3. Realization of degree sequences. Trees.

1. Does there exist a multigraph with degrees
a) $99,7,6,6,5,4,3,3,3,1$
b) $88,7,6,6,5,4,3,3,3,1$?
2. Does there exist a loopless multigraph with degrees
a) $65,32,16,8,4,2,1$
a) $64,32,16,8,4,2,1,1$?
3. (Havel-Hakimi algorithm.) Does there exist a simple graph with degrees
a) $7,4,3,3,3,3,2,1,0$
b) $8,8,6,6,6,5,3,2,2$
c) $7,6,5,5,5,4,4,2$
d) $5,4,4,2,2,1$?
4. Does there exist a connected graph with degree sequence $4,4,3,2,2,1,1,1,1,1,1,1,1,1$?
5. The Erdős-Gallai theorem says that the sequence $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ of nonnegative integers can be realized by a simple graph if and only if

$$
\begin{equation*}
d_{1}+\cdots+d_{n} \text { is even, and } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{k} d_{i} \leq k(k-1)+\sum_{i=k+1}^{n} \min \left(d_{i}, k\right), \quad \text { for all } k \in\{1, \ldots, n\} \tag{2}
\end{equation*}
$$

Prove that the conditions are necessary.
6. Let $n \geq 2$. Prove that the sequence $d_{1}, d_{2}, \ldots, d_{n}$ of nonnegative integers can be realized by a tree if and only if $\sum_{i=1}^{n} d_{i}=2(n-1)$ and $d_{i}>0$ for all i.
7.+ Let $n \geq 2$, and assume that the sequence d_{1}, \ldots, d_{n} can be realized by a simple graph. Prove that the sequence d_{1}, \ldots, d_{n} can be realized by a connected simple graph if and only if $\sum_{i=1}^{n} d_{i} \geq 2(n-1)$, and the numbers d_{1}, \ldots, d_{n} are all positive.
8. What happens if we add a new edge to a tree?
9. Is it possible to find two edge-disjoint spanning trees in the cube graph?

10. Show that in a connected graph G with at least 2 vertices, there always exists a vertex whose removal does not disconnect G.

