Mathematical work

Recently I am working on the Auslander conjecture using the method of extended Radon transforms.

Some papers and preprints which are (or will be soon) available electronically.
A. Bezdek - T. Ódor, On the surface area of convex polytopes, Studia Sci. Math. Hung., Vol 30, (1995), 275--281.
T. Ódor, Separation of points by congruent domains, Studia Sci. Math. Hung., 32, (1996), 439--444. [AmSTeX 2.0 file]
T. Ódor, The set of Radon transforms (submitted). [AmSTeX 2.0 file]
T. Ódor - B. Zhang, A conjecture on quasicrystals having fivefold symmetry (submitted) [dvi file]
P. M. Gruber and T. Ódor, Ellipsoids are the Most Symmetric Convex Bodies (to appear). [dvi file]
E. Makai - H. Martini - T. Ódor, Maximal sections and centro-symmetric bodies, Mathematica, (to appear).
E. Makai - H. Martini - T. Ódor, On an integro-differential transform on the sphere, Stud. Sci. Math. Hungar. 38 (2001), 299-312[AmSTeX 2.0 file]
T. Ódor, The soulution of the Pompeiu problem, University of Tokyo, UTMS preprint, 1999 April (revised). [dvi file]                                          
T. Ódor, Irregularities of distribution and the Pompeiu problem, (submitted).

Proceedings and abstracts of lectures.
T. Ódor, Some results on the Pompeiu problem, In: Proceedings of the Symposium on Representation Theory, Hatomisaki, Saga Prefecture, Japan, 17--20, November, 1997. [dvi file]
<>Unsolved mathematical problems.
T. Ódor, On generalizations of Hilbert's fourth problem for pseudo-Deasargues metrics [dvi file]
T. Ódor, A generalization of the plank problem [AmS TeX 2.0 file]
A long list of unsolved problems, majority posed by me. [An uncomplete LaTeX file. Sorry.

My work on cryptology and computer security.
I am the inventor of  the universal program encryption (UPE) protocol. All rights belong to Tamper-Proof Verified Systems (TPVS).

Back to Index.