3. (a) Total number of clinical infections caused by the wild-type, low fitness resistant, and high fitness resistant strains; (b) Total number of deaths;
(c) Total number of clinical infections caused by the low fitness resistant strains; (d) Total number of clinical infections caused by the high fitness resistant
strains, as a function of treatment level. Treatment of infected individuals begins one day after the onset of clinical disease; red and black curves
correspond, respectively, to the reproduction numbers Rw

0 ~1:6 (Rr
0~0:32, RrH

0 ~1:44) and Rw
0 ~1:8 (Rr

0~0:36, RrH
0 ~1:62). Dashed curves in (a) and (b)

correspond to the scenario in which no compensatory mutations occur, and resistant mutants are only present at low fitness cost.
doi:10.1371/journal.pone.0001839.g003
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transmission fitness compared with the wild-type strain. More

importantly, the optimal level reduces as transmission fitness of the

resistant strain exceeds a certain threshold and increases towards

that of the wild-type virus. To demonstrate this, we performed

sensitivity analyses over a range of key parameters, including the

basic reproduction number of wild-type virus, the rates of de novo

resistance, and the rates of conversion between resistant strains (see

‘‘Text S1’’). Figure 4 displays the results of variations in the

optimal treatment level as a function of drH. Although qualitatively

similar results were obtained through a simple compartmental

model [9], the integration of different stages of disease at the

individual level and the likely delay in seeking healthcare and

therefore initiating therapy, can have important consequences for

developing pandemic plans [8].

Adaptive treatment strategy
In the event of emerging drug-resistance, it has been suggested

[1] that reducing treatment levels may permit the wild-type to

outcompete the resistant strains due to its greater fitness, thereby

preventing large resistant outbreaks. To investigate this strategy,

we modified the model to allow for changing the population2level

of treatment at a specified time (t*) during a pandemic. We define

T as the total number of clinical infections when an antiviral

strategy with varying level of treatment is implemented, and let Tc

be the total number of clinical infections when treatment is

maintained at the optimal constant level. The ratio T/Tc provides

a criterion for identifying effective strategies for controlling the

spread of disease. Assuming Rw
0 ~1:6, we simulated the model

when antiviral treatment is initiated at an 85% level (above the

corresponding optimal constant level 78%). The results show that

the final size of infections may be reduced only if treatment is

scaled down to the optimal level during the early stages of the

pandemic (Figures 5a), before outbreaks of compensated mutants

can occur (Figure 6a). Further simulations (Figure 5b) with a 78%

initial treatment level indicate that reducing antiviral use, at any

time during a pandemic, below the optimal level would increase

the number of clinical infections (T/Tc.1), suggesting that

antiviral therapy at the optimal constant level will be more

effective in mitigating a pandemic, and preventing resistant

outbreaks (Figure 6b). However, the final size of a pandemic

may be slightly reduced if the supply of drugs can afford a

significant increase in the level of treatment at a later stage during

the outbreak.

To further investigate the effect of raising treatment level, we

simulated the model when treatment is initially administered at

25% and 50% (below the optimal level). The results show a

significant reduction in the total number of clinical infections

compared with that achieved at the optimal constant level

(Figure 5c,d). However, the effectiveness of this strategy depends

critically on the initial scale of drug-use and the time at which the

level of treatment is raised. As is evident from Figure 5d, for lower

treatment levels, an earlier increase in antiviral use is required for

achieving the minimum final size. This is due to the fact that the

wild-type virus spreads more rapidly (and therefore depletes the

pool of susceptible individuals more quickly) during the initial low

treatment phase. The findings suggest that the impact of this

strategy is much more pronounced in mitigating a pandemic than

a constant treatment plan, even if treatment can be maintained at

the optimal level throughout the entire course of an outbreak.

Figures 6c and 6d indicate that a timely increase in the level of

drug-use can also prevent large outbreaks caused by the

emergence of highly transmissible resistant viruses.

To further exemplify the overall benefit of this strategy, we

simulated the time-courses of infection for two scenarios in which

Figure 4. Sensitivity analysis showing box plots for the
variations in the optimal constant treatment level (below
90%) as a function of drH, with other parameters sampled from
their respective ranges, as described in ‘‘Text S1’’. The solid
curve passes through the median values of the treatment level, and
each box contains 50% of data points between the first and third
quartiles of the sampling distribution. The remaining 50% of data points
are represented by whiskers.
doi:10.1371/journal.pone.0001839.g004

Figure 5. The effect of changing treatment level during a pandemic on the total number of clinical infections caused by all strains,
with Rw

0 ~1:6. Simulations were seeded with an initial treatment level of (a) 85%; (b) 78% (optimal level); (c) 50%; (d) 25%, and then changed to the
level shown on the horizontal axis at the time displayed on the vertical axis (corresponding to the time-course of the epidemic). The color bars
illustrate the total number of clinical cases due to all strains, relative to that generated when the optimal constant treatment level (78% in this case) is
implemented.
doi:10.1371/journal.pone.0001839.g005
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(i) a constant treatment level of 78% (optimal level) is administered

at all times during the outbreak (Figure 7a); (ii) treatment is

initiated at a 25% level for the first 50 days, and then increased to

90% for the rest of the outbreak (Figure 7b). In the second

scenario, not only are clinical infections reduced, but also the

spread of highly transmissible resistant viruses is prevented. In this

scenario, the duration of the outbreak is shortened, with an earlier

peak of infection. Compared with Figure 2c, in which treatment is

kept at 90% from the beginning of the outbreak, it is observed that

conservative treatment levels early on in a pandemic may be

crucial in controlling the spread of resistant viruses. We also

observed that even if the treatment level is only increased to 78%

at day 50, from the initial 25% level, the small outbreak of the

highly transmissible resistant strain shown in Figure 6a can be

prevented, while the total number of clinical infections is also

slightly reduced. Our sensitivity analyses, detailed in ‘‘Text S1’’,

show that these results remain robust across wide ranges of

parameters that govern de novo resistance, compensatory

mutations, and transmissibility of wild-type and resistant strains.

Discussion

In this study, we extended a previous model for the emergence

of drug-resistance [8] to evaluate the likely evolutionary-epidemi-

ological outcomes of an antiviral treatment strategy. We discussed

the influence of three major factors on the population-wide spread

of drug-resistance, namely: (i) the reproduction number of the

wild-type strain; (ii) time-dependent antiviral treatment level; and

(iii) compensatory mutations that raise the replication fitness of

resistant strains.

Our results show that, in the absence of compensatory mutations,

resistant strains with large fitness cost cannot gain a competitive

advantage in the spread of disease, and therefore increasing the level

of antiviral treatment would reduce the final size of the pandemic

(Figure 3a, dashed curves). While intensive drug use may increase the

number of emergent resistant cases during treatment [8,9], the

population incidence of drug-resistance is still limited due to a

significantly lower reproduction number (transmission fitness) of

resistant strains compared with the wild-type virus.

In the presence of compensatory mutations, however, the

competitive interference between wild-type and resistant strains is

more complex. Since transmission fitness of compensated mutants

is generally lower than that of the wild-type virus, the spread of

disease is reduced by increasing drug use to moderate levels

(Figure 3a, solid curves). While the number of emergent resistant

cases increases with higher treatment levels (Figure 3c), the overall

decrease in epidemic size is due to a more pronounced reduction

of the wild-type transmission. As the use of antiviral drugs exceeds

the optimal level, the overall epidemic size begins to grow, since

the reproduction number of compensated mutants now stands well

above that of the wild-type virus. Such wide-spread use of drugs

will largely block transmission of the wild-type infection and

greatly enhance the spread of drug-resistant viral mutants

(Figure 3d), which in turn will increase the final size of the

pandemic (Figure 3a, solid curve). Time courses of wild-type and

resistant infections in Figure 2 illustrate these dramatic changes in

the profile of outbreaks for a particular value of the reproduction

number Rw
0 ~1:6. We observed similar behaviour for Rw

0 ~1:8
(Figure 3, black curves); however, the population-wide spread of

drug-resistance requires more aggressive use of antiviral drugs.

While it is tempting to prescribe a high level of treatment at the

onset of a pandemic for possible elimination of the wild-type virus,

our simulations show that if aggressive treatment fails to contain

the disease, then large outbreaks of resistant strains can develop.

Considering a range of clinical attack rates above 25%, we have

previously shown that an antiviral treatment as a single

containment strategy will be unsuccessful at controlling the spread

of wild-type disease if Rw
0 exceeds 1.4 [8]. Our findings in this

study suggest that, as an alternative strategy, conservative

treatment levels during the early stages of an outbreak can

Figure 6. The effect of changing treatment level during a pandemic on the total number of clinical infections caused by the high
fitness resistant strain, with Rw

0 ~1:6. Simulations were seeded with an initial treatment level of (a) 85%; (b) 78% (optimal level); (c) 50%; (d) 25%,
and then changed to the level shown on the horizontal axis at the time displayed on the vertical axis (corresponding to the time-course of the
epidemic). The color bars illustrate the total number of clinical infections due to the resistant strain with high transmission fitness, relative to that
generated when the optimal constant treatment level (78% in this case) is implemented.
doi:10.1371/journal.pone.0001839.g006

Figure 7. Time-courses of clinical infections with one day delay
in onset of treatment of indexed cases for Rw

0 ~1:6. Simulations
were run, when a single case infected with the wild-type virus is
introduced into the susceptible population of size S0 = 100 000.
Treatment in (a) is maintained at the optimal level (78%) for the entire
course of the outbreak. Treatment in (b) is initiated at a 25% level for
the first 50 days (shaded area), and then increased to 90% for the rest of
the outbreak. All other parameters are the same as those used for
simulations in Figure 2.
doi:10.1371/journal.pone.0001839.g007
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substantially contribute towards mitigating the pandemic burden.

If followed by a timely increase in the level of drug-use, this

strategy would preserve the potential for minimizing the final size

of a pandemic (Figures 5c,d), while preventing large outbreaks of

resistant viruses (Figures 6c,d). The principal mechanism under-

lying this adaptive antiviral strategy is to sufficiently reduce the

number of susceptible individuals through an initial growth of

wild-type infection, which will in turn prevent outbreaks of drug-

resistant infections. However, an initial high treatment level

followed by a reduction in antiviral use due to shortage in drug

supply or emergence of highly transmissible drug-resistant strains

in the population appears to be a poor strategy for disease control.

We tested the robustness of our findings by performing sensitivity

analyses over the estimated ranges of parameters describing the

transmissibility of wild-type and resistant strains, de novo

resistance emergence, and compensatory mutations that raise the

fitness of resistant mutants. We also employed a previous

population dynamical model for the emergence and spread of

drug-resistance [9], and observed qualitatively consistent results

for the proposed antiviral strategy. The findings of this study

clearly indicate that any containment policy should be integrated

with surveillance and monitoring systems, so that necessary

adaptations to the treatment strategy can be made in a timely

fashion, should resistant mutants with high transmission fitness

emerge during the pandemic.

The modelling efforts in this study aim to evaluate the possible

outcomes of various antiviral strategies. The work is meant to be a

proof of concept rather than to provide specific quantitative

recommendations for treatment policies, and we therefore

emphasize the qualitative aspects of this evaluation. Nevertheless

our evaluation, together with its sensitivity analyses, suggest that

delaying implementation of aggressive treatment would reduce the

overall disease burden, and significantly lower the probability of

resistant outbreaks occurring. This strategy may be particularly

beneficial when considering scarce resources of antiviral drugs,

limited production capacity, and the surge in demand for

treatment with the progression of a pandemic. Historical

precedent, from both seasonal influenza epidemics and the

1918–1919 influenza pandemic, suggests that a novel influenza

strain with high pathogenicity would severely tax existing health

resources, and would force healthcare administrators and

providers alike to make difficult decisions that may include

rationing of scarce resources (e.g., antiviral drugs). Comparison of

the potential consequences of competing strategies, as well as the

practices required to achieve best outcomes, will allow for optimal

resource allocation and health policy decisions.

For the results reported here, we assumed that antiviral drugs

are used for treatment of only indexed cases having the same

estimated efficacy of application as during interpandemic

influenza outbreaks. However, the effect of antiviral therapy on

the development of drug-resistance is much more pronounced

when prophylactic use of drugs is planned in addition to

treatment, as discussed in recent studies [9,11]. Our simulations

are based on parameters extracted from the published literature,

and involve some degree of uncertainty, particularly with regard to

the parameters that govern de novo resistance emergence and

compensatory mutations. While highlighting the qualitative

aspects of our study, parameter estimates from in vivo data

associated with resistant mutations are needed to provide more

accurate quantitative predictions. Combined with the previous

work [8] that integrates the latest insights concerning within-host

viral dynamics with the between-host spread of disease, a

predictive framework of the emergence of drug-resistance is now

on the horizon.
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15. Alexander ME, Moghadas SM, Röst G, Wu J (2008) A delay differential model

for pandemic influenza with antiviral treatment. Bull Math Biol 70: 382–397.

16. Baccam P, Beauchemin C, Macken CA, Hayden FG, Perelson AS (2006)

Kinetics of influenza A virus infection in humans. J Virol 80: 7590–7599.

17. Cauchemez S, Carrat F, Viboud C, Valleron AJ, Boelle PY (2004) A Bayesian

MCMC approach to study transmission of influenza: application to household

longitudinal data. Stat Med 23: 3469–3487.

18. Yen HL, Herlocher LM, Hoffmann E, Matrosovich MN, Monto AS, et al.

(2005) Neuraminidase inhibitor-resistant influenza viruses may differ substan-

tially in fitness and transmissibility. Antimicrob Agents Chemother 49:

4075–4084.

Influenza Drug-Resistance

PLoS ONE | www.plosone.org 7 March 2008 | Volume 3 | Issue 3 | e1839



19. HKiso MH, HMitamura KH, HSakai-Tagawa YH, HShiraishi KH,

HKawakami CH, et al. (2004) Resistant influenza A viruses in children treated

with oseltamivir: descriptive study. Lancet 364: 759–765.

20. Ward P, Small I, Smith J, Suter P, Dutkowshi R (2005) Oseltamivir (Tamiflu�)

and its potential for use in the event of an influenza pandemic. Antimicrob
Agents Chemother 55: Suppl. S1, i5–i21.

21. Diekmann O, Heesterbeek JAP (2000) Mathematical Epidemiology of Infectious

Diseases. Chichester: Wiley.

Influenza Drug-Resistance

PLoS ONE | www.plosone.org 8 March 2008 | Volume 3 | Issue 3 | e1839


