Ford–Fulkerson algorithm

Graph theory

University of Szeged Szeged, 2023. **Def.** Maximum flow (in a network N): A flow of maximum value.

Lemma. f is a flow in a given network N. The flow f is not a maximum flow if and only if there exists an augmenting path in N with respect to f.

Def. Maximum flow (in a network N): A flow of maximum value.

Lemma. f is a flow in a given network N. The flow f is not a maximum flow if and only if there exists an augmenting path in N with respect to f.

Ford–Fulkerson algorithm. An efficient algorithm for finding a maximum flow in the input network N:

1. Start with the constant-0 flow (it is always feasible): $f := \underline{0}$.

Ford–Fulkerson algorithm. An efficient algorithm for finding a maximum flow in the input network N:

- **1.** Start with the constant-0 flow (it is always feasible): $f := \underline{0}$.
- **2.** Search for an augmenting path w.r.t. f (and find one in polinomial time if such a path exists).
- $\mathbf{2/a.}$ If an augmenting patch P was found, then augment f along P and repeat Step 2.
- 2/b. If there is no augmenting path, provide an [S, T]-cut which proves that the actual flow f has maximum value, and terminate. The output is f and the [S, T]-cut.

Ford–Fulkerson algorithm. An efficient algorithm for finding a maximum flow in the input network N:

1. Start with the constant-0 flow (it is always feasible): $f := \underline{0}$.

2. Search for an augmenting path w.r.t. f (and find one in polinomial time if such a path exists).

2/a. If an augmenting patch P was found, then augment f along P and repeat Step 2.

2/b. If there is no augmenting path, provide an [S, T]-cut which proves that the actual flow f has maximum value, and terminate. The output is f and the [S, T]-cut.

Note. Edmonds and Karp proved that if Step 2 is implemented using a breadth-first search (i.e. we always pick a shortest augmenting path), then the number of iterations of Step 2 is polynomial. (When one picks an arbitrary augmenting path in Step 2, we can run into an infinite number of iterations!)

The key is how Step 2 implemented:

Augmenting path finder (subroutine for Step 2). Input: A network N and a flow f in it.

The key is how Step 2 implemented:

Augmenting path finder (subroutine for Step 2).

Input: A network N and a flow f in it.

Build an auxiliary directed graph G_f as follows: The vertices of G_f are exactly the vertices of N.

For each edge $e = \overrightarrow{uv}$ of N,

- if f(e) < c(e), then add an edge from u to v in G_f .
- if f(e) > 0, then add an edge from v to u in G_f .

(And there are no other edges in G_{f} .)

The key is how Step 2 implemented:

Augmenting path finder (subroutine for Step 2).

Input: A network N and a flow f in it.

Build an auxiliary directed graph G_f as follows:

The vertices of G_f are exactly the vertices of N. For each edge $e = \overrightarrow{uv}$ of N,

- if f(e) < c(e), then add an edge from u to v in G_f .
- if f(e) > 0, then add an edge from v to u in G_f .

(And there are no other edges in G_{f} .)

It is easy to see that there exists an augmenting path wrt. f in N if and only if there exists a directed path from the source s to the sink t in G_f . The latter problem can be solved using a breadth-first search.

Augmenting path finder (subroutine for Step 2).

Input: A network N and a flow f in it.

Build an auxiliary directed graph G_f as follows: The vertices of G_f are exactly the vertices of N. For each edge $e = \overrightarrow{uv}$ of N,

- if f(e) < c(e), then add an edge from u to v in G_f .
- if f(e) > 0, then add an edge from v to u in G_f .

It is easy to see that there exists an augmenting path wrt. f in N if and only if there exists a directed path from the source s to the sink t in G_f . The latter problem can be solved using a breadth-first search.

It can be proved that if there is no \overrightarrow{st} -path in G_f , and S is the set of vertices that were reached by the BFS in G_f , and T is the set of unreached vertices, then the capacity of this [S, T]-cut equals to the value of f, proving that f has maximum value.

Example. Find a maximum flow in the following network.

Example. Find a maximum flow in the following network.

Solution. The starting point of the Ford–Fulkerson-algorithm is an arbitrary feasible flow. In practice, we can always choose the everywhere-zero flow. For pedagogical purposes, in this presentation our starting point is a less trivial feasible flow f, assuming that several augmentation has been already performed.

Augmentation: $\delta = \min\{4, 3, 2, 4\} = 2$

Augmentation: $\delta = \min\{4, 3, 2, 4\} = 2$

The endpoints of the partial augm. paths define a cut proving maximality.

The endpoints of the partial augm. paths define a cut proving maximality. (This [S, T]-cut is a minimum cut of the network.)

$$\max_{\mathfrak{f} \text{ flow}} \mathsf{val}(\mathfrak{f}) \le c(S,T) = 4 + 2 + 7 + 4 = 17 = \mathsf{val}(f).$$

$$\Downarrow$$

f is a maximum flow, i.e. in this network the maximum flow value is 17. $\hfill \Box$