2. Connectivity

1. Determine whether the following multigraph is connected or not. (If not, give the number of components.)

2. Which of the following graphs are isomorhic to their complement?

3. G is a graph with degree sequence $1,1,1,2,2,2,5$. How many edges does \bar{G} have? $(\bar{G}$ denotes the complement of G.)
4. In a graph G precisely two vertices have odd degree. Prove that there exists a path between these vertices in G.
5. Prove that G or \bar{G} is connected, for any graph G.
6. Prove that if G has $2 n$ vertices and every vertex of G has degree at degree at least n, then G is connected.
7. Prove that in a connected graph two longest paths always have a common vertex.
8. Prove that if in a graph G every vertex has degree at least 2 , then G contains a cycle.
9.+ Prove that if in a graph G every vertex has degree at least 3 , then G contains an even cycle.
