2. Connectivity

1. Determine whether the following multigraph is connected or not. (If not, give the number of components.)

2. Which of the following graphs are isomorphic to their complement?

3. G is a graph with degree sequence 1, 1, 1, 2, 2, 2, 5. How many edges does \overline{G} have? (\overline{G} denotes the complement of G.)

4. In a graph G precisely two vertices have odd degree. Prove that there exists a path between these vertices in G.

5. Prove that G or \overline{G} is connected, for any graph G.

6. Prove that if G has 2n vertices and every vertex of G has degree at degree at least n, then G is connected.

7. Prove that in a connected graph two longest paths always have a common vertex.

8. Prove that if in a graph G every vertex has degree at least 2, then G contains a cycle.

9.⁺ Prove that if in a graph G every vertex has degree at least 3, then G contains an even cycle.