**Mathematical work**

* Recently* I am working on the Auslander
conjecture using the method of extended Radon transforms.

**Some papers and preprints which are (or will be soon) available electronically.**- A. Bezdek - T. Ódor, On the surface area of convex polytopes,
*Studia Sci. Math. Hung.*, Vol 30, (1995), 275--281. - T. Ódor, Separation of points by congruent
domains,
*Studia Sci. Math. Hung*.,**32**, (1996), 439--444. [AmSTeX 2.0 file] - T. Ódor, The set of Radon transforms (submitted). [AmSTeX 2.0 file]
- T. Ódor - B. Zhang, A conjecture on quasicrystals having fivefold symmetry (submitted) [dvi file]
- P. M. Gruber and T. Ódor, Ellipsoids are the Most Symmetric Convex Bodies (to appear). [dvi file]
- E. Makai - H. Martini - T. Ódor, Maximal sections and
centro-symmetric bodies,
*Mathematica*, (to appear). - E. Makai - H. Martini - T. Ódor, On
an integro-differential transform on the sphere,
*Stud. Sci. Math. Hungar*.**38**(2001), 299-312. [AmSTeX 2.0 file] - T. Ódor, The soulution of the Pompeiu problem,
*University of Tokyo, UTMS preprint*, 1999 April (revised). [dvi file] - T. Ódor, Irregularities of distribution and the Pompeiu problem, (submitted).

Proceedings and abstracts of lectures.- T. Ódor, Some results on the Pompeiu problem, In: Proceedings of the Symposium on Representation Theory, Hatomisaki, Saga Prefecture, Japan, 17--20, November, 1997. [dvi file]

T. Ódor, A generalization of the plank problem [AmS TeX 2.0 file]

A long list of unsolved problems, majority posed by me. [An uncomplete LaTeX file. Sorry.

I am the inventor of the