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BIFURCATION OF PERIODIC DELAY DIFFERENTIAL
EQUATIONS AT POINTS OF 1:4 RESONANCE ∗

G. RÖST †

Abstract. The time-periodic scalar delay differential equation ẋ(t) = γf(t, x(t − 1))
is considered, which leads to a resonant bifurcation of the equilibrium at critical values of
the parameter. Using Floquet theory, spectral projection and center manifold reduction,
we give conditions for the stability properties of the bifurcating invariant curves and four-
periodic orbits. The coefficients of the third order normal form are derived explicitly. We
show that the 1:4 resonance has no effect on equations of the form ż(t) = −γr(t)g(x(t−1)).
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1. Introduction. The generic bifurcation of planar discrete dynamical
systems is the Neimark-Sacker bifurcation, where a complex conjugate pair
of multipliers crosses the unit circle at critical values of the parameter and
an invariant curve bifurcates from the equilibrium. These results can be
extended to higher dimensional systems by center manifold theorems and
projection methods. The case, when the critical multipliers are fourth roots
of unity, is called 1:4 strong resonance. At strong resonances the Neimark-
Sacker bifurcation theorem is not valid any more and we need further studies.
The modern theory of strong resonances is due to Arnold ([1],[2]). We can not
expect the appearance of an invariant curve in general, and intricate behavior
of the system is possible (see e.g. [4],[11]). The most complicated case of
resonances is the 1:4. In this paper we use some related results of Iooss ([14]),
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Wan ([21]) and Lemaire ([17]). In a previous paper ([18]) the bifurcation of
the time-one map of a scalar periodic delay differential equation was studied.
For the general case, the bifurcation analysis is performed by using Floquet
theory, center manifold reduction and a spectral projection method, but a
wide class of delay differential equations leads to a strong 1:4 resonance. The
purpose of this paper is to broaden the results to this case.

Consider the non-autonomous scalar delay differential equation

ẋ(t) = γf(t, x(t− 1)),(1)

where γ is a real parameter, f : R×R→ R is a C4-smooth function satisfying

f(t + 1, ξ) = f(t, ξ)

and

f(t, 0) = 0

for all t, ξ ∈ R. Such equations arise very naturally in several applications,
i.e. in population dynamics. A nice overview of related models can be found
in [19]. The periodicity is due to the periodic fluctuation of the environment.
Denote the Banach space of continuous real and complex valued functions
on the interval [-1,0] by C and CC, respectively, with the norm

||φ|| = sup
−1≤t≤0

|φ(t)|.

Every φ ∈ C determines a unique continuous function xφ : [−1,∞) → R,
which is differentiable on (0,∞), satisfies (1) for all t > 0 and xφ(t) = φ(t)
for all t ∈ [−1, 0]. Such a function xφ is called the solution of (1) with the
initial value φ. The time-one map F : C → C is defined by the relations

F (φ) = xφ
1 , xt(s) = x(t + s), s ∈ [−1, 0].

The notation Fγ emphasizes the dependence of the time-one map on the
parameter. The spectrum σ(U) of the monodromy operator U (the derivative
of the time-one map F at 0) determines the behavior of solutions close to
the equilibrium 0. The monodromy operator is a linear continuous map and
with the relation U(ψ) = U(Re ψ) + iU(Im ψ) considered as an operator
CC → CC and given by U(ψ) = yψ

1 , where yψ is the solution of the linear
variational equation
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ẏ(t) = γfξ(t, 0)y(t− 1),(2)

where yψ|[−1,0] ≡ ψ. The operator U is compact, therefore all the non-
zero points of the spectrum are isolated points and eigenvalues of finite
multiplicity with finite dimensional range of the associated eigenprojection
Pµ : CC → CC, where µ ∈ σ(U), µ 6= 0. These eigenvalues are called Floquet
multipliers. The spectral theory and other properties of different types of
delay differential equations were extensively studied in [5] and [12].

In [18], the equation

ẋ(t) = γ(a(t)x(t) + f(t, x(t− 1)))(3)

was studied. Varying γ, Floquet multipliers cross the unit circle and bi-
furcation of an invariant curve occurs, supposing that the critical Floquet
multipliers are not third or fourth roots of unity. For equation (1), the cri-
tical eigenvalues are i and −i, that is a strong resonance, and the results of
[18] are not valid anymore. In the case of strong resonance, in general one
can not expect the appearance of the invariant curve (see [1] or [2]). In [21], a
condition was given which guarantees the appearance of the invariant curve
for 2-dimensional maps even at points of resonance. Independently, a similar
result was presented in [17]. Roughly speaking, if there are no bifurcating
four-periodic points, the invariant curve occurs. The stability of the four-
periodic points was treated in [14]. To apply this to our infinite-dimensional
system, we use center manifold reduction.

The classical process of computing the dynamical system restricted to
the center manifold using bilinear forms for delay differential equations (see
[12] for the theory and [13] for applications) can not be applied directly to pe-
riodic equations. Faria ([6] and [7]) presented the method of normal forms for
periodic functional differential equations with autonomous linear part. We
established a spectral projection method in [18] for periodic scalar equations.
The spectral projection is represented by a Riesz-Dunford integral. The re-
solvent of the monodromy operator of a periodic delay differential equation
and corresponding spectral projections were calculated in the paper of Fras-
son and Verduyn Lunel ([9, Section 6.2.]) in a more general setting. Certain
computations done in [18] for equation (3), can be used for equation (1), sim-
ply taking a(t) ≡ 0. We remark that these arguments work only if the period
and the delay are the same. If the delay is not a multiple of the period, then
we can not compute the Floquet multipliers by the characteristic equation.
Some information can be obtained on the Floquet multipliers in a similar
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problem in [20], there the period is three and the delay is one. The most
difficult case, when the delay is incommensurable with the period, there are
no results in this direction.

The paper is organized as follows. In Section 2 we summarize some
previous results, follow by the general theory ([5],[12]) or obtained in [18].
Section 3 is devoted to the bifurcation analysis of strong resonance. We
give an explicit condition in terms of f and its partial derivatives to ensure
the bifurcation of an invariant curve or four-periodic points, and determine
the direction of the appearance and the stability properties. We apply our
results to equations with periodic coefficient in Section 4, showing that the
resonance does not cause any ”anomalies” for this class of equations. In
Section 5 we illustrate the results on the example of the celebrated Wright
equation with periodic coefficient.

2. Preliminary results. A non-zero point µ of the spectrum of the
monodromy operator U is called a Floquet multiplier of equation (2) and
any λ for which µ = eλ is called a Floquet exponent of equation (2). By
the Floquet theory ([12, p. 237]), µ = eλ is a Floquet multiplier of equation
(2) if and only if there is a nonzero solution of equation (2) of the form
y(t) = p(t)eλt, where p(t+1) = p(t). Substituting this solution into equation
(2), one can easily deduce that the Floquet exponents are the zeros of the
characteristic function

h(λ) = λ− γβe−λ,(4)

where

β =

∫ 0

−1

fξ(t, 0)dt.

We assume that β 6= 0. The eigenfunctions have the form

χµ(t) : [−1, 0] 3 t 7→ eγe−λ
R t
−1 fξ(s,0)ds ∈ C.

For any root of the characteristic equation h(λ) = 0, the corresponding
χµ(t) defines a Floquet solution of equation (2), hence the Floquet exponents
coincide with the roots of the characteristic function .

Let

∆(z) = z − e
γβ
z .
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The equation ∆(z) = 0 is equivalent to the characteristic equation. Any
complex number µ = eλ is a root of ∆(z) if and only if λ is a Floquet
exponent. Applying Theorem 3.1. of [12, p. 247] to equation (1), one finds
that the Floquet multipliers consist of the roots of ∆(z) and the algebraic
multiplicity of an eigenvalue µ equals to the order of µ as a zero of ∆(z).
When this number is 1, we call µ a simple eigenvalue. According to the Riesz-
Schauder Theorem, if U : CC → CC is a compact operator with a simple
eigenvalue µ, then there are two closed subspaces Eµ and Qµ such that Eµ is
one-dimensional, Eµ ⊕Qµ = CC, furthermore the relations U(Eµ) ⊂ Eµ and
U(Qµ) ⊂ Qµ, σ(U |Eµ) = {µ} and σ(U |Qµ) = σ(U)\{µ} hold. The spectral
projection Pµ onto Eµ along Qµ can be represented by the Riesz-Dunford
integral

Pµ =
1

2πi

∫

Γµ

(zI − U)−1dz = Res
z=µ

(zI − U)−1,

where Γµ is a small circle around µ such that µ is the only singularity of
(zI − U)−1 inside Γµ.

For simplicity, let b(t) = γfξ(t, 0) and B(t) =
∫ t

−1
b(s)ds. With this

notation the linearized equation takes the form

ẏ(t) = b(t)y(t− 1),

β = 1
γ

∫ 0

−1
b(t)dt. By the variation-of-constants formula for ordinary differen-

tial equations we find the following representation of the time-one map

F (φ)(t) = φ(0) +

∫ t

−1

γf(s, φ(s))ds, t ∈ [−1, 0],(5)

which implies for the monodromy operator

U(φ)(t) = φ(0) +

∫ t

−1

b(s)φ(s)ds, t ∈ [−1, 0].(6)

We need the derivatives of the operator F up to order three, evaluated at 0.
Let V = D2F (0) and W = D3F (0). V and W are n-linear operators with
n = 2 and n = 3, respectively. By the representation (5), one has

V (φ1, φ2)(t) =

∫ t

−1

γfξξ(s, 0)φ1(s)φ2(s)ds, t ∈ [−1, 0],
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and

W (φ1, φ2, φ3)(t) =

∫ t

−1

γfξξξ(s, 0)φ1(s)φ2(s)φ3(s)ds, t ∈ [−1, 0].

The following statements are special cases of Lemma 4 and Theorem 2 of
[18], setting a(t) ≡ 0.

Proposition 1. ([18]) The resolvent of the monodromy operator can
be expressed as

(zI − U)−1(ψ)(t) = e
R t
−1

b(u)
z

duH (t) , t ∈ [−1, 0],(7)

where

H (t) =
(

1
z
ψ(0) + e

R 0
−1

b(u)
z

du
∫ 0

−1
1
z2 e

− R s
−1

b(u)
z

dub(s)ψ(s)ds
)
·

·
((

z − e
R 0
−1

b(u)
z

du
)−1

+ 1
z
e−

R t
−1

b(u)
z

duψ(t) +
∫ t

−1
1
z2 e

− R s
−1

b(u)
z

dub(s)ψ(s)ds

)
.

The spectral projection operator, corresponding to a simple eigenvalue µ, has
the representation

Pµ(ψ) = χµRµ(ψ),

where

Rµ(ψ) =
( 1

µ + γβ

)(
ψ(0) +

∫ 0

−1

b(s)ψ(s)

χµ(s)
ds

)
.(8)

Notice that Rµ(χµ) = 1. Consider the decomposition

C = T c ⊕ T su,

where T c = Re Eµ ⊕ Im Eµ is the critical 2-dimensional realified center
eigenspace corresponding to µ and spanned by {Re χµ, Im χµ}, moreover
T su = Re Qµ ⊕ Im Qµ is the 2-codimensional realified stable-unstable sub-
space corresponding to the other part of σ(U). The idea of the projection
method is that we introduce new variables x, y and use them as coordinates
on these subspaces. Suppose we have a map

x̃ = A1(x) + g(x, y),

ỹ = A2(y) + h(x, y),
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where A1 and A2 are linear maps on the corresponding subspaces and

g(0, 0) = 0, Dg(0, 0) = 0,

h(0, 0) = 0, Dh(0, 0) = 0.

For y = M(x) we have

x̃ = A1(x) + g(x,M(x))

ỹ = A2(M(x)) + h(x, M(x)).

If M(x) denotes the center manifold then by the invariance ỹ = M(x̃), and
thus

M(A1(x) + g(x,M(x))) = A2(M(x)) + h(x,M(x)).(9)

The coefficients of the Taylor-expansion of M(x) can be calculated by this
formula. For details and examples we refer to [16] and [23]. The computations
in the infinite dimensional case can be found in [18]. Represent the Taylor-
expansion of F in the form

F (φ) = U(φ) +
1

2
V (φ, φ) +

1

6
W (φ, φ, φ) + O(||φ||4).

Let Z(φ) = F (φ)−U(φ) be the nonlinear part of F . Now decompose φ ∈ C

as

φ = zχµ + z̄χ̄µ + ψ,

where z = Rµ(φ) ∈ C, zχµ + z̄χ̄µ ∈ T c and ψ ∈ T su. The complex variable z

is a coordinate on the 2-dimensional real eigenspace T c and the function ψ is
a variable in T su. The subspaces T c and T su are invariant under U . For any
real φ, φ ∈ T su if and only if Pµ(φ) = 0. U(χµ) = µχµ implies U(χ̄µ) = µ̄χ̄µ,
Rµ = Rµ̄.

Proposition 2. ([18]) The restricted map can be written as

z̃ = µz +
1

2
ρ20z

2 + ρ11zz̄ +
1

2
ρ02z̄

2 +
1

2
ρ21z

2z̄ +
1

6
ρ03z̄

3 + ...,(10)

where
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ρ20 = Rµ(V (χµ, χµ))(11)

ρ11 = Rµ(V (χµ, χ̄µ))

ρ02 = Rµ(V (χ̄µ, χ̄µ))

ρ21 = Rµ(W (χµ, χµ, χ̄µ)) + 2Rµ(V (χµ, (1− U)−1V (χµ, χ̄µ))) +

+Rµ(V (χ̄µ, (µ
2 − U)−1V (χµ, χµ))) +

+

1
µ
(1− 2µ)

1− µ
Rµ(V (χµ, χµ))Rµ(V (χµ, χ̄µ))−

− 2

1− 1
µ

|Rµ(V (χµ, χ̄µ))|2 − µ

µ3 − 1
|Rµ(V (χ̄µ, χ̄µ))|2,

ρ03 = Rµ(W (χ̄µ, χ̄µ, χ̄µ)) + 3Rµ

(
V (χ̄µ, (µ

−2I − U)−1 ·

·(V (χ̄µ, χ̄µ −Rµ(V (χ̄µ, χ̄µ))χµ −Rµ̄(V (χ̄µ, χ̄µ))χ̄µ)
)
.

The coefficients ρ20, ρ11, ρ02, ρ21 are computed in [18, Section 5]. In the
non-resonant case ρ03 is not needed, but can be obtained completely analo-
gously, hence the computation is omitted here.

3. Bifurcation of the Time-One Map at Points of Resonance.
Two conditions are formulated in the Neimark-Sacker bifurcation theorem:
the transversality condition, and the non-resonance condition, viz. ∂µ(γ)

∂γ
|γj
6=

0 and µ3
j 6= 1, µ4

j 6= 1, where γj is a critical parameter value and µj is a
corresponding critical multiplier. The following two lemmas show that the
transversality condition is always fulfilled for equation (1), while µ4

j = 1.
This situation is a 1:4 strong resonance.

Lemma 1. The critical values of (2) are

γj =
−π

2
+ 2jπ

β
, j ∈ Z,

and the corresponding critical Floquet multipliers are µj = eλj = i and µ̄j =
eλ̄j = −i. These Floquet-multipliers are simple eigenvalues and the critical
eigenfunctions are

χ±i(t) : [−1, 0] 3 t 7→ e∓iB(t) ∈ C.
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Proof One can check easily that i and −i can not be a double root
of ∆(z), thus if i or −i is a Floquet-multiplier, then it is always a sim-
ple eigenvalue. Suppose that λ = iθ is a critical Floquet-exponent, then
by the real part of (4) we have cos(θ) = 0, hence θ = π

2
+ 2kπ or θ =

−π
2

+ 2kπ, where k ∈ Z. Taking into account the imaginary part of (4),
both options lead to the statements of the lemma by simple calculations.

Introduce the notation B = B(0) = γβ.
Lemma 2.

∂µ(γ)

∂γ
|γj

=
β

1 + λ(γj)
=

β

1 + B2
(1 + iB)

Proof By the characteristic equation and the Implicit Function Theorem

µ(γ) = e
γβ

µ(γ) is defined in a neighborhood of γj. Differentiating with respect
to γ gives

µ′(γ) = e
γβ

µ(γ)

(βµ(γ)− βγµ′(γ)

µ2(γ)

)
= β − λ(γ)µ′(γ).

This yields µ′(γ) = β
1+λ(γ)

. Setting γ = γj one has λ = −iγjβ = −iB and
the lemma is proved.

The next proposition is the Poincaré normal form map for 1:4 resonance.
Proposition 3. ([16, p. 436]) Suppose that we have a map g = g(γ) :

C 7→ C, depending on the parameter γ ∈ R, and g has the form

g(z) = µz +
ρ20

2
z2 + ρ11zz̄ +

ρ02

2
z̄2 +

ρ30

6
z3(12)

+
ρ21

2
z2z̄ +

ρ12

2
zz̄2 +

ρ03

6
z̄3 +O(|z|4),

where µ = µ(γ) and ρkl = ρkl(γ) depends on the parameter smoothly and
µ(γj) = i for some critical value γ = γj. Then by a coordinate transformation
depending smoothly on the parameter, in the critical case the transformed
map takes the form

g̃(w) = iw + c1w
2w̄ + c2w̄

3 +O(|w|4),

where

c1 =
1 + 3i

4
ρ20ρ11 +

1− i

2
ρ11ρ̄11 +

−1− i

4
ρ02ρ̄02 +

ρ21

2
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and

c2 =
i− 1

4
ρ11ρ02 +

−i− 1

4
ρ02ρ̄20 +

ρ03

6
.

Note that similar, but different formulas are presented for c2 in [14,
Chapter IV] and [21]. These formulas are miscalculated and false. One can
check directly by a straightforward, but rather elaborative computation that
the formula of [16, p. 436], presented in Proposition 3 is the correct one.
However, in the literature the wrong formula of [14] is spreading, see for
example the recent papers [10] and [22], where applications of the resonant
normal form to mechanical systems are presented. Since the applied formula
is not correct, the obtained results may not be correct as well.

Define a1 = c1
i

, a2 = c2
i

and d = ∂|µ(γ)|
∂γ

|γ=γj
.

Proposition 4 (Resonant bifurcation theorem,[14],[21]). Sup-
pose that we have a map g(z) : C 7→ C of the form (12), depending smoothly
on the parameter γ, satisfying d 6= 0 and µ(γj) = i.

If |Im (a1

d
)| > |a2

d
|, then a unique invariant curve bifurcates (and no

periodic points of order 4) from the equilibrium 0 as the parameter γ passes
through γj. The cases Re a1 < 0 and Re a1 > 0 are called supercritical
and subcritical bifurcations. In the supercritical case a stable invariant curve
appears for γ > γj, while in the subcritical case an unstable invariant curve
disappears when γ increases through γj.

If |Im (a1

d
)| < |a2

d
|, then two families of periodic points of order 4 bifurcate

(and no invariant curve). Moreover, if |a1| > |a2|, the two families bifurcate
on the same side and at least one of them is unstable. If |a1| < |a2|, then the
two families bifurcate on opposite sides and both of them are unstable.

Lemma 3. For the restricted map of the time-one map corresponding to
equation (1) we have

a1 =
3− i

4
ρ20ρ11 − 1 + i

2
|ρ11|2 − 1− i

4
|ρ02|2 − i

2
ρ21 =

= − i

2

[
Ri(W (χi, χi, χ̄i)) + 2Ri(V (χi, (1− U)−1V (χi, χ̄i))) +

+Ri(V (χ̄i, (i
2 − U)−1V (χi, χi)))

]
,

and

a2 =
−1 + i

4
ρ̄20ρ02 +

1 + i

4
ρ11ρ02 − i

6
ρ03 =
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= − i

6

[
Ri(W (χ̄i, χ̄i, χ̄i)) + 3Ri

(
V (χ̄i, (i

−2I − U)−1(V (χ̄i, χ̄i))
)]

.

Proof Apply Proposition 2 and Proposition 3 with µ = i. We obtain the
lemma by a simple calculation.

Let us define

δ = |Im (a1)−BRe (a1)| − |a2|
√

1 + B2.(13)

Remark that δ depends on the parameter. Some additional computation
yields

|Im (
a1

d
)| > |a2

d
| ⇔ |Im (a1(1− iB)| > |a2(1− iB)|,

that is δ > 0.

We apply the center manifold theorem for maps in Banach-spaces to
the time-one map F . See [15] for the existence and [8] for the smoothness
result. Summarizing all the previous lemmas and propositions of Section 2
and Section 3, combining with the center manifold theorem and the reduction
principle (for details see [3],[16] and [23]), we obtain our main theorem.

Theorem 1. The family of time-one maps Fγ, corresponding to equa-
tion (1), has at the critical value γ = γj the fixed point φ = 0 with exactly
two simple Floquet-multipliers µj = i and µ̄j = −i on the unit circle. This
is a 1:4 strong resonance. The transversality condition is fulfilled. There is
a neighborhood of 0 in which a unique invariant curve (and no 4-periodic
points) bifurcates from 0, providing that δ > 0. The direction of the bifur-
cation is determined by the sign of Re (a1). If δ < 0, then two families of
4-periodic points (and no invariant curve) bifurcate from the equilibrium in
a neighborhood of 0. Furthermore, if |a1| > |a2|, the two families bifurcate
on the same side and at least one of them is unstable. If |a1| < |a2|, then the
two families bifurcate on the opposite side and both of them are unstable.

The conditions given in the theorem can be checked for any given equa-
tion, we can compute γj, a1, a2 and B explicitly by terms of f(t, ξ) and its
partial derivatives.

4. Equations with Periodic Coefficient. In this section we consider
the equation

ż(t) = −γr(t)g(z(t− 1)),(14)
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where γ is a real parameter, r : R → R is a continuous function satisfying
r(t+1) = r(t) for all t ∈ R, g(ξ) is a C4-smooth function satisfying g(0) = 0.
Without loss of generality we may suppose that

g(ξ) = ξ +
S

2
ξ2 +

T

6
ξ3 +O(ξ4),

where S, T ∈ R. With our previous notations we have

f(t, ξ) = −r(t)g(ξ),

fξ(t, 0) = −r(t),

fξξ(t, 0) = −Sr(t),

fξξξ(t, 0) = −Tr(t),

and

b(t) = −γr(t).

We show that this equation behaves at the bifurcation points as a nonreso-
nant equation: an invariant curve bifurcates and no 4-periodic points from
the equilibrium 0. The following lemma is used many times during the de-
tailed computations.

Lemma 4. Let B(t) =
∫ t

−1
b(s)ds. Then

∫ t

−1

eB(s)b(s)ds = eB(t) − 1,

∫ t

−1

eB(s)b(s)B(s)ds = eB(t)B(t)− eB(t) + 1.

Proof The first identity is obvious, the second can be deduced from the
first by a partial integration.

Theorem 2. For any family of time-one maps corresponding to equation
(14), if T 6= 11S2

5
then a unique invariant curve bifurcates from the equilibrium
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0 as the parameter γ passes through γj. The bifurcation is supercritical if
T < S2(11B+2

5B
) and subcritical if T > S2(11B+2

5B
).

Proof Let us fix γ = γj to be a critical parameter value. Using Lemma
4, we have

V (χi, χi)(t) =

∫ t

−1

Sb(s)e−2iB(s)ds =
S

−2i
(e−2iB(t) − 1) =

iS

2
(e−2iB(t) − 1),

V (χi, χ̄i)(t) = SB(t),

V (χ̄i, χ̄i)(t) =

∫ t

−1

Sb(s)e2iB(s)ds =
S

2i
(e2iB(t) − 1) =

−iS

2
(e2iB(t) − 1),

W (χi, χi, χ̄i) =

∫ t

−1

Tb(s)e−iB(s)ds = iT (e−iB(t) − 1),

and

W (χ̄i, χ̄i, χ̄i) =

∫ t

−1

Tb(s)e3iB(s)ds =
−iT

3
(e3iB(t) − 1).

Notice that B = −π
2

+ 2jπ, hence eiB = cos B + i sin B = −i, and eimB =
(−i)m for all m ∈ Z. Taking into account this fact, one obtains

Ri(e
miB(t)) =

(
1

i + B

)(
emiB +

∫ 0

−1

b(s)e(m+1)iB(s)ds

)
=(15)

=

(
1

i + B

)(
emiB +

1

(m + 1)i
(e(m+1)iB − 1)

)
=

=

(
1

i + B

)(
(−i)m − i

(−i)m+1 − 1

m + 1

)
=

=
m(−i)m + i

(i + B)(m + 1)

for any m 6= −1. Observe that Ri(e
3iB(t)) = i

i+B
= Ri(1). If m = −1, we get

the eigenfunction e−iB(t), and as in general,

Ri(e
−iB(t)) = Ri(χi(t)) =

=
( 1

i + B

)(
e−iB +

∫ 0

−1

b(s)ds
)

=
i + B

i + B
= 1.
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Now let us evaluate the resolvent by Proposition 1 and Lemma 4:

(1− U)−1V (χi, χ̄i) = eB(t)
(
(SB + eB

∫ 0

−1

e−B(s)b(s)SB(s)ds)(1− eB)−1

+e−B(t)SB(t) +

∫ t

−1

e−B(s)b(s)SB(s)ds
)

= SeB(t)
(
(B + eB(−e−BB − e−B + 1))(1− eB)−1

+e−B(t)B(t)− e−B(t)B(t)− e−B(t) + 1
)

= SeB(t)(−1− e−B(t) + 1) = −S.

Referring to Lemma 3 and (i2 − U)−1 = (i−2 − U)−1 = (−1− U)−1, we still
need

(−1− U)−1(emiB(t)) = e−B(t)H1 (t) ,(16)

where

H1 (t) = (−1−U)−1(emiB(t)) = e−B(t)
(
(−emiB+e−B

∫ 0

−1
b(s)e(mi+1)B(s)ds)·

·(− 1− e−B)−1 − e(1+mi)B(t) +
∫ t

−1
b(s)e(1+mi)B(s)ds

)
=

= e−B(t)
(
(−emiB+e−B e(mi+1)B−1

mi+1
)(−1−e−B)−1−e(1+mi)B(t)+ e(mi+1)B(t)−1

mi+1

)
=

= e−B(t) (−i)mmi−1
(1+e−B)(mi+1)

− emiB(t) mi
mi+1

.

Particularly,

(−1− U)−1(e2iB(t) − 1) =

= e−B(t) (−i)22i−1
(1+e−B)(2i+1)

− e2iB(t) 2i
2i+1

− e−B(t) −1
1+e−B =

= −e2iB(t) 2i
2i+1

.

Similarly, one finds

(−1− U)−1(e−2iB(t) − 1) = e−2iB(t) 2i

−2i + 1
.(17)

Now we are ready to compute the coefficients of the normal form given in
Lemma 3, namely
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a2 = − i

6
Ri

[
W (χ̄i, χ̄i, χ̄i) + 3V (χ̄i, (−1− U)−1(V (χ̄i, χ̄i))

]
=(18)

= − i

6
Ri

[−iT

3
(e3iB(t) − 1)− 3iS

2
V (χ̄i, (−1− U)−1(e2iB(t) − 1)

]

= − T

18
Ri

[
(e3iB(t) − 1)

]
− S

4
Ri

[
V (χ̄i,−e2iB(t) 2i

2i + 1

]
= 0,

where we used the linearity of Ri and the identity

1

S
Ri(V (χ̄i, e

2iB(t))) =
1

T
Ri(W (χ̄i, χ̄iχ̄i) =

1

3i
Ri(e

3iB(t) − 1) = 0.

We use (15) and (16) to conclude

a1 = − i

2
Ri

[
W (χi, χi, χ̄i) + 2V (χi,−S) +(19)

+V (χ̄i, (−1− U)−1V (χi, χi))
]

= − i

2
Ri

[
Ti(e−iB(t) − 1) + 2(−i)S2(e−iB(t) − 1)

]

− i

2
Ri

[
V (χ̄i, (−1− U)−1

(iS

2
(e−2iB(t) − 1))

)]

=
T − 2S2

2
Ri[e

−iB(t) − 1] +
S

4
Ri

[
V (χ̄i, e

−2iB(t) 2i

−2i + 1

]

=
(T − 2S2)B

2(i + B)
+

Si

2− 4i
Ri[V (χ̄i, e

−2iB(t))]

=
(T − 2S2)B

2(i + B)
+

Si

2− 4i
Ri[

S

−i
(e−iB(t) − 1)]

=
(T − 2S2)B

2(i + B)
− S2B

(2− 4i)(i + B)
=

B

2(i + B)
(T − S2 11 + 2i

5
).

Applying (18),(19) and 1
i+B

= B−i
1+B2 to (13), we find

2(1 + B2)Re (a1) = TB2 −BS2 11B + 2

5
,(20)

2(1 + B2)Im (a1) = −TB + BS2 11− 2B

5
.

The sign of Re (a1) determines the direction of the bifurcation, as formulated
in the theorem, which is the same as the sign of T −S2(11B+2

5B
). Substituting

the previous two formulas into (13), we deduce
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δ =
1

2(1 + B2)
|B| · | − T − TB2 +

S2

5
(11− 2B + 2B + 11B2)|

=
|B|
2
· |T − S2 11

5
|.

Since B 6= 0, the condition T 6= 11S2

5
guarantees that δ > 0 and Theorem 2

is proved.

5. An example. The classical form of the celebrated Wright-Hutchinson
equation (or delayed logistic equation) is

ẏ(t) = −αy(t− 1)(1 + y(t)).

The change of variable z(t) = ln(1 + y(t)) transforms Wright’s equation into

ż(t) = −α(ez(t−1) − 1).

Since the pioneer works of Wright ([24]), a huge amount of papers concerned
with the dynamical properties of this equation and its generalizations. Here
we consider this equation with a periodic coefficient:

ż(t) = −αr(t)(ez(t−1) − 1),(21)

where α > 0 and r(t) is a continuous function satisfying r(t+1) = r(t) for all
t ∈ R. Without loss of generality we may suppose

∫ 0

−1
r(s)ds = 1. We have

g(ξ) = ξ + 1
2
ξ2 + 1

6
ξ3 +O(ξ4), that is S = 1 and T = 1. The next theorem is

a direct application of Theorem 2 and Lemma 1.
Theorem 3. The family of time-one maps corresponding to equation

(21), undergoes a supercritical bifurcation and a unique invariant curve bi-
furcates from the equilibrium 0 as the parameter α passes through π

2
.

Remark that taking r(t) ≡ 1 we get back the autonomous case. For
the autonomous Wright equation it is well known that at the value α = π

2

a periodic solution emerges from the equilibrium by a supercritical Hopf
bifurcation. This is consistent with Theorem 3.
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