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N with respect to f .
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1. Start with the constant-0 flow (it is always feasible): f := 0.
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Ford–Fulkerson algorithm. An efficient algorithm for finding a
maximum flow in the input network N :
1. Start with the constant-0 flow (it is always feasible): f := 0.
2. Search for an augmenting path w.r.t. f (and find one in poli-
nomial time if such a path exists).
2/a. If an augmenting patch P was found, then augment f along
P and repeat Step 2.
2/b. If there is no augmenting path, provide an [S, T ]-cut which
proves that the actual flow f has maximum value, and terminate.
The output is f and the [S, T ]-cut.



Ford–Fulkerson algorithm. An efficient algorithm for finding a
maximum flow in the input network N :
1. Start with the constant-0 flow (it is always feasible): f := 0.
2. Search for an augmenting path w.r.t. f (and find one in poli-
nomial time if such a path exists).
2/a. If an augmenting patch P was found, then augment f along
P and repeat Step 2.
2/b. If there is no augmenting path, provide an [S, T ]-cut which
proves that the actual flow f has maximum value, and terminate.
The output is f and the [S, T ]-cut.

Note. Edmonds and Karp proved that if Step 2 is implemented
using a breadth-first search (i.e. we always pick a shortest aug-
menting path), then the number of iterations of Step 2 is poly-
nomial. (When one picks an arbitrary augmenting path in Step 2,
we can run into an infinite number of iterations!)
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Augmenting path finder (subroutine for Step 2).
Input: A network N and a flow f in it.
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• if f(e) < c(e), then add an edge from u to v in Gf .
• if f(e) > 0, then add an edge from v to u in Gf .
(And there are no other edges in Gf .)
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N if and only if there exists a directed path from the source s
to the sink t in Gf . The latter problem can be solved using a
breadth-first search.



Augmenting path finder (subroutine for Step 2).
Input: A network N and a flow f in it.
Build an auxiliary directed graph Gf as follows:
The vertices of Gf are exactly the vertices of N .
For each edge e = −→uv of N ,
• if f(e) < c(e), then add an edge from u to v in Gf .
• if f(e) > 0, then add an edge from v to u in Gf .
It is easy to see that there exists an augmenting path wrt. f in
N if and only if there exists a directed path from the source s
to the sink t in Gf . The latter problem can be solved using a
breadth-first search.
It can be proved that if there is no

−→
st -path in Gf , and S is the

set of vertices that were reached by the BFS in Gf , and T is
the set of unreached vertices, then the capacity of this [S, T ]-cut
equals to the value of f , proving that f has maximum value.
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Example. Find a maximum flow in the following network.
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Example. Find a maximum flow in the following network.

Solution. The starting point of the Ford–Fulkerson-algorithm is
an arbitrary feasible flow. In practice, we can always choose the
everywhere-zero flow. For pedagogical purposes, in this presen-
tation our starting point is a less trivial feasible flow f , assuming
that several augmentation has been already performed.
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The endpoints of the partial augm. paths define a cut proving maximality.
(This [S, T ]-cut is a minimum cut of the network.)

max
f flow

val(f) ≤ c(S, T ) = 4 + 2 + 7 + 4 = 17 = val(f).

⇓

f is a maximum flow, i.e. in this network the maximum flow value
is 17. �


