

Problem. Find a maximum-value flow in the following network.

Problem. Find a maximum-value flow in the following network.

Solution. The starting point of the Ford–Fulkerson-algorithm is an arbitrary feasible flow. In practice, we can always choose the everywhere-zero flow, but in this presentation our starting point is a less trivial feasible flow.

Searching for augmenting path

An augmenting path was found.

 G_f

 G_f

 G_f

Searching for augmenting path

Searching for augmenting path

There is no augmenting path, STOP.

The endpoints of the augm. path candidates define a cut proving maximality.

The endpoints of the augm. path candidates define a cut proving maximality. (This cut ${\cal V}$ is a minimum cut of the network.)

$$\max_{\mathfrak{f} \text{ flow}} \mathsf{v}(\mathfrak{f}) \le c(\mathcal{V}) = 4 + 2 + 7 + 4 = 17 = \mathsf{v}(f).$$

f is a maximum-value flow, i.e. in this network the maximum flow value is 17. \Box