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HUNGARIAN METHOD
INPUT: A bipartite graph G (with color classes A and B) and a
matching M in G which does not cover A.
OUTPUT: An augmenting path for M , or „M is of maximum
size”.
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Sketch of the algorithm: Starting from the unmatched points of
A (as roots), build a forest from partial augmenting paths of G.
The forest is constructed by a „greedy method”, which will be
discussed on the next slide.
We define two sets of vertices, the sets of inner and outer vertices,
I and O. Initially, O := {r1, . . . , r8} and I := ∅.
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Greedy expansion step: If some outer vertex u is adjacent to
some matched vertex v outside the forest, then add v to the
forest, together with its pair v′ in M (and edges uv and vv′).
v is designated as inner vertex, v′ is designated as outer vertex.
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Greedy expansion step: If some outer vertex u is adjacent to
some matched vertex v outside the forest, then add v to the
forest, together with its pair v′ in M (and edges uv and vv′).
Remark. It is always true that O ⊆ A and I ⊆ B.
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Successful search: If some outer vertex is adjacent to some
unmatched vertex, then we found an augmenting path. STOP.
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Successful search: If some outer vertex is adjacent to some
unmatched vertex, then we found an augmenting path. STOP.

OUTPUT: The obtained augmenting path.
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Unsuccessful search: If no augmenting path can be found, and
the forest cannot be extended, i.e. if every outer vertex is adjacent
to only (inner) vertices of the forest, then STOP.
OUTPUT: „M is of maximum size, i.e. ν(G) = |M |. This is
justified by the Kőnig set O.”
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BLOSSOM ALGORITHM
INPUT: An arbitrary graph G + a non-perfect matchingM in G.
OUTPUT: An augmenting path for M , or „M is of max. size”.
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BLOSSOM ALGORITHM
INPUT: An arbitrary graph G + a non-perfect matchingM in G.
OUTPUT: An augmenting path for M , or „M is of max. size”.
Now the roots of the „forest of partial augmenting paths” are all
the unmatched vertices in G.
So there will be no unmatched vertices outside the forest!
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On the next slides we discuss the 3 possible types of steps of
blossom algorithm. The „default” step is the greedy expansion
step seen in Hungarian method (Type 1).
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The „default” step is the greedy expansion step seen in Hungarian
method (Type 1). For example, starting from the roots, after 19
greedy expansion steps we might obtain the forest seen in the
figure.
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Type 1 (greedy expansion): If some outer vertex u is adjacent
to some vertex v outside the forest, then extend the forest with
v together with its pair in M , in the same way as in the bipartite
case (including the definition of inner and outer vertices).
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Type 2 (successful search): If some outer vertex is adjacent
to some outer vertex of an other component of the forest, then
an augmenting path is found (in the actual graph, cf. Type 3).
STOP.
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Type 3 (cycle contraction): If there is an edge between two
outer vertices in the same component of the forest, then con-
tract the corresponding odd cycle, and continue with the obtained
graph. The contracted cycle becomes an outer vertex.
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Type 3 (another example): If there is an edge between two
outer vertices in the same component of the forest, then con-
tract the corresponding odd cycle, and continue with the obtained
graph. The contracted cycle becomes an outer vertex.
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Remark: Steps of types 1-3 can be performed in any order. How-
ever, cycle contraction is complicated, so in practice a step of
type 3 is recommended to perform only if the other two types of
steps cannot be performed (and then try with types 1-2 again).
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It may happen, that the contraction step must be performed
many times before getting stuck.



Lec. 5 The end of blossom algorithm (Successful/unsuccesful search) 9/10

It may happen, that the contraction step must be performed
many times before getting stuck.
The two possible outcomes:

1. Successful search: If we found an augmenting path in
the (possibly) contracted actual graph (see Type 2), then this
augmenting path can be transformed back to an augmenting
path of the original graph G and matching M .
OUTPUT: The obtained augmenting path in G.



Lec. 5 The end of blossom algorithm (Successful/unsuccesful search) 9/10

It may happen, that the contraction step must be performed
many times before getting stuck.
The two possible outcomes:

1. Successful search: If we found an augmenting path in
the (possibly) contracted actual graph (see Type 2), then this
augmenting path can be transformed back to an augmenting
path of the original graph G and matching M .
OUTPUT: The obtained augmenting path in G.

2. Unsuccessful search: If no augmenting path was found,
and we are in stuck, because all outer vertices have inner neigh-
bors only, then the original matching M is of maximum size in
the original graph∗ G, so ν(G) = |M |.
OUTPUT: „The matching M has maximum size in G.”



Lec. 5 The end of blossom algorithm (Successful/unsuccesful search) 9/10

The two possible outcomes:

1. Successful search: If we found an augmenting path in
the (possibly) contracted actual graph (see Type 2), then this
augmenting path can be transformed back to an augmenting
path of the original graph G and matching M .
OUTPUT: The obtained augmenting path in G.

2. Unsuccessful search: If no augmenting path was found,
and we are in stuck, because all outer vertices have inner neigh-
bors only, then the original matching M is of maximum size in
the original graph∗ G, so ν(G) = |M |.
OUTPUT: „The matching M has maximum size in G.”

∗ In case of unsuccessful search, the “preimage” of I in the original graph G
is a Tutte set, which proves that ν(G) ≤ |M |. (Why?) This Tutte set can
be also added to the OUTPUT as proof.
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The blossom algorithm is fast (polynomial time), so it can be
used in practice. If we start from an arbitrary matching of G
(e.g. from one arbitrary edge, considered as trivial matching),
then by performing the blossom algorithm repeadly, we always
get a larger size matching, until we reach to a perfect matching
or a maximal size non-perfect matching (in case of unsuccessful
search). So the value of ν(G) can be determined efficiently.

Moreover, not only the value of ν(G) is calculated in this way, but
the algorithm constructs a maximum size matching with a Tutte
set proving the maximality. So the correctness of the algorithm
can be verified without knowing/understanding the algorithm it-
self!

In case of bipartite graphs the same holds for the Hungarian
method.


