(G, s, t, c)

Problem. Find a maximum-value flow in the following network.
(G, s, t, c)
f flow
$\mathrm{v}(f)=15$

Problem. Find a maximum-value flow in the following network.
Solution. The starting point of the Ford-Fulkerson-algorithm is an arbitrary feasible flow. In practice, we can always choose the everywhere-zero flow, but in this presentation our starting point is a less trivial feasible flow.
(G, s, t, c) f flow $\mathrm{v}(f)=15$

Searching for augmenting path
G_{f}

(G, s, t, c) f flow $\mathrm{v}(f)=15$

Searching for augmenting path
G_{f}

(G, s, t, c) f flow $\mathrm{v}(f)=15$

Searching for augmenting path
G_{f}

(G, s, t, c) f flow $\mathrm{v}(f)=15$

Searching for augmenting path
G_{f}

(G, s, t, c) f flow $\mathrm{v}(f)=15$

Searching for augmenting path
G_{f}

(G, s, t, c) f flow $\mathrm{v}(f)=15$

Searching for augmenting path
G_{f}

(G, s, t, c) f flow $\mathrm{v}(f)=15$

An augmenting path was found.
G_{f}

Augmentation: $\delta=\min \{4,3,2,4\}=2$
G_{f}

Augmentation: $\delta=\min \{4,3,2,4\}=2$
G_{f}

G_{f}
(G, s, t, c) f flow $\mathrm{v}(f)=17$

Searching for augmenting path
G_{f}

(G, s, t, c) f flow $\mathrm{v}(f)=17$

Searching for augmenting path
G_{f}

(G, s, t, c) f flow $\mathrm{v}(f)=17$

Searching for augmenting path
G_{f}

(G, s, t, c) f flow $\mathrm{v}(f)=17$

There is no augmenting path, STOP.
G_{f}

(G, s, $t, c)$ f flow $\mathrm{v}(f)=17$

$$
\mathcal{V}=\{S, T\}
$$

The endpoints of the augm. path candidates define a cut proving maximality.
G_{f}

(G, s, t, c)

The endpoints of the augm. path candidates define a cut proving maximality.
(This cut \mathcal{V} is a minimum cut of the network.)

$$
\max _{\mathfrak{f} \text { flow }} \mathrm{v}(\mathfrak{f}) \leq c(\mathcal{V})=4+2+7+4=17=\mathrm{v}(f) .
$$

f is a maximum-value flow, i.e. in this network the maximum flow value is 17 .

