Sample exam \#1

1. Counting trees

a) State Cayley's theorem about the number of labeled trees.
b) Draw all labeled trees on 3 vertices (with labels 1, 2, 3), and compare their number with Cayley's theorem.
c) Give the Prüfer code of the following labeled tree:

2. k-CONNECTIVITY

a) When do we call a graph k-edge-connected, or k-connected?
b) What is the connection between these two notions?
c) State Menger's theorems (equivalent descriptions of k-edge-connectivity and k-connectivity).

3. Edge coloring

a) What do we mean on proper edge coloring and edge chromatic number of a graph?
b) State Vizing's theorem.
c) Give a proper edge coloring of the following graph with 3 colors:

d) What do we know about the edge chromatic number of bipartite graphs? Prove your statement for regular bipartite graphs.
4. Chinese postman problem
a) What is the chinese postman problem?
b) Consider the following problem (which is the part of the algorithm solving chinese postman problem): There is a graph G given, and for each edge e of G, a natural number w_{e} is also given. How can we decide if there exists a closed walk in G which visits every edge e of G exactly w_{e} times? Justify your answer.

