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Chapter 1

Introduction

1.1 Motivation, historical background, and an overview of
our results and methods

During my master’s studies I started working with branching processes with my su-
pervisor at the time, Gabor Sztcs. I found this widely applicable class of processes really
interesting while we performed change—point detection of their parameters. As I started
my doctoral studies with the supervision of Professor Gyula Pap, he suggested that I could
join him and his longtime coauthor Matyas Barczy to study these processes from a dif-
ferent aspect, namely, the limit behavior of their aggregates. Our research arose from the
work of Pilipauskaité and Surgailis [38], who investigated random coefficient autoregressive
processes of order 1 (AR(1)) in the same sense. We got really invested in this topic through
the years and answered many related questions in the four published and two submitted
papers that we wrote together. In this current work, I am going to present the results
of four of these papers. These four share the assumption that the innovation (also called
immigration) has finite second moment, while in the two other papers it does not. These
two are left out due to the length limitations and the fact that the covered four form a
unit together, with some unanswered questions remaining.

In general, we consider independent copies of a stationary branching process, we denote
these by (X,gj))k:1’27._., j = 1,2,.... We are interested in the limit behavior of the

aggregate process (Zjvzl Z,qu Xlgj))te[o o0y’ as both n, the time parameter, and N,
the number of copies tend to infinity in some manner. If we take the limits in an iterated
manner, i.e., first n tends to infinity and then N tends to infinity, or vice versa, then the
resulting limit theorem is called an iterated one. If both converge to infinity at the same
time, then it is called a simultaneous limit theorem. To achieve such limit theorems, we also
consider the simple aggregates, Y , ;X ,gj ), which is called temporal (or time-aggregated),
and Zjvzl X ,S,j ), which is called contemporaneous (or space-aggregated).

The aggregation problem is concerned with the relationship between individual (micro)
and aggregate (macro) behavior. Random coefficient AR(1) models, where the coefficient
of the autoregressive component is a random variable instead of a constant, appeared
in Robinson [47]. However, the scheme of contemporaneous aggregation of random coef-
ficient AR(1) models was firstly proposed by Granger [18]| in order to obtain the long

memory phenomena in aggregated time series. In Gongalves and Gouriéroux [17], the con-



temporaneous aggregation of random coefficient AR(1) models is thoroughly studied. They
examine whether the aggregated process inherits certain properties from the random coef-
ficient AR(1) processes, such as stationarity and long memory. They also characterize the
processes that can appear as the contemporaneous aggregates of such AR(1) processes.
Zaffaroni 58| continues the previous research by examining the convergence of the previ-
ously discussed aggregates. Moreover, they extend the results by considering autoregressive
moving averages (ARMA) models instead or the AR ones. Some economical and empirical
examples are also provided in the paper. Oppenheim and Viano 36| deal with aggregates of
discrete and continuous time stochastic processes as well. In particular, they give the limit
of the contemporaneous aggregate of random parameter AR(p) processes and investigate
the long memory property of the limit. Celov et al. |11] is about the so-called disaggrega-
tion problem. By observing an aggregated process, their aim is to determine the individual
processes that lead to that aggregated one, if such exist. Again, they confine the search to
random coefficient AR(1) processes as these individual processes. Beran et al. [§] is also
about this disaggregation problem, more specifically, they consider a Beta mixing distribu-
tion for the squared coefficient of the random coefficient AR(1) processes, and estimate its
parameters based on the aggregated process. Puplinskaité and Surgailis [41},42] discussed
contemporaneous aggregation of random coefficient AR(1) processes with infinite variance
and innovations in the domain of attraction of a stable law.

As this thesis is about discrete time stochastic processes, we are only going to provide a
non-exhaustive list of resources for the aggregation of continuous time stochastic processes.
Related problems for some network traffic models were studied in Willinger et al. |56,
Taqqu et al. [53], Gaigalas and Kaj |16] and Dombry and Kaj [13|, where independent
and centered ON/OFF processes are aggregated, in Mikosch et al. |33, where aggregation
of M/G/oo queues with heavy-tailed activity periods are investigated, in Pipiras et
al. [40], where integrated renewal or renewal-reward processes are considered, or in Igléi
and Terdik |20, where the limit behavior of the aggregate of certain random coefficient
Ornstein—Uhlenbeck processes is examined. On page 521 in Jirak [23] one can find a lot
of further references for papers dealing with the aggregation of continuous time stochastic
processes.

As we will be working on similar limit theorems for our models, we recall some of the
results in Pilipauskaité and Surgailis [38], which describe the limit behavior of sums

—
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where (X,gj))ke{m,_”}, j € {1,2,...}, are independent copies of a stationary random
coefficient AR(1) process

Xy =aXp_1 + €, ke {1,2,...}, (1.2)

with standardized independent and identically distributed (i.i.d.) innovations (ex)ref1,2,..}
having E(e1) =0 and Var(e;) =1, and a random coefficient a with values in (0, 1),
being independent of (ex)req1,2,.} and admitting a probability density function of the
form

P@)(1—x)’, xe€(0,1),



where (€ (—1,00) and ¢ is an integrable function on (0,1) with limg ¢¥(x) =
11 > 0. Here the distribution of X is chosen as the unique stationary distribution of
the model (1.2)). Its existence was shown in Puplinskaité and Surgailis [41, Proposition 1].
We point out that they considered so-called idiosyncratic innovations, i.e., the innovations
(5](5))%{1,27.” y J=1,2,..., belonging to (X;ij))ke{o,l,... y» J=1,2,..., are independent.
In Pilipauskaité and Surgailis [38], scaling limits of the finite dimensional distributions of
(A&lnSt(N’n))te[o’oo), are derived, where Ay, are some scaling factors and first N — oo
and then n — oo, or vice versa, or both N and n increase to infinity, possibly
with different rates. Then, Pilipauskaité and Surgailis |39] extended their results in [3§]
from the case of idiosyncratic innovations to the case of common innovations, i.e., when
(5](€j))k6{172’.._} = (5](;))%{1727“_}, j=1,2,.... Very recently, Pilipauskaité et al. [37] have
extended their earlier results again in the sense that they released the assumptions on
the idiosyncratic innovations. In this new paper the innovations can be in the domain
of attraction of a stable law, while in Pilipauskaité and Surgailis [38] they had to be in
that of the normal law. For historical fidelity, we note that Theil |54] already considered
contemporaneous aggregations of linear regression models with non-random coefficients,
and later Zellner [59| investigated the case of random coefficients. They both examined the
estimators of the coefficients and their properties.

Now let us introduce the integer-valued autoregressive (INAR) processes, which will
have a very important role in this work. The theory and application of integer-valued
time series models are rapidly developing and important topics, see, e.g., Steutel and van
Harn [50] and Weifs [55]. The INAR(1) process is among the most fertile integer-valued time
series models, and it was first introduced by McKenzie [32] and Al-Osh and Alzaid [1]. An
INAR(1) time series model is a stochastic process (Xi)refo,1,.} satisfying the recursive

equation
Xk—1

Xp= > &jten ke{l2.. .} (1.3)
j=1
where (ex)req1,2,..) arei.i.d. non-negative integer-valued random variables, (§x,j)k jef1,2,..}
are i.i.d. Bernoulli random variables with mean « € (0,1), and X is a non-negative
integer-valued random variable such that Xo, (& j)kjef1,2..3, and (Ex)refi2,.} are
independent. By using the binomial thinning operator «ao due to Steutel and van Harn
[50], the INAR(1) model in can be written as

Xy =aoXp_1+e¢, kEe{l,2,...}, (1.4)

which form captures the resemblance with the AR model. We note that an INAR(1) process
can also be considered as a special branching process with immigration having Bernoulli
offspring distribution. Leonenko et al. [30] introduced the aggregate Zj’;l XU of a
sequence of independent stationary INAR(1) processes XU), j € {1,2,...}, where X ,gj ) =
ald) oXl(i)1 +5,(€j), k,j € {1,2,...}. Under appropriate conditions on o9, j € {1,2,...},
and on the distributions of Eg), k,j € {1,2,...}, they showed that the process Z]Oi1 X )
is well-defined in L?-sense and it has long memory. INAR(1) processes with Poisson
innovations and generalized integer-valued autoregressive processes of order p (GINAR(p))
are the special cases of multitype Galton-Watson processes with immigration. Chapter



is devoted to the temporal and contemporaneous aggregates of stationary multitype
Galton—Watson processes with immigration.

Then in Chapters [3| and [4| we will consider a certain randomized (also called random
coefficient) INAR(1) process (X)re{o,1,..} With randomized thinning parameter a, given
formally by the recursive equation

X =ao Xp_1+ ¢, ke {1,2,...}, (15)

where « is a random variable with values in (0,1) and X, is some appropriate
random variable. This means that, conditionally on «, the process (Xi)xc {0,1,..} 1san
INAR(1) process with thinning parameter «. Conditionally on «, the i.i.d. innovations
(€k)kef1,2,.} are supposed to have a Poisson distribution with parameter A € (0,00), and
the conditional distribution of the initial value Xy given « is supposed to be the unique
stationary distribution, namely, a Poisson distribution with parameter A/(1 — «). For a
rigorous construction of this process, see Section Here we only note that (Xy)reqo,1,...}
is a strictly stationary sequence, but it is not even a Markov chain (so it is not an INAR(1)
process) if « is not degenerate, see Appendix A of Barczy et al. [5|. Let us also remark
that the choice of Poisson distributed innovations serves a technical purpose. It allows us
to calculate and use the explicit stationary distribution and the joint generator function
given in . We are planning to try releasing this assumption and giving more general
results in future research.

Note that there is another way of randomizing the INAR(1) model , a so-called
random coefficient INAR(1) process (RCINAR(1)), proposed by Zheng et al. [60] and
Leonenko et al. |30]. It differs from , namely, it is a stochastic process formally given
by the recursive equation

X =apo X1+ &g, k€{1,2,...},

where (ag)peqi,2,.} is an ii.d. sequence of random variables with values in (0,1). An
RCINAR(1) process can be considered as a special kind of branching process with immi-
gration in a random environment, see Key 28|, where a rigorous construction is given on
the state space of the so-called genealogical trees.

In Chapters and we have similar limit theorems for randomized INAR(1) processes
that Pilipauskaité and Surgailis [38, Theorems 2.1, 2.2 and 2.3| have for random coefficient
AR(1) processes. The techniques of our proofs differ from those of Pilipauskaité and Sur-
gailis |38] in many cases. Concerning the iterated limit theorems, for a somewhat detailed
comparison, see Remark [3.15] For the case of the simultaneous limit theorems, see the be-
ginning of Chapter [ and Remark [£.4] Also, in our work, centralization has an important
role, since, opposed to the AR(1) and random coefficient AR(1) processes, the considered
branching processes do not have zero mean. We present limit theorems with three different
centerings. In some cases, when possible, we apply the expected values, and for the ran-
domized INAR(1) processes, the conditional expected values with respect to the random
coefficient as centralization. Moreover, as both of these are theoretical values instead of
observable ones, we also investigate the limit behavior of the aggregates centered with the
average of the random variables in question. Our proofs rely heavily on the multidimen-
sional central limit theorem, the functional martingale central limit theorem, and Lemmas
[3:21) and [£.5] We developed the latter two for this research. We also use that in case of



zero mean Gaussian processes, to prove their convergence in distribution, the convergence
of their covariance functions has to be shown. Furthermore, both Theorem 4.3 of Beran et
al. [7], which is about convergence of partial sums of a Hermite function of a stationary
sequence of standard normal random variables, and Theorem 7.1 of Resnick [46], which
is about weak convergence of partial sum processes for a triangular array towards a Lévy
process, are used once. In a few cases, the proofs reduce to showing that some random
variables are in the domain of attraction of a stable or normal distribution.

Pilipauskaité and Surgailis |38, Page 1014| formulated an open problem that concerns
the possible existence and description of the limit distribution of the double sum for
general i.i.d. processes (Xt(j))te[o,oo), 7 =1,2,.... We partially solve this open problem
for some randomized INAR(1) processes. The list of iterated limit theorems is complete,
however, we only have some of the possible simultaneous limit theorems. The rest of them
remain for future work, where we plan to follow the technique of Pilipauskaité et al. [37].
(For more details, see the introduction of Chapter ) Since INAR(1) processes are special
branching processes with immigration, based on our results, later on, one may proceed
with general branching processes with immigration.

Note that the proofs are always presented in a dedicated section at the end of the
respective chapter. The notations used in this work are the standard ones applied in the
literature. In what follows we collect the general ones, while the special ones, for example
the symbols denoting certain processes, are compiled in Table at the end of the thesis.
Let Z+, N, R, Ry, and C denote the set of non-negative integers, positive integers, real
numbers, non-negative real numbers, and complex numbers, respectively. For all d € N,
the d x d identity matrix is denoted by I;. The standard basis in R? is denoted by
{e1,...,eq}. For v € R? the Euclidean norm is denoted by ||v|, and for A € R?*%,
the induced matrix norm is denoted by | A| as well (with a little abuse of notation). As
a reminder, it is defined as || Al := sup {||Av|| : v € R? with ||v|| =1} for any matrix
A € R4 Let o(A) denote the spectral radius of A, i.e., the maximum of the absolute
values of the eigenvalues of A for any matrix A € R%*?  The notations —, i), and
P, denote convergence in almost sure sense, in probability, and in distribution, respec-
tively, while Pt and Di-lim mean the convergence of finite dimensional distributions.
Furthermore, the notation 2 denotes the equality in distribution of random variables
or stochastic processes. All the random variables will be defined on a probability space
(Q,F,P). For any set B C Q, we define 15:Q — {0,1}, the indicator function of B

as
1, z€ B,

15() = { 0, z¢B.

1.2 Presentation overview

This thesis is about the limit behavior of the temporal and contemporaneous aggre-
gates of certain branching processes. All of the chapters of this current work deal with
this question, either for different processes, different manners regarding the convergence
(iterated, simultaneous), or different centralizations.

More precisely, this work consists of the following parts. The introduction (first chapter)
contains our motivation, the historical background, the essence of our main results, and



the presentation overview.

The second chapter deals with the aggregation of stationary multitype Galton—Watson
branching processes with immigration. Many properties of these processes are discussed,
and limit theorems are presented concerning their aggregates, and those of two special
cases: GINAR(p) processes and INAR(1) processes with Poisson immigration.

The third and fourth chapters are devoted to stationary randomized INAR(1) pro-
cesses with Poisson innovations. The third chapter contains the definition and properties
of these processes, along with the limit theorems concerning simple aggregates and the iter-
ated limit theorems related to the temporal and contemporaneous aggregates. The fourth
chapter solely consists of the simultaneous limit theorems related to these temporal and
contemporaneous aggregates. At the end of the thesis, in Appendix[A] there is an overview
of the many lengthy theorems of these two chapters. We present the essence of these limit
theorems together to show their resemblance and differences as well.

1.3 Credits

All the proofs of this dissertation are joint work with my supervisors Gyula Pap, and
with the exception of a few, with Matyas Barczy.

The proofs of Chapter [2 are based on the paper, |3,
M. Barczy, F. K. Nedényi, and G. Pap. On aggregation of multitype Galton—Watson
branching processes with immigration. Mod. Stoch. Theory Appl. 5(1):53-79, 2018.

In Chapter [3| the proofs of Theorems and are based on the paper, [35],
F. Nedényi and G. Pap. Iterated scaling limits for aggregation of random coefficient
AR(1) and INAR(1) processes. Statist. Probab. Lett. 118:16-23, 2016.

The rest of the proofs of Chapter [3|is based on the paper, [6],
M. Barczy, F. Nedényi, and G. Pap. Iterated limits for aggregation of randomized INAR(1)
processes with Poisson innovations. J. Math. Anal. Appl. 451(1):524-543, 2017.

The proofs of Chapter {4] are based on the paper, submitted to a journal, |4],

M. Barczy, F. K. Nedényi, and G. Pap. On simultaneous limits for aggregation of sta-
tionary randomized INAR(1) processes with Poisson innovations. ArXiv 2001.07127,
2020+4-.



Chapter 2

Limit theorems for the aggregation of
multitype Galton—Watson branching
processes with immigration

This chapter deals with the aggregation of multitype Galton—Watson branching pro-
cesses with immigration. The proofs of this chapter are based on the paper Barczy et
al. |3].

In Section many properties of these processes are discussed. In Lemma [2.5] we
state that for a subcritical, positively regular multitype Galton—Watson branching process
with nontrivial immigration, its unique stationary distribution admits finite 7" moments
provided that the branching and immigration distributions have finite ~" moments,
where v € {1,2,3}. In case of v € {1,2}, Quine [44] contains this result, however, in
case of 7 =3, we have not found any precise published proof in the literature for it. The
result is something like a folklore. In the unpublished work by Sztics [52], under ergodicity
assumptions, the existence of general moments of the stationary distribution were obtained
for multitype Galton—Watson processes with immigration. In a recent work by Kevei and
Wiandt [27], that is yet to be published, they show that for a subcritical multitype Galton—
Watson process with immigration, the stationary distribution admits finite 7" moments
provided that the branching and immigration distributions have finite max{y,1}*" and
4" moments, respectively, for any v > 0. In Barczy et al. |3, Proof of Lemma 1] one
can find the direct proof of our Lemma [2.5 As a by-product, that proof gives an explicit
formula for the third moment in question, which is not available in the above mentioned
papers by the other authors. We note that these moments have been studied before, e.g.,
in the paper of Quine [43], a recursion is given for the central moments which expresses
the considered central moment of the random variable at time n with that and the lower
moments of the variable at time n — 1.

As the main results of Section limit theorems are presented concerning the ag-
gregates of the considered stationary multitype Galton—-Watson branching processes with
immigration. In two further sections of this chapter two special cases of these processes are
presented: GINAR(p) processes in Section and INAR(1) processes with Poisson immi-
gration in Section Section is a preparation for the INAR(1) processes with Poisson
innovations, containing some rather technical results. Let us note here that in the paper
Barczy et al. |5], which is the extended ArXiv version of the paper Barczy et al. [6], direct



proofs were presented for the results of Section However, that paper preceded Barczy
et al. [3|, the one about the aggregation of general multitype Galton—Watson processes
with immigration. Since the results of Section [2.4] are special cases of those derived for
the multitype Galton—Watson processes with immigration, we omit their original proofs.
In Section [2.5] we give two interesting and relevant examples on how the aggregates of
branching processes can model some current phenomena. All of the proofs of this chapter
are in Section

2.1 Aggregation of multitype Galton—Watson branching pro-
cesses

In this section we define the multitype Galton—Watson branching processes with immi-
gration and examine some of their general properties. We also present the limit theorems
corresponding to the temporal and contemporaneous aggregates of these processes. In the
following sections, we will investigate the same for the following special Galton—Watson
branching processes with immigration: GINAR(p) models and INAR(1) processes with
Poisson innovations.

Let (Yi=[Ye1,---,Yep ez . bea p-type Galton-Watson branching process with
immigration, where p € N. For each k,/ € Z, and i¢,j € {1,...,p}, Y, denotes the
number of j-type individuals in the k' generation, and 51(;;’5 ) denotes the number of
Jj-type offsprings produced by the /" individual belonging to type i of the (k — 1)

generation, while 5,(5) denotes the number of immigrants of type i in the k' generation.
Then we have
(1,1) (p,1) 1
Yeoia | Sk Yicip | Skt el Yiois
Y=Y | [+ > | [+ =YY e @)
=1 | (Lp) =1 (p,p) (p) i=1 (=1
3% R £

for every k € N, where we define 22:1 := 0. Here {Yo,gg;)z,sk ck,leNjie{l,...,p}}
are supposed to be independent Zﬁ—valued random vectors. Note that we do not assume
independence among the components of these vectors. Moreover, for all i € {1,...,p},
{ﬁ(i), {,(i)g :k,0 € N} and {e,ei : k € N} are supposed to consist of identically distributed
random vectors, respectively.

Let us introduce the notations m. := E(e) € RE, M, := ]E([E(l), e ,E(p)]) € RE*P
and

vy = [Cov(e®D e0D) [ Cov(e®D, @) Cov(e®, W) T e REFDXL (2.9

for 4,5 € {1,...,p}, provided that the expectations and covariances in question are finite.
Recall that o(M¢) denotes the spectral radius of My, i.e., the maximum of the absolute
values of the eigenvalues of M. The process (Yi)krez . is called subcritical, critical or
supercritical if o(M¢) is smaller than 1, equalto 1, or larger than 1, respectively. This
classification can be motivated by calculating the expected values of the process. First we



observe that for each n € N, using (2.1)), we obtain

p Yn_1; ' P .
EY o |FY )= Y EEY | FY )+ B FY ) =Y Va1 E(ED) + Ee)
=1 /=1 =1 (23)

p
=Y E(€D)e] Y1 +me = MY, g +me,
=1

where FY | :=0(Yo,...,Yn-1), n€N, and Y, 1;:=¢/Y, 1, i€ {1,...,p}. Then,
by taking the expectation, and further iterating this step, we get

E(Y,)=ME(Y 1

= M¢E(Yo

= M¢E(Yo

)+ me=...
)+ (M + M2+ 4 Mg+ I)me
)+ (Mg — Ip)_l( ¢ — Ip)me.
This form clearly shows that the limit behavior of the expectation as n — oo depends on
that of M, which originates in the magnitude of the spectral radius of the matrix M.
This classification is even further detailed for GINAR(p) processes in Remark

The matrix M is called primitive if there is a positive integer n € N such that all
the entries of M? are positive. The process (Y;)rez, is called positively regular if Mg
is primitive. In what follows, we suppose that

E(E(i)) eRE, ie{l,...,p}, me € R\ {0},

(2.4)
o(M¢) < 1, M is primitive.
For further application, we define the matrix
V= Viglijm = | v 1 € RP*P, (2.5)
i,j=1

provided that the covariances in question are finite.

Remark 2.1. Note that the matrix (I, — M 5)*1, which appears in and throughout
the chapter, exists. Indeed, A € C is an eigenvalue of I, — M if and only if 1 — X is
that of M. Therefore, since o(M¢) < 1, all eigenvalues of I, — Mg are non-zero.
This means that det(I, — M¢) #0, so (I,— Mg¢)™! does exist. One could also refer to
Corollary 5.6.16 and Lemma 5.6.10 in Horn and Johnson [19]. O

Now we recall the definitions of the reducibility and irreducibility of a matrix. See, e.g.,
Horn and Johnson [19, Definitions 6.2.21 and 6.2.22].

Definition 2.2. A matrix A € RP*P s reducible if there is a permutation matrix P €

RPXP  such that
B C

Opfq,q D

P AP =

]7 1<q<p7]-a

where Op_qq s a matriz of size (p—q) x q with all zero entries. The matriz A € RP*P
1s irreducible if it is not reducible.

Next we recall the definition of aperiodicity, see, e.g., Danka and Pap [12, Introduction].

10



Definition 2.3. The types {1,...,p} can be partitioned according to communication
of types, namely, into r nonempty mutually disjoint subsets Dq,...,D, such that an
individual of type j may not have offspring of type i unless there exists £ € {1,...,r}
with @ € Dyp_1 and j € Dy, where subscripts are considered modulo r. This partitioning
1s unique up to cyclic permutation of the subsets. The number r s called the index of
cyclicity of the matriz M¢. The matriz Mg is called aperiodic if its index of cyclicity
15 1.

Under , by the Theorem in Quine [44], there is a unique stationary distribution
for (Yi)kez,. Indeed, under (2.4), My is irreducible (see Deﬁnition following from
the primitivity of My, see Definition 8.5.0 and Theorem 8.5.2 in Horn and Johnson [19].
Further, Mg is aperiodic (see Definition , since this is equivalent to the primitivity
of Mg, see Kesten and Stigum [26, page 314| and Kesten and Stigum |25, Section 3|.
Finally, since me € RE \ {0}, the probability generator function of € at 0 is less than
1, and

P P p P
E(log (Z E(i)> ]1{57&0}) < E(Z 5(i)1{s¢0}> <E <Z 5(i)> = ZE(E“)) < 00
=1 i=1 i=1 i=1

so one can apply the Theorem in Quine [44].

Remark 2.4. Note that V' is symmetric and positive semidefinite, since v; jy = v(; ),
i,7€{1,...,p}, and for all x € RP,

p_»p P P
a:TV:c:ZZVi,jxixj: ZZ-’L’@(L’]‘UEEJ) [(I ]V*Iﬁ) ms]7

i=1 j=1 i=1 j=1

where

PP
ZZCCZIJ’U(Z]) = [z T Cov(eW, eMe, ... T Cov(e® £P)g 2T Cov(e,e)x].

i=1 j=1

Here x! Cov(€®, x>0, i e {1,...,p}, o' Cov(e,e)x >0, and (I,—M¢)'me €
Rfr since (I, — M 5) me is nothing else but the expectation vector of the unique
stationary distribution of (Y')rez,, see or formula (26) of Quine [44] (as all of the
conditions of that formula are satisfied). Since the matrix V is symmetric and positive
semidefinite, V''/2 exists, which we will need in the upcoming statements. O

For the proofs of some of our main results (Propositions and , we are going to
need a connection between the finiteness of the moments of the offspring and immigration
distributions, and that of the stationary distribution. The following lemma captures this
connection. On the possible alternatives of this lemma see the the introduction of this
chapter.

For each v € N, we say that the 4" moment of a random vector is finite if all of its
mixed moments of order ~ are finite.

Lemma 2.5. Let us assume (2.4). For each ~ € {1,2,3}, the unique stationary distribu-
tion 7 has a finite Y moment, provided that the v moments of E(i), ie{l,...,p},
and € are finite.
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For a more general version of this lemma, see the main theorem of Kevei and Wiandt
[27]. We omit the lengthy, direct proof of this lemma in this thesis, however, it is presented
in Barczy et al. |3, Proof of Lemma 1]. Note that the latter proof, as a by-product, gives
also an explicit formula for the third moment in question.

In what follows, we suppose and that the distribution of Yy is the unique
stationary distribution 7, hence the Markov chain (Y'j)rez, is strictly stationary.
Recall that, by (2.1) in Quine and Durham [45|, for any measurable function f:RP — R
satisfying E(|f(Y0)|) < oo, we have

1 ¢
=3 H(Y) B E(f(Yo)  as n— oo (2.6)
k=1

S

First we consider a simple aggregation procedure. For each N € N, consider the
stochastic process SN) — (S]({;N))kez+ given by

N
SECN) - Z(Yg) _ E(Yéj)))’ keZy, (2.7)
j=1

where YU = (Yéj))kez+, j € N, is a sequence of independent copies of the strictly
stationary p-type Galton-Watson process (Yj)rez, with immigration. Here we point
out that we consider so-called idiosyncratic immigrations, i.e., the immigrations belonging
to YU, j € N, are independent. Note that throughout the thesis we will keep using
the notation S®) for the same aggregate of the current processes considered in different
parts of this work.

Proposition 2.6. If all entries of the vectors E(i), i€{l,...,p}, and € have finite
second moments, then

N_%S(N)&y as N — oo,

where Y = (yk)kez+ is a stationary p-dimensional zero mean Gaussian process with

covariances
E(YoY;) = Cov(Yo,Yy) = Var(Yo)(M{)*, k€ Zy, (2.8)
where -
Var(Yo) = > MgV (M), (2.9)
k=0

Proposition 2.7. If all entries of the vectors €9, i e {1,...,p}, and e have finite
third moments, then

[ nt] [ nt]
(n‘5 > Si”) = (n Sy - E(Y,i”») = (I, - M) 'V B
t€R+

k=1 k=1 teRy

as n — 0o, where B = (By)icr, is a p-dimensional standard Brownian motion, and
the matriz 'V is defined in (2.5)). (Note that, by Remark V2 does exist.)

12



Note that Propositions [2.6] and [2.7] are about the scahngs of the space-aggregated

process S () and the time- aggregated process (Zkﬂ S¢ 5 )) respectively.

t€R+ ’
Now we turn to examine the space- and time-aggregated process. For each N, n € N|

consider the stochastic process SN = (SgN’n))teR . given by

N Lntj .
CRESSY YY), teRr,. (2.10)
j=1 k::l

(N.n)

Note that throughout the thesis we will keep using the notation S for the same

aggregate of the current processes considered in different parts of this work.

Theorem 2.8. If all entries of the vectors £(i), ie{l,...,p}, and € have finite second
moments, then

Di-lim Dy lim (nN) 28N = (I, — M) 'V:B, (2.11)

n—00 N—oo

where B = (By)ier, is a p-dimensional standard Brownian motion, and the matriz 'V

is defined in ([2.5)).
If all entries of the vectors E(i), i €{l,...,p}, and € have finite third moments,
then

Dy- lim Dy-lim (nN)~ 28N — (I, — M) "'V2B, (2.12)

n—oo

where B = (By)ier, is a p-dimensional standard Brownian motion, and the matriz 'V

is defined in ([2.5]).

Theorem 2.9. If all entries of the vectors €9, ie {1,...,p}, and € have finite third
moments, then

(nN)"28N™ 2y (1, - M) 'V2B, (2.13)

if both n and N converge to infinity (at any rate), where B = (By)icr, is a standard
p-dimensional Brownian motion and the matriz 'V is defined in ([2.5).

A key ingredient of the proofs is the fact that (Y} —E(Yx))rez, can be rewritten
as a subcritical first order vector autoregressive process with coefficient matrix Mg and
with heteroscedastic innovations, see .

In the following remark we investigate the meaning of taking iterated limits, and the no-
tations De-limpy oo Dslimy, oo and Dilim, oo Delimy_, oo, that appeared in Theorem
and which will be important in all of the iterated limit theorems of this thesis.

Remark 2.10. Let us begin with the understanding of (| . Taking the first limit (
Ds-limy, o0 (nN) ™2 5 SV, ”)), by Proposition means that for each N € N, every m €
Zy, and 0=ty <ty <--- <ty < oo, we have that

N N
(V)23 ST B, )72 YD 3T (v E(Y )

[ntm |
=1 k=1 =1 k=

1
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converges in distribution as n — oo to the following limit:

N N
N2 3Ty = M) 'VEB, L NTEY (I~ Me) VB

j=1 J=1
The summations in the latter formula could be problematic since there is no guarantee
that the terms of the sums are defined on the same probability space. However, since
the processes BU ), j € N, are independent of each other, they can be considered on a
probability space that can be chosen as the infinite product probability space. Then we
can investigate whether the latter m + 1-dimensional vector converges in distribution as
N — o0.

Now we turn to (2.11)). Taking the first limit (Df—limNﬁoo(nN)_%S(N’”)), by Proposi-

tion [2.6] means that for each n €N, every m e Zy, and 0 =1ty <t < - <ty < 00,
we have that

N . X L N m A ‘
()Y S WP B )Y S (v B )

converges in distribution as N — oo to the following limit:

[nto | [ntm ]

_1 _1
nES Ve n S W
k=1 k=1

Here the summations do not cause any issues as Yi, k € N, is a stochastic process. Then
it remains to show whether the latter m + 1-dimensional vector converges in distribution
as m — oo.

Note that similar arguments hold for the limit theorems presented in the forthcoming

sections and chapters as well. O

2.2 A special case: aggregation of GINAR processes

We devote this section to the analysis of aggregation of generalized integer-valued
autoregressive processes of order p € N (GINAR(p) processes), which are special cases of
the p-type Galton—Watson branching processes with immigration introduced in . For
historical fidelity, we note that it was Latour |29] who introduced GINAR(p) processes as
generalizations of INAR(p) processes. This class of processes became popular in modeling
integer-valued time series data such as the daily number of claims at an insurance company.
In fact, a GINAR(1) process is a (general) single-type Galton—Watson branching process
with immigration.

Let (Zk)k>—p+1 be a GINAR(p) process. Namely, for each £,/ € Z, and i €
{1,...,p}, the number of individuals in the k'™ generation will be denoted by Zj, the
number of offsprings produced by the ¢*" individual belonging to the (k—i)™" generation
will be denoted by f,(j;’gl), and the number of immigrants in the k"™ generation will be
denoted by 5,(:). Here the 1-s in the superscripts of S,Ej’gl) and 5,(:) are displayed in
order to have a better comparison with . Then we have

Zg—1 Zi—p
Zo=3 G+ g+, ken (214)
=1 =1

14



Here {ZO,Z_l,...,Z_pH, ,(:’el),sl(:) k0 e Nyi e {1,...,p}} are supposed to be in-
dependent nonnegative integer-valued random variables. Moreover, for all i € {1,...,p},
{§(i’1),§](€i’€1) : k,0 € N} and {5(1),5](:) : k € N} are supposed to consist of identically
distributed random variables, respectively.

A GINAR(p) process can be embedded in a p-type Galton—Watson branching process

with immigration (Y = [Z,..., Zk—p+1]T)k€Z . with the corresponding p-dimensional
random vectors
(1,17 [e(p—1,1)7 [e(0,1)7 M.(D7
3, fifj@ 513,)@ €k
1 0 0 0
1 -1
5](6’2: 0|, .-, ](5[ ) _ : 7 51(52: 0 |, en=10
. 0 | L 1 ] . 0 | | 0 ]

for any k,f¢ € N.

In what follows, we reformulate the classification that was introduced for multitype
Galton-Watson processes for GINAR(p) processes in terms of the expectations of the
offspring distributions.

Remark 2.11. In case of a GINAR(p) process, if E(£®1) >0, then by Proposition 2.2
in Barczy et al. 2],

Mg (= 1 = YR {1

a

Next we specialize the matrix V', defined in ({2.5)), in case of a subcritical GINAR(p)
process.

Remark 2.12. In case of a GINAR(p) process, the vectors
V(i) = [Cov(g(l’i),ﬁ(:l’j)), . .,Cov(f(p’i),g(p’j)),Cov(g(i),e(j))]T c R+Hx1

for 4,5 € {1,...,p} are all zero vectors except for when i = j =1. Therefore, in case of
o(M¢) <1, the matrix V, defined in (2.5)), reduces to

(I, — M¢)~ E(eW)es

(1,1) 1 (eref). (2.15)

a

Finally, we specialize the limit distribution in Theorems and in case of a sub-
critical GINAR(1) process.

Remark 2.13. Let us note that in case of p =1 and E(¢0D) < 1 (yielding that the
corresponding GINAR(1) process is subcritical), the limit process in Theorems and

can be written as

1 \/E(em) Var((1) + (1 — E(11)) Var(e())

- E(0D) 1 - E()
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where B = (Bj)ier, is a standard one-dimensional Brownian motion. Indeed, this holds,
since in this special case Mg = E(¢(W), yielding that (I, — M¢)™! = (1 - E(¢1D))~1
and, by (2.15),

T )
V= Cov(¢@D ¢LD) %
Cov(eM, M) 1

_ Var(g1D) E()

(1)
I~ E(e0) + Var(e'"/).

a

2.3 Some properties of Galton—-Watson and INAR(1) pro-
cesses

This section is a technical one to support Section which concerns the aggregation
of INAR(1) processes with Poisson immigration.

Let us consider a single-type Galton-Watson process with immigration, (Yz)rez,. For
each k,¢ € Z,, the number of individuals in the k' generation will be denoted by
Y:, the number of offsprings produced by the ¢*" individual belonging to the (k — 1)
generation will be denoted by & ¢, and the number of immigrants in the k" generation

will be denoted by ej. Then, as a special case of (2.1)), we have

Yi1

Yi=) &uter, keN,
=1

where we recall that 22:1 = 0. Here {YO, Ehoser kol € N} are supposed to be
independent nonnegative integer-valued random variables. Moreover, {{;,¢ : k,¢ € N}
and {er : kK € N} are supposed to consist of identically distributed random variables,
respectively.

Let us introduce the generator functions

Fi(2) :=E(:Y), keZy, G(z) :== E(z%), H(z) :=E(z") (2.16)
for z € D:={z€ C:|z|] <1}. First we observe that for each k € N, the conditional
generator function ]E(z:’“ |Yi—1) of Y given Yj_; takes the form

Yi_1

Yi—1
E(2* | Y1) = E(zsz:l Seeter Y,H) = E(*) [ EG*) = H(zr) Glz) o (2.17)
/=1

for zp € D, where we define H2:1 := 1. The aim of the following discussion is to
calculate the joint generator function of the finite dimensional distributions of (Y)rez, -
Using (2.17)), we also have the recursion

Fy(2) = E(E(2"* [ Yio1)) = E(H(2) G(2)"*1) = H(2) E(G(2)"*1) = H(2) Fy-1(G(2))

for z€ D and k€ N. Put G(g(2) :=2 and G(3)(2) :=G(2) for z € D, and introduce
the iterates G(r41)(2) := G(1)(G(2)), z € D, k € N. The above recursion yields

k—1

Fy(z) = H(2) H(G(2)) - H(Gj—1y(2)) Fo(Giy (2)) = Fo(Giy (2)) [ H(G5(2))
=0
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for z € D and k € N. Supposing that E(§1) = G'(1-) <1, 0 <P(&, =0) < 1,
0 <P =1) and 0 <P(e; =0) <1, the Markov chain (Y;)rez, is irreducible and
aperiodic. Further, it is ergodic (positive recurrent) if and only if >~;2, log({)P(e1 = ¢) <
oo, and in this case the unique stationary distribution has the generator function

F(z) =[] H(G(2), z€D, (2.18)
j=0

see, e.g., Seneta |48, Chapter 5| and Foster and Williamson |15, Theorem, part (iii)].

Now we turn to the case of INAR(1) processes with Poisson immigration. From here
on, we are going to denote the process in question with X instead of the previous Y to
be in accordance with Chapter (3| where the randomized INAR(1) process is also denoted
by X. We consider this special case with Bernoulli offspring and Poisson immigration
distributions, namely,

A\ (2.19)

with a € (0,1) and A € (0,00). With the special choices (2.19)), the single-type Galton—
Watson process with immigration (Xy)rez, is an INAR(1) process with Poisson innova-
tion. Then

0 Uy ¢
G(z)=1-a+ az, H(z) = Z %e‘A = Ml z € C,
=0

hence
G(j)(z)zl—aj—i—ajz, z€C, jeN.

Indeed, by induction, for all j € Z,

Gji1)(2) = G(G;)(2) = aGj(2) +1—a = a(l - i) Fl-—a=1-alTt faitl

Since E(§11) =G (1-) =a € (0,1), P(&1=0)=1—-a € (0,1), P11 =1)=a >0,
P(e; =0) =e* € (0,1), and

Zlog(f)ﬁe A< Zﬁﬁe A=TE(e1) = \ < o0,
=1 =1

the Markov chain (Xj)rez, has a unique stationary distribution admitting a generator

function of the form

ﬁ(z) _ He)\(G(j)(z)—l) _ Heaj)\(z—l) _ e(l—oz)_l)\(z—l)7 2 €C,
=0 =0

thus it is a Poisson distribution with expectation (1 —a)7!A.
Suppose now that the initial distribution is a Poisson distribution with expectation
(1 — )7\, hence the Markov chain (Xj)gez, is strictly stationary and

Fy(z0) = E(2)°) = e(1=a) ™ Azo—1) 2o € C. (2.20)
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Proposition 2.14. Under (2.19) and supposing that the distribution of Xo is Poisson
distribution with expectation (1—a)~'\, the joint generator function of (Xo, X1,...,Xk),
k € Zy, takes the form

Fo,.. (205, 28) = Bz 02 - 21%)
A i (2.21)
=expq T Z oz — V)zigr - zj—1(z5 — 1)
O<i<j<k
forall k€N and zy,...,z, € C, where, for i = j, the term in the sum above is z; —1.
Alternatively, one can write up the joint generator function as
Fo, . k(205 2K) = exp { A Z (1—a)fiirad (2241 25— 1) o, (2.22)

0<i<y<k

where
-1 i i=0 and j=k,

if i=0 and 0<j<k—1,
if 1<i<k and j=k,
1 if 1<i<j<k-1.

Kijk =

<
<

Remark 2.15. Under the conditions of Proposition , the distribution of (Xp, X1)
can be represented using independent Poisson distributed random variables. Namely, if
U,V and W are independent Poisson distributed random variables with parameters
A1 —a)"ta, XA and ), respectively, then (Xo,X1) 2 (U+V,U+W). Indeed, for all
20,21 € C,

E(zp 72 ™) = E((2021)" 20 21") = E((2021)") E(2 ) E(21")

— e)\(lfa)_la(zozl71)eA(z071)e)\(z171)’

as desired based on (2.22)). Further, note that formula (2.22)) shows that (Xp,..., Xy) has
a (k+ 1)-variate Poisson distribution, see, e.g., Johnson et al. |24, (37.85)]. O

2.4 A special case: aggregation of INAR(1) processes

In this section we investigate the aggregation of stationary INAR(1) processes with
Poisson innovation, which are special cases of the p-type Galton—Watson branching pro-
cesses with immigration introduced in . This section also serves a basis for Chapter
which concerns the aggregation of certain randomized INAR(1) processes.

Let (Xg)rez, be an INAR(1) process with offspring and immigration distributions
given in (2.19) and with initial distribution given in , hence the process is strictly
stationary. Let X() = (Xlgj))kez+, j € N, be a sequence of independent copies of the
stationary INAR(1) process (Xj)kez, -

First we consider a simple aggregation procedure. For each N &€ N, consider the

stochastic process SWV) = (S’/IEJN))keZJr given by
N . .
SV =3 (xY —ExY)),  kezs, (2.23)
j=1



where E(Xl(j)) = (1-a)"'\, k€ Zy, j€N, since the stationary distribution is
Poisson with expectation (1 — a)7'A. The following propositions and theorems are the
special cases of Propositions [2.6] and 2.7}, and Theorems 2.8 and [2.9] since the offspring and
innovation variables all have finite moments. In our special case, one can easily verify the
limit process of Proposition 2.7 and Theorems 2.8 and 2.9 by Remark 2.13] Indeed, all we
have to do is substitute E(¢D) = a, Var(é1D) = a(1—a) and E(eM) = Var(eM) = A
into the formula of Remark 2.13]

Proposition 2.16. We have
_1 (N) Df
N28V — X as N — oo,
where X = (Xk)kez;+ 1s a stationary Gaussian process with zero mean and covariances

A k
E(XpAy) = Cov(Xo, Xp) = 5 T kez,. (2.24)

The latter covariance is the special case of since the variance of the stationary
distribution (which is Poisson distribution with parameter (1 —a)~!\) is Var(Xy) =
(1 —a)7'A and the matrix Mg reduces to «. Note that formula (2.9) also results
Var(Xp) = (1 — )7t

Proposition 2.17. We have

R g s & O _g(x p VA(L+a)
k=1 €R+ t€R+

k=1

as n — 0o, where B = (Bi)icr, is a standard Brownian motion.

Note that Propositions and are about the scaling of the space-aggregated

process S and the time-aggregated process (ZLmJ S ) respectively.

t6R+7
For each N,n € N, consider the stochastic process SV = (St(N7n))teR+ given by

N LntJ
=3 E(xY)),  teRy. (2.25)
j=1 k:l

Theorem 2.18. We have

Di-lim Dy- lim (nN)~ 280 = Dy lim - lim (nN N)~z SN =

n—00 N—oo N—oo n—00 11—«

where B = (By)ier, s a standard Brownian motion.
Theorem 2.19. We have

(nN)*%S(N,n) N )i(l + 04)37
—

if both n and N converge to infinity (at any rate), where B = (Byi)icr, is a standard
Brownian motion.
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We point out that the process S contains the expected values of the processes
XU j e N. Therefore, in a statistical testing, it could not be used directly. So we consider

a similar process

N |nt] n (9)
X
S(N n) § : § [X(J) Ze;f] , teRy, (2-26)

=1 k=1

which does not require the knowledge of the expectation of the processes X, j e N.

G(N;n)

Note that the summands in S, have 0 means, so we do not need any additional

centering. Moreover, S SN g related to the previously examined process in the following

way:
N [nt] n (4) ()
N j > (X —E(X,7)) Nn nit N
§ 3% X9 - p(x ) - =l A _ g )_Lang )
=1 k=1

Therefore, by Theorems [2.18 and [2.19] using Slutsky’s lemma, the following limit
theorems hold.

Corollary 2.20. We have

Dy-lim Di- lim (nN)~2 SN

n—o0 N—o0

~ 1
= D;- hm D¢-lim (nN)~ 3 GNm) — VAL +a)

N—oo n—00 11—«

(Bt — tB1)ter,

where B = (By)icr, 15 a standard Brownian motion.
Corollary 2.21. We have

15 p VAM1+a
(nN) 280 — 1( )(Bt — tB1)ier,
-«
if both m and N converge to infinity (at any rate), where B = (Bt)icr, 15 a standard
Brownian motion.

2.5 Applications

In this section, to illustrate the fact that the aggregation of branching processes is
an important topic from the point of view of applications as well, now we present two
interesting and relevant examples, where the phenomena of aggregation of this kind of
processes may come into play.

Example 2.22. A usual INAR(1) process with immigration, (Xj)rez,, can be used to
model migration, which is an important task nowadays all over the world. More precisely,
given a camp, for all k € Z, the random variable X can be interpreted as the number
of migrants present in the camp at time £k, and every migrant will stay in the camp
with probability « € (0,1) independently of each other (i.e., with probability 1 — «
each migrant leaves the camp) and, at any time k € N, new migrants may come to the
camp. Given several camps in a country, we may suppose that the corresponding INAR(1)
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processes share the same parameter « and they are independent. So, the temporal and
contemporaneous aggregates of these INAR(1) processes is the total usage of the camps
in terms of the number of migrants in the given country in a given time period, and this
quantity may be worth studying. O

Example 2.23. As of 2020, modeling the COVID-19 contamination of the population of a
certain region or country is of great importance. Multitype Galton—Watson processes with
immigration have been frequently used to model the spreading of a number of diseases,
and they can be applied for this new disease as well. For example, Yanev et al. [57] applied
a two-type Galton—Watson process with immigration to model the number of undetected,
COVID-19-infected, and detected, COVID-19-infected people in a population. The tem-
poral and contemporaneous aggregation of the first coordinate process of the two-type
branching process in question would mean the total number of undetected, infected people
up to some given time point across several regions, which is of great importance. The aim
of their paper is to use the daily statistics (which is the number of detected infected people)
to estimate the expected value of the non-observed number of undetected contaminated
individuals. O

2.6 Proofs

Proof of Proposition Similarly as , we have
E(Yi|FY ) =MYy 1 +me,  keEN,
where FY =0(Yo,...,Y%), k € Zy. Consequently,
E(Y)) = McE(Y)_1) + me, k e N, (2.27)

and, taking into account the fact that E(Y ) =E(Yy), k € Z4 (following from the strict
stationarity of (Y'x)rez,), we have

E(Yo) = (I, — M¢) 'me.. (2.28)

Note that this also follows by formula (26) of Quine [44] (as all of the conditions of that
formula are satisfied). Put

Up: =Y, —E(Y|F ) =Y, — (MY o1 +me)

Then E(Uy|FY ,) =0, k€N, and using the independence of {ﬁw,sk k.t € Nji €
{1 ,...,p}}, we have

J Y.
E(Uy, iUk | Fi1) ZYk 1,4 Cov( I(€q1)7 P )+COV(6§€),6§€])) —v&j) [ ]; 1] (2.29)

for 4,5 € {1,...,p} and k€N, where [Uj,.. .,Uk’p]—r :=Uy, k€ N. Foreach k€N,
using Y, = M¢Y 1 +m. + Uy and (2.27), we obtain

Y, — E(Yk) = M&(Yk,1 - E(Y}cfl)) + Uy, k € N. (2.30)
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Consequently,
E((Yr —E(Y0))(Ye —E(YR)" [ F)

=E(M¢(Yio1 —E(Y 1) + Up)(Me(Yoy —E(Y o) + Up) T | FY )
=EUUL | FC) + Me(Yior —E(Y 1)) (Yo — E(Y 1)) T M

for all k£ € N. Taking the expectation, by (2.28) and (2.29)), we conclude

Var(Yy) = E(UpU,) + M Var(Y_1)M{ =V + Mg Var(Y_1)M;,  keN.

Under the conditions of the proposition, by Lemma[2.5] the unique stationary distribution
7 has a finite second moment, hence, using again the stationarity of (Y'y)rez,, for each
N e N, we get

N-1
Var(Yo) =V + Mg Var(Yo)M{ = Y MEV(M{)F + MY Var(Yo)(M{)N. (2.31)
k=0

Here lmp o Mg Var(Yo)(M¢ )Y = 0 € RP*P. Indeed, o(M¢) = limy_o | Mg/
by the Gelfand formula, see, e.g., Horn and Johnson [19, Corollary 5.6.14]. Hence there
exists kg € N such that

1—o(Mg) 1+ o(Me)
2 2

since o(M¢) < 1. Thus, for all N > ko,

IMEVE < o(Me) +

<1 for all k > ko, (2.32)

IME Var(Yo) (Mg )N < [ ME ||| Var(Yo)[[| (M) || = | ME ||| Var(Yo) ||| M|

2N
< (P val,

hence HMéV Var(Yo)(Mg)NH — 0 as N — oo. Consequently,

Var(Yo) = > MV(M{)",
k=0

yielding ([2.9). Moreover, by (2.30)),

E(Yo—E(Y0)(Yi—EYR) | F ) =Yo-EY0)E(Yr—E(Yr)" | FY))
= (Yo—E(Y0)(Yi1 —E(Y1) M{, kel

Taking the expectation, we conclude
_ T
Cov(Yo,Y ) = Cov(Yo, Y1) Mg, keN.

Hence, by induction, we obtain the formula for Cov(Yo,Y). The statement will follow
from the multidimensional central limit theorem. Due to the continuous mapping theorem,
it is sufficient to show the convergence N_I/Q(S[()N), SgN), ce S,(CN)) o, Vo, V1,3 Vk)
as N — oo forall k € Zy. For all k € Zy, the random vectors ((Y(()j) —
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E(Y(()j)))T, (ng) - E(ng)))T,...,(Yg) — E(Yg)))T)T, j € N, are independent, iden-
tically distributed having zero mean vector and covariances

Cov(YP, YY) = Cov(Y ), Y, ) = Var(Yo)(M{ )2

for €N, 01,00 € {0,1,...,k}, ¢ < {3, following from the strict stationarity of Yy @)
and from (2.8)). O
Proof of Proposition It is known that

Up=Y, - EYi|FL) =Yy MYy 1 —m,, keN,

are martingale differences with respect to the filtration (.7-",3/ Jkez,- The functional mar-
tingale central limit theorem can be applied, see, e.g., Jacod and Shiryaev |21, Theorem
VIII.3.33]. Indeed, using and the fact that the first moment of Y exists and is
finite, by (2.6), for each ¢ € Ry, and i,j € {1,...,p}, we have

[nt]

1 3 as. E(Y

- E(UkJUkJ |]:;3:1) — 'UE';J) ! (1 0) t= Vi,jt as n — oo,
k=1

and hence the convergence holds in probability as well. Moreover, the conditional Lindeberg
condition holds, namely, for all § > 0,

1 Lnt) 1 Lnt)

=Y BV ssvm | F) < 5 D EBIUP I A
k=1 k=1
) 5 (2.33)
03(]9 + 1)3 Yi a.s.
s dn3/2 Z: 1 0

with Cs := max{E([|¢® —EED)|?), i € {1,...,p}, E(|le — E(e)||>)}, where the last
inequality follows by Proposition 3.3 of Nedényi [34], and the almost sure convergence is a
consequence of (2.6)), since, under the third order moment assumptions in Proposition

by Lemma and (12.6)),
Y
1

1 [nt] 3
1 [nt] >
— Uk> — B as n — 0o,
(\/ﬁ ; teR

3
SN ) H[}?] as n — oo.

>3

=1

Hence we obtain

where B = (By)cr . isa p-dimensional zero mean Brownian motion such that Var(B) =

V. Using ([2.30)), we have

k
Yi—E(Yy) = M{(Yo—E(Yo) + Y M;’U;, kel
j=1
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Consequently, for each n € N and t € Ry,

1 [nt]
7n (Y —E(Y}y))
k=1
1 [nt]
T
\/ﬁ k=1 j=1
1 i [nt] /[nt]
_ % (Ip _ ME)_l(ME _ I_Tltj-i-l)(Y —]E YO +Z<ZM]€ J) ]
1 [nt]+1 o |nt]—j+1
= % (Ip_Mﬁ)il (Mﬁ_Mgn )(YO_E(YO))+Z(Ip_M5n ’ )U; )
j=1

(2:34)
implying the statement using Slutsky’s lemma since o(M¢) < 1. Indeed,

ZrIp = Me)™ (M - MY (Yo~ E(Y0) 250 as n— oo,

since limy, 0 MY = 0 by [@32). Moreover, n~V2(I, — M¢)~' Y™ M=y,
converges in L; and hence in probability to 0 as n — oo, since by ([2.29),

)< B2, - Jva,ﬂ e

and hence

E(|Uy,;

=V, Je€{l,....p}, keN, (235

[nt)

S(ER I RS

k:
[n [nt]

t)
1 |nt)—k+1 |nt]—k+1
< M E 2\4
ﬁEju IE(U]) < f§j\\ H}jErUm

k=1

,_

||MWJ ’““HZ Vi, =0 as n— oo, (2.36)
"=

since, applying (2.32) for |nt| > ko, we have

3\

Lnt) Lnt) ko—1 Lnt)

t —k+1
S m ZnMgu = Z Mg+ S M
k=1 k=ko
ko—1 |nt] ko—1
1+ o(M¢ 1+ o(Myg)
<D Mg+ > () Z | M+ Z( ¢ ) < co.
kzl ]{;:k’o k‘ kO

Consequently, by Slutsky’s lemma,

Lnt]
(mé Sy - ]E(Yk))> Py (I, - Mg 'B  as n— oo,
k=1 teER
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where B = (By)er . isa p-dimensional zero mean Brownian motion such that Var(B,) =
V', as desired. Furthermore, vi2Bp2 B , which completes the proof. O

Proof of Theorem First, we prove (2.12). For all Ny;m € N and all t1,...,¢, € Ry,
by Proposition and the continuity theorem, we have

N
I o(Nn) (N,n) Vi z)
— (8 sy By (1, — Mg)™ 'va) (B )....,BY)
\/ﬁ /=1
as n — oo, where B = (BEZ))teR+> ¢e{l,...,N}, areindependent p-dimensional

standard Brownian motions. Since
Y4
\Fz O B2 (B,,....,B;,), NeN, meN,

we obtain the convergence (2.12)).
Now, we turn to prove (2.11). For all n € N and for all t,...,t, € Ry with

t1 < ... <tm, m €N, by Proposition 2.6 and by the continuous mapping theorem, we
have

1 (N T (Vo)) T el e\
ﬁ((stl’ ) (S (Zyk,..., Z%)

nty [ntm ] T
ngm<O,Var((z iy y,j) ))
k=1

as N — oo, where (Yj)rez, isthe p-dimensional zero mean stationary Gaussian process
given in Proposition and, by m,

[ntq ] [ntm | |nt; | [nt; ] m
ar((Zyz,.. Zm) >= 00v<zyk,zyk>
k=1 ij=1
[nti] [nt;] "
= Cov(Yi, Vo)
k=1 (=1 L
4,j=1
[nt;] (k—1)A[nt;]
— ( Z Mg Var(Yo) + (Int:] A |nt;]) Var(Y o)
k=1 =1

| Lnt;) m
+ Var(Y) Z > i ) ,

k=1 (=k+1 ij=1

where "% a =0 for all ¢2 < q1, ¢1,q2 € N. By the continuity theorem, for all
01,...,0, ¢ RP, m € N, we conclude

j=1
1 m m [nt; ] [nt;]
= exp —27121219 ;;Covyk,yg 0;
=1 j=
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1 m m
— exp{ B Z (tint;)0 [Mg(I — M) Var(Yo) + Var(Y))
=1 j=1

+ Var(Yo)(I, — Mg—)_lMg] Hj} as n — o0.

Indeed, for all s,t € Ry with s <¢, we have

Lnsj [nt]

- ZZCOV Vi, Ye)

"= =
\_nsj k—1 L J ns| |nt]
—ZZM’“ “Var(Y )+7Var(Y0)+ Var (Yo) Z Z M£
k=1 ¢=1 k=1 f=k+1
e : . [ns}
= Z(Mg — M) (I, — M¢)™ Var(Yo) + — Var(Y)
k=1

[ns)]
1 _ i
+ — Var(Yo)(I, - M)y (M - (MR
k=1

—([ns|M¢ — Me(Ip — MénSJ)(Ip - Mﬁ)_1> (I, — M¢)™! Var(Y)

I
3|
—

LZSJ Var(Yo) + %Var(Yo)(Ip —- M)

x (Lns|M{ — (I, ~ MY)™H (I, — (M)l aad)lrel =)

_ Lns] (Mg(Ip — M¢) " Var(Y) + Var(Y o) + Var(Yo) (I, — Mg)—ljv_rg)
(Me(r, - M{™)(T, — M) Var(Y o)
+ Var(Yo)(I, — M{)*(I, — (M;I)LnsJ)(MET)LntJ—LnsJH)

— S(ME(IP — M¢) ™ Var(Y) + Var(Yo) + Var(Yo) (I, — MgT)_lMg) as n — 0o,

since lim,_so0 Mé”SJ =0, limnﬁoo(Mg)L”SJ =0 and limnﬁoo(Mg—)L"H*L"SJJrl =0 by
(2.32). It remains to show that

M¢(I, — M¢)™ " Var(Yg) + Var(Yo) + Var(Yo)(I, — M) ' M/
_ _ (2.37)
= (I, = Mg)"'V(I, - M)
We have
M&(Ip - ME)_l = (Ip - (Ip - M&))(Ip - M&)_l = (Ip - Mﬁ)_l —1Ip, (2.38)

and hence (I — MgT)_lMg = I, — Mg)_l — I, thus the left-hand side of equation
(2.37) can be written as

(I, — M¢)™ — I,,) Var(Yo) + Var(Yo) + Var(Yo) (I, - M{) ™' — I,)
= (I, — M¢) ' Var(Y ) — Var(Yo) + Var(Yo) (I, — M{)™!
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By (2.31)), we have V = Var(Y) — M¢ Var(Yo)MgT, hence, by (2.38)), the right-hand
side of the equation (2.37)) can be written as

(I, — M)~ (Var(Yo) — M Var(Yo) M{)(I, — M{)™!
= (1 = M) Var(Yg) (T, = M) = (I, = M) M Vau(¥ o) M{ (I, = M)

= (I, = M) Vax(¥o) (T, ~ M)
— (I = M¢)™ = I) Var(Yo) (I, - M{) ™' — 1)
= (I, — M¢) " Var(Y) — Var(Y) + Var(Yo) (I, — M),
and we conclude (2.37)). This implies the convergence (2.11]). |

Proof of Theorem As n and N converge to infinity simultaneously, is
equivalent to (nNn)fé.S'(N"’") N I, — Mg)_lvéB as n — oo for any sequence
(Np)nen of positive integers such that lim,_,. N, = co. As we have seen in the proof of
Proposition for each j € N,

v =y By | ) =Y - MY —m., keN,

are martingale differences with respect to the filtration (F, ,3/ v Jkez, - We are going to apply
the functional martingale central limit theorem, see, e.g., Jacod and Shiryaev |21, Theorem
VIII.3.33], for the triangular array consisting of the random vectors

(Vi en == (N, 2 (O, oM™ ol ot o), o)

n —
in the n'® row for each n € N with the filtration (}_;in))kez+ given by ]-',g )= FY =
o, Y™, where

—(n Ny, Np, Nn
ez, = (O, v &), vy ™)y ),

Hence ]:én) = U(Yél),...,Y(()N")), and for each k = (N, +r with ¢ € Z; and
re{l,...,N,}, we have

n ., ") @)
}—lg ) = J((Ujil]:fg-lj ) U( j= r-&-l}—YJ ))’

where Uj.V:”NnH := (). Moreover, ?(()n) (Y(()I), - ,Y(()N"))7 and for k= /N, +r with
¢teZy and re{l,...,N,}, we have Y( ™) Yng)l and V,(Cn) = (nNn)_%Ug)l.

Next we check that for each n € N, (Vli ))keN is a sequence of martingale differences
with respect to (]:,gn))keZJr. We will use that E(§|o(G1UGy)) =E(£]G:) for a random
vector & and for o-algebras Gy C F and Gs C F such that o(c(€)UG) and Go
are independent and E(||€||) < oo. For each k = ¢N, +1 with ¢ € Z,, we have

E(Vé”) ’]:1571)1) = (”Nn)_é E(Uélﬁl fzy(l)) =0, since

1 1 (7) 1 (1)
EUY), |FM) =EUY, o 7Y ) =EU®, | FXY) =o.

In a similar way, for each k = ¢N,, +r with ¢ € Z, and r € {2,...,N,}, we have
1 T
E(Vgl) ’}-181)1) = (nNn) "2 E(Uéﬁl ]FZY( )) =0, since

r n r— ) ' ) r (r)
EUY), | F) =EUD, | o(UtFE U U 7Y ) =B, | FY) = .
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We want to obtain a functional central limit theorem for the sequence

(Lnt | Ny o 1 [nt] N,
> V,j) ( eZZU[) ,  meN
k=1 teR, ndV, teRy

=1 r=1

First, we calculate the conditional variance matrix of V(n) If k={(N,+1 with ¢ € Z,,
then

BV (VIOTIFEY) = aN) P EOU S 08T o F X))
= (nN) T EU O R “’>.
In a similar way, if & =/¢N, +r with £ €Zy and r € {2,...,N,}, then
E(V (VDT IFM) = (aN,) P EU S U8 T 1 o(U lfe’i(f)) U U FYT))
= (nN) EUS, U) T F Y“>.
Consequently, for each n € N and ¢ € Ry, we have

|nt| Ny, [nt] N,

() (x (O T | =(m) y - (n) (n)
Z E(V, (Vi) [ F2h) —ZZE(V(z I)Nn+r(V(€—1)Nn+r) |7 (z I)Nn—i-r 1)
/=1 r=1
[nt] N,
r r) T Y(T)
- LSS W) A
/=1 r=1

Next, we show that for each ¢t € Ry and 4,7 € {1,...,p}, we have

[nt] N, ") ( [nt] N, » E(Y )
T Y r — T
TR CLAEIEE ) M el EE L

t=Vit
=1 r=1 1r=1

as n — o0o. Indeed, the equality follows by -, and for the convergence in probability,

note that lim, % =t, t € Ry, and, by the Cauchy-Schwarz inequality,

o vy gyl
E((LntJNnZng’j)! o o
1 [nt] N, 1 Y[))

Zl 1rm=1

Int] N, (r2)
Y —E(Y
lo=17r2=1

[nt] |nt] Np Nn

(v ) (Y T
mezzzz[al< M1<”>$m

l1=10o=17r1=11r2=1

,_
S
o~

[T

[\

nt nt
Z“Zi E((Ye -1 — E(Y0)(Ye,o1 —E(Yo)T) 0
Lnt 0 0 U(Za])
G=1l9=1
1 |nt] |nt]
<72N| ipll Z ZE [(Ye—1 —E(Y0) (Y1 —E(Y0)) )
[nt] (=14o=1
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[nt] [nt] p

LnJ (4,.9) H2 Z Z Z Z Y€1—17m1

- E(YO,mJ)(Y&—L?@
l1=14l2=1m1=1mo=1

— E(Yom,))l)
[nt] |nt] p

L J HU (4,9) "22 Z Z Z \/Var Y€1 1,mq Var(Yg2 1m2)

l1=14l2=1m1=1mo=1

v 33 Narom) Var(om,) -

as n — o0,
mi1=1mo=1

where we used that [QI < >0 227 |gij| for every matrix Q = (g;;)} =, € RP*P.
Moreover, in a similar way, the conditional Lindeberg condition holds, namely, for all
6 >0,

[nt]Nn [nt] Ny,

n n 1 r (r)
> BUVIIP yyoopssy | 720 = o 22 S BUUL 1Ly g | FET)
k=1 (=1r=1

L b

(1 1)\ as,
< g 2 BT IFET) =0

n

as n — 0o, where the almost sure convergence follows by (2.33). Hence we obtain

[nt] N, [nt| Ny, )
U = v,"
(s, = (2

D
(=1 r=1 teR4

(Bt)ier, is a p-dimensional standard Brownian motion. Using - for
each ne€ N and ¢ € R;, we have

N

B as n — 0o,

where B =

(v —E(Y)
niNn /=1 r=1
1 1
nt|+1 r r
ﬁ[ap—Ms) (M- M WZ(Y&—E(Y&B)]
n =1
! SR glntlmit LA
— I,— M)} M U'r
\/ﬁ[( g g) mzl mrzl m]
L bt N
I,— Mg)™! U,
+ (I, — M) TNM;Z_; e

implying the statement using Slutsky’s lemma, since o(M¢) < 1. Indeed, by ([2.32)),
limy, 00 MémHl =0, thus

. . |nt|+1 _ . -1
lim (I, = M¢)™ (Mg — M) = (I, - M¢)™ M,

and, by Proposition [2.6]

o Sy —E ) 25 Np(0, Var(Yo))
n =1

as n — 00,
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where N,(0,Var(Y()) denotes a p-dimensional normal distribution with zero mean and
with covariance matrix Var(Y), and then Slutsky’s lemma yields that

1
NG

Further,

[(Ip - M) (M~ MY S v - E(Yé”))] 50 as n— oo

nt]

(S o)< 15
(o)

BS

Jn

1 [nt]—mt1; % 10
< NpLtl=m El|——_ e
(| S

ntJ

e mtt L RN
My ZUm
Nn r=1

)

[nt]

)
< L ()
72 " m“nzﬁ

1 _
< —= HMEMJ mHHZ«/VMﬁO as m — 0o,
vn =

m=1

by ([2.36)), where for the last inequality we used ([2.35]). This completes the proof. O

Proof of Proposition First we prove (2.21]) by induction. Note that by (2.20) the
statement holds for k& = 0. We suppose that it holds for 0,...,k, and show that it is

also true for k+ 1. Using (2.17) it is easy to see that

X
Fo,.. kk+1(205 -5 26, 2k1) = E (23(0 Z,f’“zkff)
:E(z§0- E( k+lyX0,...,Xk>):E<g<0 E(zk;l\xk))

=E (z()fo e zé(’“e)‘(z’““*l)(l —a+ azk_,_l)X’“) .
On the one hand, for any zg,...,zx11 € C, by the assumption of the induction,

Fo. ki1 (20, -+ o5 20 20p1) = GV Ry (20,00 201, 26(1 — @+ azpy))

= eXP{l)\a [(1 —a)(zp — D+ D od (s = D2z — 1)

a 0<i<j<k—1
+ Sum; + 2z (1 — o+ azg1) — 1] },
with

Sum; := Z "z — Dz - 2o [ze(1 — a4 azpgy) — 1]
0<i<k—1
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On the other hand, the right hand side of (2.21)) for &+ 1 has the form

exp {)\ [ Z o "z — 1)z - -zj—1(z; — 1) + Sumgy + Sum;»,] },

l1-a e
0<i<i<k—1

where
Sumsy = Z ak_i(zi —Dziy1 - zi—1(2z — 1)
0<i<k
=(zr—1)+ Z "z — Dzigr - ze—1 (2 — 1),
0<i<k—1

and

Sumg = Z akH*i(zi —Dzig1 - zi(zp41 — 1)

0<i<k+1
= (2k+1 — 1) + a(zk — 1)(Zk+1 — 1) + Z Oék+17i(2i — 1)2,'_'_1 tee Zk(szrl — 1).
0<i<k—1

Since

Sum; = Z ak_i(Zi—l)Zi+1"'Zk;_l(Zk;_l)‘i’ Z akH_i(zi—l)ziH---zk(zk+1—1),
0<i<k—1 0<i<k—1

in order to show (2.21)) for k4 1, it is enough to check that
(1—a)(zh41— 1)+ 2zl —a+azkr1) — 1= (2 — 1) + (zky1 — 1) + oz — 1) (zp41 — 1),

which holds trivially.
Now we prove ([2.22)). In formula (2.21)), for fixed indices 0 < i < j < k the term in
the sum gives

(zi = Dzig1---zj1(z — 1)

=(zi-zj =)= (2 21— 1) = (g1 25 = 1) + (21 2j-1 — 1),

meaning that the sum consists of similar terms as in (2.22)). We only have to show that the

coeflicients coincide in the formulas and . In the coefficient of z;---z;—1
is A1 — a)Xiikal=t In this term may appear multiple times, depending on the
indices ¢ and j. If ¢ =0 and j = k, then it only appears once, with coefficient
Aad™'/(1 — @), that is the same as in (2.22). However, if i =0 and 0<j<k—1 in
, then the term also appears when the indices are ¢ and j+ 1 in , meaning

that the coeflicient is o 1
J—i JH+1—i o
A\ ( (e _ (&% > _ )\Otjiz,

l—«o l1—«a

which is the same as in (2.22)). Similarly, if 1 <i <k and j =k in (2.22), then the term
also appears when the indices are i —1 and j in (2.21)), meaning that the coefficient is

j—i j—(i—1
) ( ol B 1% ( )) _ )\ajfi’
l—« l—«

31




which is the same as in (2.22)). If 1 <i<j<k—1 in (2.22), then the term appears three
more times, for the index pairs (i —1,j), (i,5+ 1), (i—1,5+ 1) in (2.21]), resulting the
coefficient

- 1 1) 1) (i—1 B )
\ al? B ad—(=1) B ot1)—i n oU+)—(-1) _ /\aj*il 200+ o _ )\ozjfi(l —a),
11—« 11—« 11—« 11—« -«
which is the same as in (2.22)). This completes the proof. O
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Chapter 3

Iterated limit theorems for the aggregation
of randomized INAR(1) processes with
Poisson innovations

This chapter is about the introduction of certain randomized (or random coefficient)
INAR(1) processes with Poisson innovations, the behavior of the simple (temporal or con-
temporaneous) aggregates of these processes, and the iterated limit theorems belonging to
the temporal and contemporaneous aggregates. The proofs of this chapter are based on the
paper Barczy et al. [6], except for those of Theorems and which were published
in Nedényi and Pap [35]. These two are the iterated theorems corresponding to g = 1,
where [ is a parameter of the mixing distribution. The latter paper also contains the
corresponding iterated limit theorems of the random coefficient AR(1) processes, which
were left out of the work of Pilipauskaité and Surgailis as they require a different proof
technique. Theorem and the two results for the case 3 =1 in Corollary were
developed for this thesis, these are not contained in any of our papers. However, these com-
plete the results of the chapter, as here all the iterated limit theorems are presented with
the three considered centerings (the expectation, the conditional expectation, the empirical
expectation), when applicable.

As it was already stated in the Introduction, in this chapter, and the forthcoming one,
we will consider a certain strictly stationary randomized (also called random coefficient)
INAR(1) process (Xj)rez, with randomized thinning parameter «, given formally by
the recursive equation

X =ao Xp_1+ ¢, keN,

where « is a random variable with values in (0,1) and X, is some appropriate
random variable. This means that, conditionally on «, the process (Xj)rez, Is an
INAR(1) process with thinning parameter «. Conditionally on «, the i.i.d. innovations
(ex)ren are supposed to have a Poisson distribution with parameter A € (0,00), and the
conditional distribution of the initial value Xy given « is supposed to be the unique
stationary distribution, namely, a Poisson distribution with parameter A/(1—«). In Sec-
tion a rigorous proof is presented verifying that such a process exists. Section is
about the simple aggregates of the independent copies of the defined random coefficient
process, without specifying the distribution of the random coefficient (called the mixing
distribution). Then we introduce a specific type of mixing distribution and start investi-
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gating the temporal and contemporaneous aggregates of the processes. The iterated limit
theorems (when first the time scale n — oo and then the number of independent copies
N — oo or vice versa) are presented in Section We have similar limit theorems for
randomized INAR(1) processes that Pilipauskaité and Surgailis |38, Theorems 2.1 and 2.3]
have for random coefficient AR(1) processes. However, the techniques of our proofs differ
from theirs in many cases, for a somewhat detailed comparison, see Remark [3.15] Section
[3-4] contains some technical results that are necessary for the proofs, which can be found
in Section

3.1 Random coefficient INAR(1) processes with Poisson in-
novations

Let A € (0,00), and let P, be a probability measure on (0,1). Then there exist
a probability space (£2,.4,P), a random variable a with distribution P,, and random
variables {Xo, &y, €k 1 k,¢ € N}, conditionally independent given a on (€2, 4,P) such
that

Plého=1la)=a=1-P(E,=0]a), klcN, (3.1)
, N, .
P(gk' =1J | CV) = Fe ) J € Z+> keN, (32)
by —1
o _ —(1—a)~tA .
P(XO_]|Q) - ]'(1—Oé>Je ; J EZJr' (33)

(Note that the conditional distribution of e does not depend on «.) Indeed, for each
n € N, by Ionescu Tulcea’s theorem (see, e.g., Shiryaev [49, II. §9, Theorem 2]|), there
exist a probability space (€, A,,P,) and random variables a™, Xén), Elgn) and §,(€ng)
for k,0e{l,...,n} on (Qp,A,,P,) such that 7

Pn(a(") € B, Xon) = 9, s,(gn) = Jr, §,(!7£) =uxyy, forall k,0e{l,...,n})

_ /B P (0,20, (k)i (k)% ) Pa(da)

forall B € B(R), z0 € Ze, (jr)j_y € 2%, (wre)f ey € {0,1}", with

\%o 1 n )\]k

- \Nn n - - *(1751) A _

pn (70, (Gr)k=1> (Tr0)R =1) = 2ol(1—a)© 11 I
k=1

n
ef/\ H al‘k,g(l _ a)lfmk,27

k=1

since the mapping (0,1) 2 a — p, (a, zo, (Jr) iy ($k,€)z,e:1) is Borel measurable for all
20 € Ly, (Jk)iy € 24, (Tk)y =y € {0,1}"7", and

>~ {pu (@20, Gi)icr, @eo)kemt) 20 € Zay (Wi € 21, (or)iom € {01} =1

for all a € (0,1). Then the Kolmogorov consistency theorem implies the existence of a
probability space (€2, A,P) and random variables «, Xo, ¢, and &, for k,/ €N on
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(Q, A, P) with the desired properties (3.1)), (3.2) and (3.3]), since for all n € N, we have

> Apnra(a,zo, Go)ptt, ()i hty)
:jnJrl S Z+, (xn-‘rll)?:l? (xk,n-‘rl)}g:l € {0’ 1}717 Tntln+l € {O’ 1}}

= Dn (CL, zo, (jk)’;gl::l) (xk7é)z,€:1)'
Define a process (X)rez, by

Xp_1
X = ka,g—i—é‘k, k € N.
/=1

By Section conditionally on «, the process (Xj)rez, is a strictly stationary INAR(1)
process with thinning parameter « and with Poisson innovations. Moreover, by the law
of total probability, it is also (unconditionally) strictly stationary. However, it was shown
in Barczy et al. [5, Appendix A| that the process (Xj)rez, is not a Markov chain (so it
is not an INAR(1) process) if « is not degenerate.

The process (Xy)rez, can be called a randomized INAR(1) process with Poisson
innovations, and the distribution of « is the so-called mixing distribution of the model.
The conditional expectation of Xy given «a is E(Xgp|a) = (1 — a)~!A. Here and in
the sequel conditional expectations like E(Xp|a) are meant in the generalized sense, see,
e.g., in Stroock [51, §5.1.1]. Then, as the negative part of Xy is 0, which is integrable,
the conditional expectation does exist in this generalized sense.

Let aW), 7 € N, be a sequence of independent copies of the random variable «, and
let (X,S,j))kezy J € N, be a sequence of independent copies of the process (Xp)rez, with

idiosyncratic innovations (i.e., the innovations (El(gj))keZJr, j € N, belonging to (X/gj))kez+,

j € N, are independent) such that (X ,g]

INAR(1) process with thinning parameter o) and with Poisson innovations for all j € N.

)) kez, conditionally on al9) is a strictly stationary

3.2 Limit theorems with general mixing distribution

First we consider a simple aggregation procedure. For each N & N, consider the
stochastic process SWV) = (S]gN))kGZ+ given by
V) . N~ x) (’) (5 ) A
g — J) _ J Gy — J) _
SV = Z;(Xk E(XY | ali)y) _Z;(Xk 1_a(j)), ke, (3.4)
j= Jj=

Proposition 3.1. If E ((1—a)™') < oo, then
_l"’(N) Dy
N7 28 —y as N — oo,

where (Vi)kez, 15 a stationary Gaussian process with zero mean and covariances

~ =~ A A aF
E(QoYk) = Cov (Xo_l—oz’Xk_l—a) :)\E(l—a>7 keZ.,. (3.5)
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Proposition 3.2. We have

R R (1) D, VA(L+ @)
<n_2 > 5, > = (n_2 > (X, —E(X, |a(1)))> — ¥ B
k=1 teRy k=1 te€R+ I-a

as n — 0o, where B = (By)ier, is a standard Brownian motion that is independent of
a.

In the next two propositions, which are counterparts of Propositions and we
point out that the usual centralization leads to limit theorems similar to Propositions
and but with occasionally different scaling and with different limit processes. We use
again the notation SV) = (S;(CN))keZ . given in for the simple aggregation (with
the usual centralization) of the randomized process.

Proposition 3.3. If E ((1 —a)™?) < oo, then
_1 (N) Df
N7 28 — Y as N — oo,

where Y = (Vi)rez. s a stationary Gaussian process with zero mean and covariances

k
E(0%) = Cov(Xo, Xi) = AE(72 >+)\2Var<1 L

l1—a —«

), keZ,.

Proposition 3.4. If E((1—a)™') < oo, then

|nt| |nt|
(n—l > S,i”) = <n—1 St - E(X,i”)))
k=1 teR k=1

as n — o0.

2 (e ))

In Proposition the limit process is simply a line with a random slope.

3.3 Iterated limit theorems with specific mixing distribution

First we recall the definition of regularly varying sequences and functions, which we will
need in the forthcoming paragraph and during a proof of this chapter. For the definition,
see, e.g., Bojanic and Seneta |9, Corollary 1 and Formula (1.4)].

Definition 3.5. A sequence of positive numbers ay, n € N, is reqularly varying with some
finite index A if for every b >0 we have

. a\pn
lim Zlen)
n—00  Qp

bA.

Similarly, f, a positive and measurable function on [0,00) is reqularly varying with some
finite index A if for every b >0 we have

. flbz) 4
)
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In the forthcoming results we assume that the distribution of the random variable «,
i.e., the mixing distribution, has a probability density of the form

Y(z)(1 — )P, z € (0,1), (3.6)

where 1 is a function on (0,1) having a limit limgy ¢(2) = ¢ € (0,00). Note that
necessarily € (—1,00) (otherwise fol Y(z)(1—x)? dr = 00), the function (0,1) > x>
¢(z) is integrable on (0,1), and the function (0,1) 3> z + ¥ (z)(1 — x)? is regularly
varying at the point 1 (i.e., (0,00) > x — (1 — %) 278 is regularly varying at infinity).
For the definition of a regularly varying function see Definition Further, in case of
P(z) = %xa, x € (0,1), with some a € (—1,00), the random variable « is
Beta distributed with parameters a4+ 1 and S+ 1. Certain o operators, where the
summands are random parameter Bernoulli distributions with a parameter having Beta
distribution, appear in catastrophe models. Moreover, the Nobel prize winner Clive W. J.
Granger used the square root of a Beta distribution as a mixing distribution for random

coefficient AR(1) processes, see Granger [18].

Remark 3.6. Under the condition (3.6)), for each ¢ € N, the expectation E ((1 — a)_f)
is finite if and only if S > ¢ —1. Indeed, if 8> ¢—1, then, by choosing ¢ € (0,1) with
SUDge(1-e,1) ¥(a) < 291, we have E((1 — a)~Y) = I(e) + I»(¢), where

1—e 1—¢
I(e) == Y(a)(1 — a)’*da < max{e’~* 1} Y(a)da < oo,
0 0
1 1 21!} B—t+1
— _ )8 _ )t 1
Ir(e) = 1751/1((1)(1 a)’ " da < 2y /15(1 a)’""da 5071 < 0.

Conversely, if 8 < ¢—1, then, by choosing ¢ € (0,1) with sup,c_c1)¥(a) > ¥1/2,
we have

1
E(0-a)) > [ w01 da> wl/ (1— )/ da = oo
1—¢ 2 1—¢
This means that in case of 8 € (—1,0], the processes SWn) — (St(N’n))teRJr, N,n €N,
given in ([2.25) are not defined for the randomized INAR(1) process introduced in this
section with mixing distribution given in (3.6)). Moreover, with this mixing distribution,
Propositions [3.1] and are valid in case of >0, > —1, f>1 and (>0,
respectively. O

For each N,n € N, consider the stochastic process S(Nm) — (gt(N,n))teRJr given by

N |nt] . ‘
SN =3NNS (XD B [al)),  teR.. (3.7)
=1 k=1

Remark 3.7. If g > 0, then the covariances of the strictly stationary process (Xj —
E(Xy | a))kez, = (X — 12 a)keZ+ exist and take the form

Aok

l—«

Cov(Xo—E(X0|a),Xk—E(Xk|oz)):E< ) keZ,,
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see (3.15]). Further,
Z‘COV(XD—E(XQM),X;C—E(Xk|a))‘ =Y B[ ) =B (= a
k=0

k=0 = k=0
=% (= ap)

which is finite if and only if 8 > 1, see Remark[3.6] This means that the strictly stationary
process (Xj — E(Xy|a))rez, has short memory (i.e., it has summable covariances) if

g > 1, and long memory if 5 € (0,1] (i.e., it has non-summable covariances). O

For B € (0,2), let (B,_5(t))icr, denote a fractional Brownian motion with parameter
2

1— /2, that is a Gaussian process with zero mean and covariance function

2P 277 |ty — 2P
2 9

COV(Bl_g (tl), Bl_g (tg)) = t1,t9 € R+. (3.8)

The next four results are limit theorems for appropriately scaled versions of Sy n)
first taking the limit N — oo and then n — oo in the case [ € (—1,1]. The
first three are counterparts of (2.8), (2.9) and (2.7) of Theorem 2.1 in Pilipauskaité and
Surgailis [38], respectively. The counterpart of the fourth (for 5 = 1), however, was not
done by Pilipauskaité and Surgailis, as it could not be handled by the same proof technique
as the other ones. It was published in Nedényi and Pap |35, Theorem 3.3| along with the
result of our Theorem [3.111

Theorem 3.8. If € (—1,0), then

1 ~
Dy-lim Dp-lim o N7 205 SO = (Vyy g t)sem,

n—00 N—oo

where Va1py is a symmetric 2(1+ 3)-stable random variable (not depending on t) with
characteristic function

E(eiGVQ(l_,_[;)) — e_Kﬁ|0|2(1+ﬁ), 0 c R,
where "
A I'(-8)
Kg:= — .
pi=¥1 <2> 115

Theorem 3.9. If =0, then

Dy-lim Dp-lim (N log N)Y"2 SN — (W, ek, »
—00

n—o0

where Wy, 18 a normally distributed random variable with mean zero and with variance

Ay
Theorem 3.10. If 5 (0,1), then

lim De.lim n-lFEN-% gy _ [ 2Anl(B)
Pl Prfip n NS G-o1-5) %
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Theorem 3.11. If =1, then

Ds-lim Dy- hm (nlogn)féN_% SWn) — v/ 2M01 B

n—o0

where B = (Bt)t€R+ 18 a standard Wiener process.

The next two results are limit theorems for an appropriately scaled version of S ),
first taking the limit n — oo and then N — oo in the case 8 € (—1,1]. The first is
a counterpart of (2.10) of Theorem 2.1 in Pilipauskaité and Surgailis [38]. The second one
is the counterpart of Nedényi and Pap [35, Theorem 3.4|, which is about the respective
aggregate of the random coefficient AR(1) processes. Again, this case was not covered in
Pilipauskaité and Surgailis [38] due to requiring a different proof technique.

Theorem 3.12. If g€ (—1,1), then

Ds- hm De-lim N 1+Bn 3 §Wn = V48
n—oo
where YVi4g = (y1+5 =/ Yuip)2 Bt)teR , and Y(Hg)/Q 1S a positive Tﬁ—stable
5
random variable with Laplace transform E(e_ey(HB)/?) = e_kﬁe , 0 eRy, with

@A T (1-8
=118 F( 2 >

and (Bp)ier, s an independent standard Wiener process. The process Yiyg has (14 f)-
stable one-dimensional distributions and stationary increments.

Let us note that in Barczy et al. |5, Second proof of Theorem 4.10], which is the
extended ArXiv version of the paper Barczy et al. |6], by an additional proof, we showed
that the characteristic function of ¥(1,4)/2 introduced in Theorem is

E(e010/2) = exp { o] T e O™ gep

where kg is given in Theorem [3.12]

Theorem 3.13. If B =1, then

Di-lim Dy-lim n “3(NlogN)"2 §¥n) =\ /x¢y B

N—o00 n—oo

where B = (By)ier, s a standard Wiener process.

Next we show an iterated scaling limit theorem where the order of the iteration can be
arbitrary in the case S € (1,00), which is a counterpart of Theorem 2.3 in Pilipauskaité
and Surgailis [38].

Theorem 3.14. If € (1,00), then

Dy-lim Dp- lim (nN)~2 SV = Dy JimDg-lim (nN)"2SNm) = 5B,

n—o0 N—oo n—oo

where o2 :=AE((1+a)(1 —a)™?) and (Bi)er, is a standard Wiener process.
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By Remark if 8>1, then E((l — a)_Q) < 00, and hence 0?2 < 0o, where o2
is given in Theorem

In the following remark we compare our results to those of Pilipauskaité and Surgailis
[38], which paper motivated our work. Moreover, we summarize the proof techniques of
our results.

Remark 3.15. Theorems and are counterparts of (2.8), (2.9) and (2.10)
of Theorem 2.1 in Pilipauskaité and Surgailis |38]. The proofs of these theorems use the
same technique, namely, expansions of characteristic functions, and we provide all the
technical details. Theorem is a counterpart of (2.7) of Theorem 2.1 in Pilipauskaité
and Surgailis [38]. Our proof of Theorem is completely different from the proof of its
counterpart as we apply Theorem 4.3 of Beran et al. [7], which is about the convergence
of partial sums of a Hermite function of a stationary sequence of standard normal random
variables. The proof of Theorem [3.13] which result has no counterpart in Pilipauskaité
and Surgailis 38|, uses the well-known theorem about weak convergence of partial sum
processes for a triangular array towards a Lévy process due to Resnick |46, Theorem 7.1].
Theorem is a counterpart of Theorem 2.3 in Pilipauskaité and Surgailis [38]. The
proofs of the first convergence of Theorem and that of Theorem which result,
again, does not have a counterpart in Pilipauskaité and Surgailis |38|, rely on checking
the convergence of the covariances of some Gaussian processes. The proof of the second
convergence of Theorem is based on the multidimensional central limit theorem. O

In the next theorems we consider the usual centralization with E(X ,gj )), when appli-
cable. These are the counterparts of Theorems[3.10] [3.17], [3.12] [3.13] and [3.14] Recall that,
due to Remark E the expectation E(Xy) = ]E(%a) is finite if and only if 8 > 0, so

T
Theorems and can not have counterparts in this sense.

Theorem 3.16. If 3 € (0,1), then

Dp-lim Dy-lim n~ N~ 18 5N — P Jim - lim n INTTE SN = (7, 4t)
—00

n—oo N—o0 n—oo teRy’

where Zy4p is a (1+B)-stable random variable with characteristic function E(e¥%1+8) =
e*|9|1+ﬂ“5(9), 0 € R, where

DD = BN i an@)146)2
= 17T S1g1 R.
wg(0) 3+ 5) e , 0 e

Note that the following theorem was developed for this thesis, it has not appeared in
any of our papers.

Theorem 3.17. If =1, then there exists a sequence (an)nen such that VN /ay = o(1)
as N — oo (meaning that limpy_s oo \/N/@N =0) and
Dy-lim Dy- lim ntay!'SW™™ = Dp- lim Dg-lim n~layt SO = (Wt
fnlanolo f Ngnoo Y ng)noo s AN ( )tER-H

n—oo

where W s a standard normally distributed random variable.
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Theorem 3.18. If S € (1,00), then

D¢-lim Dy- hm n~IN—3gIm) — D;- hm Ds-lim n'N~ 3 §(Nom)

n—o0 n—o0

= Wiz var((1—a)-1) Diery 5

where W2 var((1-a)-1) 18 a normally distributed random variable with mean zero and with
variance A% Var((1 —a)™1).

In case of Theorems [3.8 3:9] 316 [3.17] and [3:1§| the limit processes are lines with
random slopes. Let us note that the theorems of thls section are summarized in some

tables in Appendix [A]
We point out that the processes of doubly indexed partial sums, S and S®V:n)

contain the expected or conditional expected values of the processes X ), 7 € N. There-
fore, in a statistical testing, they could not be used directly. So we consider a similar
process

N |[nt] n (4)
. ; X
St(Nn . ZZ [Xlij)_&;f] 7 t € Ry, (3.9)

which does not require the knowledge of the expectation or conditional expectation of the
processes X () J € N. Note that the summands in §§N’n) have 0 conditional means with
respect to «, so we do not need any additional centering. Moreover, S(Nm) s related to
the two previously examined processes in the following way: in case of 3 € (0,00) (which
ensures the existence of E(X ,gj )), k € Zy), we have

N [nt] n (9) ©))

Nn) (9) Zk:l(XZ _E(XZ )) _ o) LntJ (N,n)
=> 3 [ E(X,”) - - =S, s,
=1 k=1

and in case of [ € (—1,00),
N [nt] n j j i
X0 | 40y — S (XY —E(x o))
Z Xy a?) "
7j=1k=1
_ g _ [nt] Lnt] v

n

for every t € Ry. Therefore, by Theorems [3.10] [3.12] [3.11], 3.13] and [3.14] using Slut-
sky’s lemma, the following limit theorems hold. Note that the two results of the following

corollary which hold when [ =1 have not been published before.

Corollary 3.19. If € (0,1), then

R T —148 A =L G(N ) _ M —
Dx nh—>Igo D ]\}1—1}100 " PNTES (2 - 6)(1 - /8) <Bl_ﬁ(t) tBl_g(l))teRJr ’

where the process B, s is given by (3.8).
2
If Be(—1,1), then

Dg-lim Dg-lim N w3 SN = (Vi(t) = tYV145(1)) g, -

n—o0
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where the process Viyp is given in Theorem[3.13
If 8=1, then
Di-lim Dy-lim (nlogn) 2 N~2 SN = \/2Xgy (B; — tBi)icr.

n— 00 N—o0

moreover,
D-lim Dp-lim n2(Nlog N)~2 SV = \ /Ay (By — By )ier,
N—oo n—r00

where B = (By)icr, 15 a standard Wiener process.

If Be(1,00), then

Di-lim Dy lim (nN)" 280 = Dy lim Dy- lim (nN)"28WN") = o(B, — tB) sk, ,

n—o0 N—o0 —00 n—o0

where o® is given in Theorem and B = (Bt)t€R+ 18 a standard Wiener process.

In Corollary the limit processes restricted on the time interval [0,1] are bridges
in the sense that they take the same value (namely, 0) at the time points 0 and 1, and
especially, in case of (8 € (1,00), it is a Wiener bridge. We note that no counterparts
appear for the rest of the theorems because in those cases the limit processes are lines
with random slopes, which result the constant zero process in this alternative case. In
case of 8 € (—1,0], by applying some smaller scaling factors, one could try to achieve a
non-degenerate weak limit of SW.n) by first taking the limit N — oo and then that of
n — oo.

Let us point out that Example 2:22] which was discussed in Chapter [2] is also relevant
for the aggregation of randomized INAR(1) processes with Poisson innovations. Indeed, in
this case, the camps in question can each have independent parameters «a coming from a
certain distribution.

3.4 Some technical results

In this section we gather some technical results that are used in the upcoming proofs.
We will frequently use the following well-known inequalities:

1l—e™ <, xr €R, (3.10)
e — 1| < |ul, e — 1 —iu| <wu?/2, uweR (3.11)

The next lemma is about how the inequalities in (3.11)) change if we replace u € R
with an arbitrary complex number.

Lemma 3.20. We have

le* — 1] < |zle, z € C, (3.12)
z |2 |2|
|e *1*2” < 76‘ 5 ZGC (313)

The next Alemma gives a set of sufficient conditions for the convergence of the integral
Nfol (1 —ema V@) () (1 —a)’da as N — oo, where (zy(a))nen is a sequence of
complex numbers. We use this lemma in the proofs of Theorems [3.8] [3:9] and 3.12]
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Lemma 3.21. Suppose that (0,1) > x + (2)(1 — x)? is a probability density, where
Y is a function on (0,1) having a limit limgy ¢ (z) = ¢ € (0,00) (and necessarily
B € (—1,00)). Forall a € (0,1), let (zn(a))nen be a sequence of complex numbers
such that

lim sup |Nzy(a)|=0 for all €€ (0,1), (3.14)
N=00 ge(0,1—¢)

1

lim sup N 1 — (@) (1-a)’da<oo  for some g€ (0,1),
N—oo 1—¢o
1
lim lim sup N/ (1 - eﬁzl\’(a» (1—a)’da— I‘ =0
el0 N—oo 1—¢

with some I € C. Then

lim N/1 (1 . eﬁ”(“)) ¥(a)(l —a)’da = 1.
0

N—o0

3.5 Proofs

Proof of Proposition We have

‘a)] —0, keZi,

(0 25) =ofp(x

and hence, for all k€ Z,,

COV@“%’X’“_ 1i\a) :EKXO_ li\a) <X’“_ 1ja>}

- fal(- 2) (- ) o} -2

where we applied . Now the statement follows from the multidimensional central limit
theorem. Due to the continuous mapping theorem, it is sufficient to show the convergence
N2 SN SNy B (Y, .., 0k) as N — oo forall k € Zy. For all
k € Z,, the random vectors (Xo(j) — ﬁ,X{j) — ﬁ,...,X,Ej) — ﬁ), j € N, are
independent, identically distributed having zero expectation vector and covariances

(3.15)

altz—4l

[£2—41 | -«

Cov(Xx), X)) = Cov(xg”, X)) , ) = AE ( ) . JEN, f,0,€{0,1,... k},

following from the strict stationarity of XU) and from the form of Cov(Xo, Xi). O
Proof of Proposition For each n € N and each ¢t € Ry, put

nt|
~ 1 ~
Tt(n) =n 2 ,gl).

—

For each m € N, each t1,...,t,, € Ry, and each bounded continuous function g :R™ —
R, we have

~(n 1 ~(n n
E(g(T™, ..., 7)) = /O E(gT™,..., ") |a = a) Pa(da)




Proposition the portmanteau theorem and the boundedness of ¢ justify the usage
of the dominated convergence theorem, and we get

lim B(g(T(™, ..., ™)) :/JE@(WBM.., VAU +a) Btm>>IP>a(da)

n—00 1—a

v A(L Al
— / E(g((—i_a)Btl, o (—FO[)Btm> o = a> Py (da)
0 11—« —
VA1 + ) A1+ «)
_E<g<1_aBt1, 9 1-0[ ))7
hence we obtain the statement by the portmanteau theorem. O

Proof of Proposition For all k € Z,, by the strict stationarity of (Xj)rez, and

(3.15]), we have

cotoy == [(r0-5(20)) (v-2(25))]
e (e

since

sl 20) (202 (20))]
TR TR Y]

A A
E{<1_Q_E<1 . E(Xk—l_a a)}—O
forall keZ,.

The statement follows from the multidimensional central limit theorem as in the proof
of Proposition [3.1] Indeed, for all k € Z, the random vectors

) 1 G) 1 ¥ 1 ,
(58 22 () () o a8 (1)), e

are independent, identically distributed having zero expectation vector and covariances

11—«

. [€a—£1| 1
Cov(x?, X)) = Cov(X{, X[7), ) = AE (O‘ ) + A2 Var <1 - a)

for j € N and /1,05 € {0,1,...,k}, following from the strict stationarity of X and
from the form of Cov(Xp, Xj) given in (3.16]). O

Proof of Proposition We have a decomposition S](;) = g,il) + R,&l), k € Zy, with

1 1 1 A A
Rl(c)::E(Xl(c)|a(1) (X()) l_a(l)_E<1—a(1)>’ keZ,.
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We have

1 Lnt] (1) [nt| A A
— Ry = —E
n n \1—-a® 1—al
k=1 teRy teR4
D A A
— ~E t
11—« 11—« teR,

as n — oo. Moreover, by Proposition Ds-limy, o0 (n*1/2 Zgj{ glil))

teRy exists, hence

[nt]
1 ~
( g S,Ep) D, 0 as n — 0o,
n k=1 tER+

implying that for all m € N and all t1,...,t, € Ry, we have

LN en 1N% a0 2
(n;Sk,...,n;Sk>—>0 as n — oo.

By Slutsky’s lemma we conclude the statement. O

In the following two proofs, the notations O(1) and |O(1)| stand for a possibly
complex and respectively real sequence (aj)reny that is bounded and can only depend on
the parameters A, 1, B, and on some fixed m € N and 64,...,60,, € R. Further, we
call the attention that several O(1)-s (respectively |O(1)]-s) in the same formula do not
necessarily mean the same bounded sequence.

In the forthcoming proof (and in Chapter [4) we are going to need some conditional
generator functions. The conditional generator function of Xy given « € (0,1) has the

form

Fo(z0 | @) := B(z5° | @) = =) AGzo—D) (3.17)
for zo € D :={z € C: |z| < 1}. The joint conditional generator function of Xg, Xi,..., X}
given a will be denoted by Fy . x(20,...,2k| ), 20,...,2; € D.
Proof of Theorem To prove this limit theorem it is enough to show that for any
n € N,

Ds- lim N~ =R G (Lnt]Va(48))ter, -

N—oo

For this, by the continuous mapping theorem, it is enough to verify that for any m € N,

N
- G _ A ' A D
N2 Zl <X1 — l—a(j)""’X’%) - T — Voap(1,...,1)
=
as N — oco. So, by the continuity theorem, we have to check that for any m € N and
01,...,0, € R the convergence
m N
Efexpdid o [N S (x9- A
g k=1 ’ i=1 ; 1—al)
= j:




m N
1 A
— i PIEET:) E _
E (exp {1N + 2 0. <Xk T a) })]

— E (eiZZLl 9kV2(1+ﬁ)> — o KBl R 0P as N — oo

holds. Note that it suffices to show

R A
1-E iN ™~ 201+8) X, — K
[pofirsto g (w-25)}) |-

o~ Kol S, 02049

2(1+8)
Oy =N

o
k=1

as N — oo, since it implies that (1 —Oy/N)V
applying (2.21)) to the left hand side, we get

on = NE[1 B, ( e, | )T s
:NE[1—e1a N/ 1—ela N<>)¢(a)(1—a)ﬁda,
Xy
where Fy  m—1(20,..;2m—1] Q) = ]E(zo zf(l ez ™), Z0,...,2m—1 € D, and
i(0h+---+6
Anfa) = — Ot )
N 2(1+8)
+ Z it (eiN‘wim 0r _ 1)eiN‘2<11+5> (6'e+1+-~+9j_1)(euv_ﬂl%”ﬁ> b 1)
1<l<i<m

for a € [0,1]. Let us show that for any ¢ € (0,1) we have sup,c( 1) |NAn(a)] = 0
as N — oo. Using (3.11)), for any ¢ € (0,1) we get
sup N|An(a)|= sup N

m
Z( iN 2(1+5) Ok _ 1 _ lN—mek)
a€(0,1—¢) a€(0,1—¢) 1

__ 1 __ 1 __ 1
i Z ajfé(eiN 2(1+B)95 _1)eiN PeEz0) (9¢+1+---+ej,1)(eu\/ 208 g, _1>
1<l<j<m

1 B 0y,
ZN e S e | - vt S
1<l<j<m

(3.18)
as N — oo, since (/(1 + B) < 0. Therefore, by Lemma [3.21] substituting a =
1

1 — 2z !N"T+3, the statement of the theorem will follow from

1

lim sup N 1 — eraAn() (1—a)’da

N—oo 1—e (3.19)

[e'e) _1 __1
= limsup/ L= eV Ay (121N 1) ’z_(2+/3) dz < o0
N—oco Je—IN 1I+B8
for all €€ (0,1) and

1
lim lim sup N/ (1 et~ aAN(a))( —a)’da—1
eld Nooo 1—¢
- e o (3.20)
= lim lim sup / L (1 _ N AN (1=t 1%))2_(2“‘6) dz — I‘ =0
el0 Nooo e—IN I+B
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with

_ / °° 2 (S, o) )z(2+ﬁ) &
0

o m o |2048)
/0 (1—-e )z dz =y Ky ZGk
k=1

where the last equality is justified by Li |31, formula (1.28)]. Next we check (3.19)) and
(3:20).

By Taylor expansion,

i
2

1
N 20 _ N, 4 NTTE O(1) = N0 O(1),
. *m 1 1 92 3
v O 1 —iNT20 g, = —N—m?‘wzv*m 0(1)

for all £€ {1,...,m}, resulting

2
A m.é
SN TI8 2 N2 N1+

_1 _1
for z > N 8. Indeed, for z > N 1+8, we have

1
AN<1— )
zIN1+8

mo L 1
_ Z(GIN 2(1+8) gy, . lN_mek)

it — sy R
- (1 1 1 > (N T 0 _ 1) N ET G 0)
1<l<j<m ZN1+8

X (eiN_mej — 1)

_ i( O(1) )
N k=1 2N1+6 N%%w
() (A 2 2 2)
1<b<j<m zNT+E/ \N20+8  N1+8 N2 / \N20+8)  N1+8
Sk 07 0(1) 2 1<e<j<m 0e0; O(1) O(1)

=— —= 4 — — 1 + 7 — + 3
QN 1+8 N20+8) NT1+5 N20+p)  zNT+8
2
(Citite)” 0@ | o)
= - T I E—
2N 1+8 N 2(0+8) *N1+8

since by Bernoulli’s inequality

yielding that




By (3.21)), for z € [1,00) and for large enough N we have

m 2
AzNT Re Ay (1 — 2 N T5) = A= On) <1 - Reo(l)) | ReOQ)

2 N8 N5
m 2

< _)‘Z<Zk:1 Or) i |O(})‘ <0,
4 N1+

hence we obtain

r

0 1 1 oo
< / (1 + e)\ZNl-‘rﬁ ReAN(l—zle 1+ﬁ)> z—(ﬂ+2) dz < 2/ z—(ﬂ"r?) dz < oo.
1 1

1 _ 1
] — HQENTPAN(—27INTTHF) | —(842) 4,

(3.22)

Again by (3.21)), for € € (0,1), z € (fs_lN*ﬁ, 1] and for large enough N, we have

m 2
2 N 2Z+8) N1+8
A 0,)2 o(1
<z( iz 60 100) +a|0<1>\) <2lo)| <00,
2
N 20+58)

__1 . :
since. N 18 < ze. Hence, using ([3.12)), we obtain

1 1
1 R
1 e)\zN1+5AN (172 N 1+l3) Z7(2+g) ds

_1 __1
1 ANTHB Ay (1-27IN7 TF

L - I
/ L PeNTE A (1- 27N ) e
e"IN 148

N

1
< |0(1)]el 0D / 2~048) 4z < oo,
0

which, together with (3.22), imply (3.19).

Now we turn to prove (3.20)). By (3.10), we have

1 1
1N T+8 —1NTI+B m 2
/ ) (1— e ¥ S m0) ) g < / : A1 00)? —24s) g,
2
0 0

AR 6 /“N
0

1
+B m 2 —B
- ~4+8) g, = M1 k) < 1 ) S0

2(—=p) ;

eN1+B

as N — oo, hence (3.20) reduces to check that lim.olimsupy_,o, Ine =0, where
1 1
In. = /Oo ) [e,\zNuﬂAN(kz—lN HB) ef%(zg;lek)?}f(ﬂﬁ) da.
’ "IN THP
Applying again (3.21]), we obtain

o
Az m 2
‘IN,a’ < / e_T(Zkzlek)
€

1 1

2(1+8 CI+B -
1 o#N 2T O(1)+N~ TH5 O(1) _ 1‘2 2+6) 2.
-1N 148

Here, for €€ (0,1) and z € (e_leﬁ,oo), we have

[N O(1) + N"T5 O(1)| < (N0 4 )| O(1)],
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and hence, by (3.12]), we get

_ 1 __1
o#N 2OHA O(1)+NTHE O(1) _ 1‘

__ 1 _ 1
|2N 2(1+6 o)+ N~ 1+ﬁ o1 )‘ ’ N 20D O()+N TFF O(l)’
< (VT 4 &) o] e*( T ) oWl

Consequently, for large enough N and small enough ¢ € (0, 1),

[Ine| < (N7 4 )| O(1 \/ S (Y, 002+ (N T 42) O(1)],—(146) .,

1

< (NT 2T +¢)]0(1 |/ _)\T Re100)? = (148) 4

that gets arbitrarily close to zero as N approaches infinity and e tends to 0, since the
integral is finite due to the fact that

1 WA -
2 0 —Xz(3hs 0k)? /4 ,—(148) 0
) 4(2 k) e z ) z >0,
k=1
is the density function of a Gamma distributed random variable with parameters —(8 and
MO, 0k)?/4. This yields (3.20) completing the proof. O
Proof of Theorem Similarly as in the proof of Theorem it suffices to show that
forany m €N and 64,...,0,, € R we have the convergence

N

P> A A
8 (o i i (5 23 )|+ 5 (359

as N — oco. By applying ([2.21]), the left hand side equals

i01 i0m _ A0+ +0m)
NE|1—Fy. 1 |evNoeN eVNlgN ‘ ale (1-a)yNlgN

:NE[1—e1a N/ 1—e1a (“)>1/1()d

LA 10y,
BN(CL) = Z <e\/m - ]. - m)

i0, i(Op g1+ +0j_1) i0;
+ Z aj Z(e Nlog N 1)6 Nlog N (e Nlog N — 1)7 a € [07 1]

1<l<j<m

Similarly as in (3.18)), for any ¢ € (0,1) we have

m 9 2
sup |NBy(a)| < (g1 O) —0
a€(0,1—¢) 2log N
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as N — oo. Therefore, by Lemma substituting @ =1 — z/N, the statement of the
theorem will follow from

1
lim sup N 1 — eT=a BN (@)

N—o0 1—¢

eN
da = limsup/ ‘1 - e%BN(l_%)‘ dz < o0, (3.23)
0

N—oo

and

1 eN
lim N (1 _ eﬁBN@) da = lim (1 _ e%NBN(l—%)) dz = g
0

N—00 1—g N—o0
(3.24)
for all £ € (0,1). Next we check (3.23)) and ([3.24).
Using Taylor expansions, similarly as in the proof of Theorem we get
m 2
z N 2z1log N 2zN1/2(log N)3/2 ~ Nlog N
Indeed, for z € [0, N] we have
z Ui _ 0 6y,
(13- £ 1 )
N N ]; ¢ ) Nlog N
j—0 i0 i(0pp1++05_1) 05
+ Z 1_%)] (e\ﬂvéﬁ_l)e NlogNj (e NligN _1)
1<e<j<m
B ) (L S—
N =\ 2NlogN = (Nlog N)3/2
20(1) i, O(1)
+ ) <1 + ) ( +
L<beim N VNlogN Nlog N
<14 O(1) i6; n O(1)
vVNlogN J\/NlogN NlogN
DY Y o)  Yicecjom b O(1) z0(1)
2Nlog N  (NlogN)3/2 Nlog N (Nlog N)3/2 = N2log N
m 2
(X k=1 Or) o) 20(1)

2NlogN  (NlogN)3/2 NZ2logN’
since, by Bernoulli’s inequality,

2N\J—¢ z z
1- ) -1 <G -05 <me,
’( N ‘ (=10 m—

=|

yielding that
z\Ji—t z
(1_N) =14+ 0(1).
By (B.25)), for z € (0, (log N)™') and for large enough N we have
AT 60;)? 1 1
—ReBN<1—i):_M ~ ReO(1) ReO(1)
z N 2zlog N Nlog N Nlog N

_ AT 6?10 _ AL 602 10(1)]
4zlog N NlogN 4 NlogN’
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hence we obtain

_1
/1ogN ‘]_—GAZ By(1—%) dzé/logl\] (1+67ReBN( N)) dz
0 (3.26)

! AR 00 10(1)]
<——|(1 - = — 0 N — oo.
log N < * exp{ 4 * Nlog N o

Note that for every e € (0 1)

l log N + loglog N
08E T8N T8N |1 a5 Nooo,  (3.27)
logN log N
logN
eN
1 __eNlogN —1
= 1 N . 2
logN/ eNlog N - as - (3.28)
log N
By (3.25)), for all z € ((logN)_1 €N) we have
AN Ay ) |O(1)] |1O(1)]
—By(1—— = 1)].
’ z N< N)’ 2z1log N le/Q(logN)3/2+NlogN 10

Thus, by (3.12)), (3.25]) and (3.27)), we get

eN
limsup/ ‘1 _ BN 4,
1

N—oo

log N

AN
<limsup/1 'BN( ;)

N—oo
o(1|/ [ (i 00 [0 . 10(1)] d < oo,

’ANBN |dz

<li
imsupe 2210g N zN1/2(log N)3/2 = Nlog N

N—oo

which, together with -, imply (3.23).

Now we turn to prove (3.24). By (3.26]), the convergence (3.24)) reduces to prove that

m 2
(1 ) go - AT 00

eN
—0 as N — oo.

1
log N

Using (3.27)), it is enough to check that
N
/5 (e*jVBN(l) 1+ A (e ) ) dz
1

L 2zlog N
og
By applying (3.13)), (3.25) and (3.5)), for large enough N we get

— 0 as N — oo.

N m 2
oo

1 z 10

log N

N [1[AN ax AN 2\ A 6)°
< S |= ~ 2] el Bna-R)] |2 _2) 4 A= O)7
= o _2‘ BN(l N) * B (1 N)+ 2zlog N dz
</€N 1 A(Z?=19k)2+ 10(1)] n (O] ) o)
= iy 2 2zlog N 2N1/2(log N)3/2 = NlogN

oml 1owl],.

zN1/2(log N)3/2 ° Nlog N

o1



</N[;( oWl 1ol . o) >

1|2\ 22(logN)2 " 22N(log N)3 ' N2(log N)2

log N

oWl 1o@)

d
zN1/2(log N)3/2 = Nlog N =

which converges to 0 as N — oo using (3.27) and (3.28]). This yields (3.24)) completing
the proof. O

Proof of Theorem By Remark condition 8 € (0,1) implies E ((1—-a)™!) <
oo. Hence, by Proposition and the continuous mapping theorem, it suffices to show

that )
nt
VAR IR 201 T(5)
Ds-1 =4/ — B, 5.
s <n1—§ kzly’“l% C-p-p) -

We are going to apply Theorem 4.3 in Beran et al. [7] with m = 1 for the strictly
stationary Gaussian process <§k / Var(jjo))k 2. where, by (3.5)),
€Lt

k

11—« -«

V) =B (o). Covnd—AB({). kezn

hence ( k)
. Yo B |_E e |
> JVary) (VaGh))  E(5)

In order to check the conditions of Theorem 4.3 in Beran et al. [7], first we show that

keZs.

—

G ot N -1
kP E <1 > =k / a®(1 —a)” "(a)da — P1I'(B) as k — oo, (3.29)
0

meaning that the covariance function of the process (37k) kez, is regularly varying with
index —p. For the definition of a regularly varying sequence see Definition [3.5] First note
that, by Stirling’s formula,

. ! _ . KPT(k + 1)
B ki \B-1 _ AT )
;;H;ok/oa“ )" Wrda = lim 4y pam s )
k L k+p5
=ar) im0 () @ =ero)

Next, for arbitrary § € (0,¢1), there exists € € (0,1) such that |¢(a) —¢n| < d for all
a €[l—eg,1), and hence

1 1
kﬁ/ a®*(1 — a)’ "y (a) — 1| da < dsup kﬁ/ a*(1—a)’tda
1—¢ keN 0

can be arbitrary small. Further, observe

P /01_8 a*(1 = a)*Lip(a) da < ]M /01_5(1 _ a)P(a) da
k 1 k
<k6(1€_€)/0(1—a)f6¢(a)da:kﬁ(1€_€)%0 as k — oc.
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In a similar way, we have

1—e¢ 1—e
W / 51 — @)1y da < i kP(1 — 2t / (1—a)*'da
0 0

L B(1 _ )k
<w1kﬁ(1—g>'f/0 (1— )1 da:%’f(l/j@

— 0 as k — oo,

hence -
kﬂ/ a*(1—a)’|(a) — ¢1|da — 0 as k — oo,
0

implying (3.29)). Applying (3.29)), we conclude

1

18 Cov Vo ’ Vi _ kﬁE (%> P1(B)
SVa@o) Jvan)  E(2s)  E(Zs)

as k — oo. Consequently, by Theorem 4.3 in Beran et al. |7],

Q

[nt) S

1
Z Dk Dz 7@2 B, s, as n — oo,
N TATIEY = g = g
=1 AE ()
teR4
where Z, | s is the Hermite-Rosenblatt process defined in Definition 3.24 of Beran et
T2

al. |7], and

_ »ir) Ci, neN, with C;= YR 5)2(2 —5

The fact that the Hermite-Rosenblatt process Z,, s coincides in law with B is

Ny

1—
shown in Beran et al. [7], see Definition 3.23, the representation in formula (3.111), and
page 195 of [7] for details. Hence we obtain the statement. O
Proof of Theorem Since, by Remark E((1 — @)™!) < oo, the condition in
Proposition [3.1] is satisfied, meaning that

_ly D
N 2S(N)—f>y as N — oo,
where (Vi)rez, is a stationary Gaussian process with zero mean and covariances

~ o~ k
E(YoYi) = Cov <X0—)\,Xk—)\>:)\ﬂ“3<1a ) kezi (330)

11—« l—«o —«

Therefore, it suffices to show that

[nt)

D;- lim > Ve =2\ B,
k=1

1
n—oo /nlogn

where B = (By);er, is a standard Wiener process. Since the two processes in question,
((n log n)_1/2 ,EZ{ )7k)t€R+, n € N, and +/2M\1B are zero mean Gaussian processes,

it suffices to show that the covariance function of ((nlog n)~1/? gg )71@) ter, converges
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pointwise to that of +/2A\y1 B as n — oo. Therefore, it remains to show that for all
t1,12 € Ry we have

[ntq | [nt2]
1 1
2 in(t1, ¢t 3.31
(W 2 Ve e Zﬂ”@) = 2xpumin(iy, ), (3.81)

k
as n — oo. By m we have

L ) LntzJ \ Int1] Int2] k-
Vil 2 M UiTeaw il DD
nlogn nlogn P nlogn 11—«

k=1 /=1
/ ¥(a)(1 — a) da.
i -

a
kl[l

nlogn

First we derive

[nt1] [ntz2]
|k—¢| 9
nlogn/ ; Zz_:a da — 2min(ty, ta), (3.32)
as n — oco. Suppose that 0 < ¢ < to, then
/1 Lntl Lnth Lntlj Lnth
> > lda=3" >
a a
0 k=1 r=1 klél’k €|+1
I A S SR S NS ! P S
_kzl ko k—1 2 1 2 |nta] — [nt1] +1 Inta] —k+1
1 1 1
= [nt1]7 + (0] =15+ + (Int1] = (Int1] — 1))w
1 1 1 1
4., -1
Hm”(z%* +Lnt2J—Lnt1j+1>+(Lnt1J el = (] =D + 1
1
B 11 1 1 2 Int1] —1
_Lnt1J+Lm&1J<2+3+ +Lnt1J> <2+3 + LntlJ)
fnt) (L
Y273 [nts]

1 2 Lntﬂ 1
- (Lntgj—Lnt1J+2+ nta] — n ] +3 T [nta) >

Applying that for any ¢ € N we have

14 . Inta] —[nta) +1
|nto] — [nt1] +€+1 |nto] — [nt1] + £+ 1’
we get that
Lnt1J nta |
o= da = [n n Lol Y o
/Okzwz; da = |nt1]| + (| t1J+1)(2+3+ +Lnt1J> (Int1] —1)

+ |ntq | <;+;++L7;2J> — ([nt1] — 1)
+ (I_?’LtQJ — Lntlj + 1) <

1 1
nta] — ntr] +2 " an)
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= (nta] + D(H(nt]) = 1) +2 = [nt1] + [nt2 ) (H(nta]) — 1)
+ (Lnta] — [nta) +1) (H(|nta]) — H(|nta) — |nt2] + 1))

= ([nt1] + D)(log([nt1]) + O(1)) +2 = [nt] + [t ] (log|ntz] + O(1))
+ (Int2] — [nt1] + 1) (log(|nta]) —log(|nt2] — [nt:1] +1) +O(1)),

h
o 10 P
RN S S|
1 2 n

denotes the n-th harmonic number, and we use that H(n) = logn + O(1) for every
n € N. Therefore, convergence (3.32)) holds. Consequently, (3.31]) will follow from

nt1 |_nt2J

e i 3 35 94—l

k=1 (=1

as n — oo. Note that for every & > 0 there is a 6. > 0 such that for every a €
(1 —0,1) it holds that |¢(a) — 1| < e. Since for every a € (0,1 — ;) it holds that
Sl sl gt <ty | 020 alfl < 20ty (1 - a) 7t < 2[nt]6. 7Y, we get

—0e [nt1] [nt2] [nt1] [nt2]

nlogn[n</0 Z Z =t (1h(a) 4 1) da+/ Z Z k=t 4h(a) — 1| da

k=1 /(=1 Eklfl
[nt1] [nt2]

1-3: oy,
</O 2[6:1J(¢()+w1 da+ = ZZ k=] 4q.

1=0c p—1 =1

Then since 1 is integrable on (0,1), we have limsup,,_,. I < 0+ edmin(ty,t2) for
every € >0 by (3.32 -, resulting that lim, .., I,, = 0. This completes the proof. O
Proof of Theorem [3.12] By Proposition [3.2] we have

LR ) M M1+
D-lim (n72 Y (X, KX, [aD)) =V T B,
teR4

n—o00 l1—«
k=1

where (Bi)ier, is a standard Wiener process and « is a random variable having a density
function of the form (3.6) with 5 € (—1,1) and ; € (0,00), and being independent of

B. Let v )‘(Ha By, t € Ry, and (Wt(i))teRﬁL, 1 € N, be its independent copies.
It remains to prove that
R (4)
Ds- lim (N_Hﬁ w,' > = V148
N—o0 ; teR 4

Using the continuity theorem and the continuous mapping theorem, it is enough to prove
that for all m €N, 01,...,0, € R and 0=:ty <t; <ty <- - <tp,

m N
E(exp{iZHj (N_liﬁ Z(Wt(;) - Wt;)_1)) })
j=1 i =1 N
E(exp{i]\f_liﬁ Z Qj(Wtj - Wtj—l)})]
j=1




1
as N — oo, where w:= 3> ", 0;

and B, it suffices to show

1- E(exp{il\f—l}rﬂ in(Wtj - Wtjl)}>]
j=1
=N [1 — E(exp{—;]\fliﬁ)\(l +a)(1—a)? ief(tj — tj_l)}>]

j=1

(t; —tj—1). Note that, using the independence of «

Uy :=N

1 2
— N/ <1 o e—UJN 1+ A(l-‘r(l)(l—ll)—Q)w(a)(l o CL)B da — kﬁw#
0

148
as N — oo, since it implies that (1 — Uy/N)N — e7#8%“ 2 as N — co. For all

e €(0,1),
sup |-NwN ™8 (1+a)(1—a) ' |=wN T (2—¢c)e ' =0
a€(0,1—¢)
1
as NN — oo. Therefore, by Lemma substituting a =1 — N T#8y, the statement of
the theorem will follow from
1

2
lim sup N 1 — e @N TPAIta)(1-a)7? (1—a)’da
N—o0 1—¢
- (3.33)
eN1+B _ﬁ s
= lim sup/ ‘1 — e WAZN Y yf dy < oo,
N—oo JO
and . ,
lim N (1 - efWN?W’\(Ha)(lfa)_Q) (1-a)’da
N—oo l—¢
a1 (3.34)
eN 1+8 1 m
= lim (1 — e WAE-N 1P y)y_Q)yB dy = 1/)_1k5 w2z
N—oo 0 1

for all € € (0,1). Next we prove (3.33)) and (3.34)).
For all N € N and e € (0,1), using (3.10), we have

1
eN1+8 _ 1
[ ey e
0

o0
y? dy < / ’1 - e‘mﬂ‘yﬁ dy
0

1 o'}
</ yﬁdy—i—Qw)\/ yﬂ_zdy<oo,
0 1
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hence we obtain (|3.33]).
Now we turn to prove (3.34). For all ¢ € (0,1), we have

o0 —2wAy—2 B o0 B—2 20&.))\ _1 B—1
/ L (1—e WY )y dy <2w)\/ L YT idy = ——(eNTH5) —0 (3.35)
eNTHE eNTHB 1-p

as N — oco. Further, using (3.12)),

1 1

eNI+B -, eNI+B L
/0 (1 _ o wA2=N THy)y >y’8 dy — /0 (1 — e 2wy )yﬁ dy

1
NI -5 )y-2 -
< / ‘e—w)\(Q—N Yy < e—2w>\y ‘ yﬂ dy
0
1
eN 1+8 9 ,Lﬁa 1
_ - T+ -
— / e 2wy ’ew)\N Yy 1| yﬁ dy
0

1 eN1+
< WwAN 145 /
0

‘H
s

1
2wAy~2 TTHBy-l g
e 2wy ew)\N y yﬁ 1 dy

1 8Nﬁ —2 1 =N
<WAN THF / e Ty  dy SwANT T / v
) 0

1 1+ 1+
:w)\N_HB(gﬂ):w)\E%O as N — oo,

B
hence, using (3.35)), we conclude

8Nﬁ 1 00
A}im (1 . e—w/\(Z—N 18 y)yﬂ)yﬁ dy = / (1 . e—2w>\y72>y5 dy
— 00 0 0
1 g [ 8
= 2(2w)\)1§/0 (1—6_“)11,_3% du:¢f1k5w%,

where the last equality follows by Li [31], formula (1.28)], thus we obtain (3.34)). By Theorem
3.12 of Janson [22|, a distribution with the Laplace transform given in the theorem is
positive %—stable.

Now it remains to show that the process );1s has stationary increments and (14 f3)-
stable one-dimensional distributions. Indeed, by the independence of Yiis and B, for
every 0 < s <t we have ’

Vigg(t) — Vigp(s) = ,/Y# (B; — By) 2 Y# Bi_s = Y145(t — ).

Moreover, for every t > 0, we get

: e w205
E(eiuy1+ﬁ(t)) _ E <E (elu Y%»ﬁ By ‘ YH_>> — E <e 2 YHé) = e_k5<7t>
2

therefore the one-dimensional distributions of Yi;g are (1 + f)-stable. i
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Proof of Theorem By Proposition we have

. _1 ] (1) CORPNeY A1+ a)
Ds-lim (n™ 2 E (Xk —E(Xk |a'M)) =+—°B,
n—00 P teR, 1—«

where (Bj)ier, is a standard Wiener process and « is a random variable having a
density function of the form (3.6) with =1 and 7 € (0,00), and being independent
of B. Hence it remains to prove that

Dy hm ( teR+ = (VM Bt)teR ;

where

v .1 Zv 1+a BY,
¢ \/NlogN 1—aU

and o, jeN, and BY, jeN, are independent copies of o and B, respectively,

te Ry, N e N,

being independent of each other as well. By the continuous mapping theorem, it is enough
to show that for all m e N and 0=:tg <t1 <to < - < i,

N N N N
(1 19,1 1)

tm—1
2, (\/)\wl(Btl — By, /N1 (B, — Btm_l))

as N — o0o. By the portmanteau theorem, it is enough to check that for all m € N,
0=ty <t1 <ty <---<ty, and for all bounded and continuous functions ¢ :R"™ — R,

E(g(n(lN) _ Tt(oN)7 o ’Tt(rjj) _ T(N) ))

o (L B )

as N — oo. By the properties of standard Wiener processes and their variances

E(g(Tt(lN) _ Tt<0N>, T g™ )>

m—1

- E[E[g(Tt(lN) —rtN N )y ‘a(j), je NH

N a) ~ <
=E [g( (NlogN)12:2\1(1__2[(],)J)2)(Bt1 — By,),
j=1

where (Et)teR . is a standard Wiener process independent of al), 7 €N and h:
R™1 R is an appropriate bounded and continuous function. Hence it suffices to show
that

N .
1 M1+a)) p
Nlogsz; (1— )2 — Ay, N — 0.
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Let us apply a well-known theorem about weak convergence of partial sum processes for a
triangular array towards a Lévy process due to Resnick |46, Theorem 7.1| with

1 A1 +al)
XN’]'::* ( )

N1 a0y
Then
1
NP(Xy1>2z)=NP <A(1+02 > Nx) = N/ ¥(a)(1 — a)da,
(1 - Oé) max {0,1—h()\,Nz)}

where h(\,z) = (1/4 + \/1/16 + z/(2X)) . Indeed, by solving the quadratic equation
M1+ a)(l —a)2=2z for a, one gets two roots, with exactly one of them being smaller
than one: 14 \/(2x) —/A2/(422) + 2\ /x. After a simple rationalisation, we get that this

root equals 1 — h(\,z). In the rest of the proof all statements are understood for large
enough N values, which lets us write 1 —h(A, Nx) instead of max{0,1 —h(\, Nz)} in
the integral above. Note that for every ¢ > 0 there is a J. € (0,1) such that for every

a € (1—0.1) it holds that |¢(a) — 91| <e and ¥(a) < 2¢1. Then,

1 7 2
h(A, N A
N[ (@) — il - ayda < NePANEE 24
1-h(\Nz) 2 x
for every x > 0 and large enough N, meaning that the limit is 0. Therefore, for every
x>0 we have

1

lim NP(Xy1>2z)= lim N [ _ P1(1 —a)da
N—oo N—o0 1—h(\,Nz)
h(\, Nz))2 N
= lim NlblM = lim s 5 = Y1 =: v([x, 00)),
N—oo 2 N—ooo 2 1 1 N €T
ity on

where, since v(dz) = £7%1(g o) (2)dz holds (thus min{l,2?} is v-integrable), v is
obviously a Lévy measure. We note that instead of the vague convergence required in
formula (7.5) of Resnick 46|, we verified convergence in distribution, which is a stronger
condition. Furthermore, by the decomposition that holds for large enough N,

1—h(A,Ne) A1+ a) 2
2 _ _ 0, @
NE (X3 Ly ai<e) ) = N/O <N(1 h a)2) Y(a)(1 —a)da =1 + 1,

where

1-96, 2 2
(1) _ “ (A0 +a) _ < 1,22°
1 ._N/O <N(1—a)2 w1 = a)da < LA 0

as N — oo, and
1—h(\,Ne) A1 +a) \2
Aldl+a) .
1-4. (N(l—a)2> Y(a)(1 —a)da

_ 8¢1>\2 1—h(\,Ne) da B 4wl>\2
SN 1-5. (1-aP N

2
Aip N2 1 1 N 1 1 1 N
= i (+ +5> — 62 <2wme+4w2<+ +5)

Q=N

h(\, Ne)™2 -6
[ )72 7]

€

N 4 16 ' 2\ SN 2NV 16 ' 2
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for large enough N values, so it follows that

lim limsup N E (XN 11qxy, 1|<€})

e=0 Nooo

Therefore, by applying Theorem 7.1 of Resnick [46], for t =1 we get that

N
j=1
where by (5.37) of Resnick [46]

oo 1
E(e%0) = exp {/ (el — 1)1/}1)\;1:6 +/ (el — 1 — i&x)wl);dm} , GeR.
1 0

T X

A1+ al) A1+ a)
N(1I—allp " <N<1 — o) {xaay }>] T

Let us consider the following decomposition:

N . N
AL+ ) <A( +a) > A= 0 @), O
Ni_aue E 5 SN TR AT AT AT,

; N(l—a(]))2 {NA(<11+Q)>2<1} N]Z; N N N

where

0 _ (1+al) VR 2
Jin = - wl
(I—-a

N T m — )2 (1 — a)da,

22 1—h(A\,N)
/ \/7 2 5 (1 —a)da — 1 / 2 (1 —a)da,
0

—ap 1—a)
L-ROWN) 9 L-h(AN) 4
(2) ._ _ _ a _

Iy = 1/11/0 A=) (1 —a)da 1/)1/0 e (1 —a)da,
1-h(\N) ta 1-h(AN) +a

= 1 - - 1 - *

o[ gt —ada- [ A @ - e

We show that O @) @)

|JN|+‘JN|+|JN‘_>0’ N — oo,

log N

resulting

1 A1+ o) 1
log N ; N(1 — )2 logN ; N(1—-al@)2 N

2)\77D1 2 D
—1 — 0-X A1 = A N .
+logN< og( N>>—> 0+ APy Y1, — 00

al ol (”) 2
AL+ ) wl/ N2 da]
0

Indeed,

JN B /1 h(AN d _72¢1 o % 1+ i+ﬁ
logN logN T T logN B\V N 2T V16 2

converges to 0 as N — oo. Moreover,

J](\?) o /l—h(A,N) 1—a (1~ a)da = o (1 B 1 )
loc N  log N 1—a)? ~ log N / N
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converges to 0 as N — oco. Finally,

(3) 1-h(AN) 1
X logN/ (1 b(a))da
1—6. 1 1-h(AN) 9
logN/ (1 + ¢Y(a ))da—i—i1 Y 1iasda

12 2 1 1 N
< t S log [ > +1/—+—~ ||
log N 6. (‘bl +/0 w(a)da> T logN [°g55+ ©8 (4 TVt 2)\>]

One can easﬂy see that, since v 1is integrable on (0,1), then for all & > 0, we get
lim supy_, o ]JN /log N| < 0+ ¢e. This means that limy_, J](V /log N = 0, which com-
pletes the proof. O

Proof of Theorem Let us start with the proof of the first convergence of Theorem

Since E ((1—a)™!) < oo, by Proposition , we have

1 Dy 5
—S(N)—f>y as N — oo
VN ’

where the strictly stationary Gaussian process (jk)kez . is given in Proposition
Consequently, by the continuous mapping theorem, for all n € N, we get

[nt)
Di- lim (nN)~25N) — (néz§k> :
k=1 teRy

N—oo

hence it remains to prove that

Since the processes ( —1/2 EWJ yk) tery: M E N, and oB are zero mean Gaussian pro-

cesses, it suffices to show that the covariance function of (n_l/ 2 LntJ yk) ter, converges
pointwise to that of ¢B as n — oco. For all 0 <t < i9,

. [nt1 ] ~ ) | nta] _ [nt1] [ntz] ‘k‘ ¢
Cov<n_2 Z Vie,n™ 2 Z yk> E(Z Z )
k=1 k=1

k=1 (=1

1+«

—>>\E<(1_a)2

) min(ty,t2) = Cov(o By, ,0By,) as n — 0o,

since by simple calculations

[nt1] [nt2] a|k-£| (1 _ 042) LntlJ —« (1 _ a\_ntzj _ aLnt1J + aLntzJ—Lntlj)

Zzl—a: (1—a)3

k=1 (=1
B a(al™l —1) 4+ [nta] (1 — a?)/2 N alal®) —1) + [nty|(1 — a?)/2
B (1—a)? (1—-a)?
ool -ln) — 1) 1 ((nty) — [t ])(1 0?2
(1—a)d 7
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and

E<a(aLnt2JLnt1J — 1)+ (|nt2] — [nt1])(1 —a2)/2) (s — 1) E <2 1+« >

1
n (1—a)3 (1—a)?

as n — 0o. Indeed, by the dominated convergence theorem,

n

1 <a(alnt2JLm1J -1

(1) )>—>0 as n — oo,

where the pointwise convergence follows by

1

a(al.ntQJ_l_ntlj — 1) <
S (1-a)d

(1—a)?

and (to—t1+1) (1 {oa)z Servesasan integrable dominating function, since, by Remark
E( & 2> < 00, and

l a(al_ntQJ_\_ntlj — 1) _ a(l + o+ OLZ + -+ a\_ntzj-t’ﬂtlj—l)
n (1—a)3 n(l— «a)?
a(|nte] — [nt1]) a
< — 1)—.
n(l—a)? (o=t +Da— 5

For the second convergence, first note that, by Proposition [3.2] we have

[nt)
1
Ds- lim (1 Z(X’gl) _ IE(X,S) | a(l)))> = M37
teR4

n—00 11—«
k=1

where (By)icr, is astandard Wiener process and « is a random variable having a density
function of the form (3.6) with 8 € (1,00) and ; € (0,00), and being independent of

B. Hence it remains to prove that

. VAL +al
Df_]\}gnoo \/N Z 1 - a(]) =B,

where a9, j €N, and BU), j € N, are independent copies of « and B, respectively,
being independent of each other as well. Similarly to the proof of Theorem [3.13] it is enough
to show that

N

1 (1 (]

Nzl—i_?ﬁ DO'2 as N — oo.
-«

This readily follows by the strong law of large numbers, since E(E\l(i—;';g) ) < oo due to
Remark [3.61 O
Proof of Theorem We introduce the decomposition

SN = g g e Ry, (3.36)
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with

: iwj (X7 1a9) —E(x) = [nt] i( . o (1 _Aa(j)»

j=1k=1 j=1 l-a
for t € Ry. Since E((1—a) ') <oo for € (0,1) by Remark by Proposition

for each n € N, Delimy_ o0 N_%g(N’") exists, hence

~ B—1 ~
D lim N 2SN — D lim Nzoes N~ 5N — g, (3.37)

N—o0 N—oo

The distribution of the random variable A(1—a)~!—E(A(1—a)~!) belongs to the domain
of attraction of an (1 + J)-stable distribution. Indeed, we have

lim 2P P A -E A >
T—00 11—« 1—«

1
= lim ' P 1—
r00 <°‘ Z T Nt E((1 = a)1)>

1 1
- 111_{1010 2=+ /1(A11+E((1a)1))1 ¥la)(1- a)ﬂ da (3.38)
iy POl E( - a))) (A e + E((1—a)h) P22t
e —(1+ Bz~ (+A)-
P AP
T 148

by L’Hopital’s rule. Further, using that P(A(1 —a)~! > 0) =1,

A A
lim |z[**PP ( ~E ( ) < ac) = lim |z)'*?.0=0. (3.39)
(0%

T——00 1-— 1—« T——00

Consequently, for each n € N,

1
BT 135 p(N,n) _
Dy A}grclx) N 48R (meJ Zl+ﬁ)teR+7

see, e.g., Puplinskaité and Surgailis [42, Remark 2.1]. Indeed, the characteristic function of
the random variable Z;,3 takes the form

E(elf%1+5)
- {—\911+5F(12__((11:5ﬁ))) wff;ﬁ <COS <7T(12+5)> — isign() sin (W)) }

I(1—B)y AP 7(1+8)
= _ |g|1tB 151gn(9)
P { 9] —B 1+ 5 ’ }

- exp{ . ye|1+%ﬂ(9)}, 0 € R.

Together with (3.37)), we obtain the first convergence.

By Proposition |3.2, for each N € N, Dg-lim,, o n_%g(N’") exists and hence

Ds- lim n~1G(Nn) — Ds¢- lim n_%n_%g(]v’”) =0,

n—o0 n—oo
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and

N \ \
_ -1 (N,TL): - -
Dfnhm n R t El (1—040) E(l—a(j))>
]:

Based on the above considerations, using the decomposition (3.36)) as well, we obtain the
second convergence. O

teR4

Proof of Theorem We commence with the proof of the first convergence. Using
the decomposition in (3.36)), it will suffice to show that there exists a sequence (an)nen,
satisfying v N/any = o(1) such that

N
A A
Dr-fim oy’ 1 (1 —0 E <1 - a(j)>> = (Wther,, (3.40)
]:

where W is a standard normally distributed random variable. Indeed, by Remark
E ((1 - a)*l) < oo for f =1. Then for each n € N, Dlimpy_,o0 N_%S(N’") exists by
Proposition hence for such a sequence (an)yeny we have

Df' lim a]_vlg(N7n) = Df— lim <\/N/G/N> N_%g(an) =0.

N—o0 N—o0

First we prove that holds with some sequence (ay)nen, then we confirm that this
sequence satisfies VN /ay = o(1).

To show (3.40) we are applying Theorem 1 in Bradley [10] to the sequence A(1 —
)=l —E(\(1 —a)™Y), 5 € N, consisting of i.i.d. random variables with zero mean.
Note that since these variables are independent, all the correlations are zero (i.e., p =0
with the notation of Bradley [10]). Thus, in order to prove that the random variable
A1 —a) ' —E(A(1 —a)~!) belongs to the domain of attraction of a normal distribution,

. P (|5 ~E(2s)| > 7) L
TR ((/\(1 —a) L —E\1 —a)1))? 1{\)\(l—a)*l—E()\(l—a)*1)|<x}) '

Note that the calculations in (3.38)) and (3.39)) are valid for 8 =1 as well, meaning that
the numerator of the fraction converges to 1A2/2. Furthermore, since by Remark
the second moment of the random variable A(1 —a)~! is infinite, then by the monotone

we have to show that

convergence theorem the denominator of the fraction converges to infinity as =z — oc.
Therefore, the limit of the fraction is indeed 0. Consequently, by Theorem 1 in Bradley [10],
for each n € N,

o —1 p(N,n) _
Dy A}gnoo ay R (Lnt] W)te]R+

with some sequence (an)nyen that converges to infinity as N — co. Now the convergence
that we aimed to prove easily follows after a division with n and taking the limit as
n — oo.

It remains to show that v/N/ax = o(1) as N — oo, which we do by applying formula
(5.23) on page 579 of Feller [14]. It states that the sequence (an)yen satisfies

NE( (-8 (25)) 1 st eon)

lim 5 =C
N—o0 (IN
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with some constant C € (0, oo) However, since the second moment of (1 —a)~! is

infinite, E ((ﬁ‘a —E <%>> 1{|——E( )|<aN}) — o0 as N — 0o, meaning that

N/a% must converge to zero as N — oo.
Next we prove the second convergence. By Proposition [3.2] for each N € N, the limit
L~
Dilimy, oo n28W)  exists and hence
Ds- lim n~1GNn) — Ds¢- lim n_%n_%g(]v’”) =0,
n—oo n—oo

and

A
: 1 (N,n) _ o
Df_nh—{gon - tZ(l—a <1—a(j)>>

Based on the above considerations, using the decomposition (3.36]) as well, we obtain the

teRL

second convergence with the same sequence (ay)yen- O
Proof of Theorem First note that, since g > 1, by Remark Var((1—a)™!) <

oo. Hence, by the central limit theorem, for each n € N,

. -1 5(Nn) _
Df-]\}gnooN 2RV = ([t Wy Var((lfa)‘l))teuh '

Consequently,

De-lim Dg- lim n_lN_%R(N’n) = (W)\z Var((lfa)*l)t)tERJr-

n—00 N—o0
1L~
By Theorem , Dy-limy, 00 Delimpy 00 (RN )_iS(N ) exists, hence

De-lim Dy-lim n 'N"280" = Dy lim Dp- lim n~2 (nN) 28V = 0,

n—00 N—oo n—00 N—oo

Using the decomposition (3.36[), we have the first convergence.
Similarly, for each N € N,

N A A
T —1p(N,n) _ —_— T )
Dy-lim n™"R 2 <1_a<j> E<1—a<ﬂ‘>>)t ’

J=1 teR4

and, by the central limit theorem,

Df— lim Dg-lim n 1N_%R(N’n) = (W)\2Var((1—a)*1)t)t€R+'
N—o0

n—o0

By Theorem |3.14] we also have

Df— hm Dg-lim n'N~ 3 G(Nm) =0,

n—roo
which yields the second convergence using the decomposition (3.36)) as well. O
Proof of Lemma For any z € C we have
22 B
z
\ | ElS el
< ‘Z‘ < + 7 + . = \z|e
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2 .3 2 2
=z 2| 2|, Izl
o1 z Ly (S I O L
e z| = +3'+ ‘ 2(+3+3‘4+
\Z|2 2] |, |2 2% )
D B P Y
> Ut 2
since 3-4---(n+2) >n! forany neN. O

Proof of Lemma Using the dominated convergence theorem, first we check that

N—o0

l—e N
lim N/ (1 - eﬂZN‘“)) W(a)(1—a)’ da=0 (3.41)
0

for all € € (0,1). By applying (3.12)) and using (3.14)), for any ¢ € (0,1) and a € (0,1—¢),
we get

’N (1 - efkazN(“))‘ < N‘ a)‘e’ﬁ”(“)’ =0 (3.42)

ZN
l1—a
as N — oo. Further, if € € (0,1) and a € (0,1 —¢), then

\N(l—eﬁ”(“)ﬂdsup sup [ Nzy(a)] o2 Svensbacoao lv@l —; ¢,
€ NeNag(0,1—¢)

where C. € R,. Since fo )(1—a)?da =1, we have

1—¢
< Cp(a)(1 — a)? da < co.

’N/O - (1_eﬁZN(“>)w(a)(1—a)ﬁda 0

Therefore, (0,1 —¢) > a ~ Ceap(a)(1 —a)® serves as a dominating integrable function.
Thus the pointwise convergence in (3.42) results (3.41]). Moreover, for all ¢ € (0,1), we

have

'N/O1 (1 - eﬁm“)) W(a)(1 — a)® da — i1

v [T ee@ B(a)(1 — a)? da
A )

+ \N/ (1= e @) ($(a) = v1)(1 - 0) da

1
N/ (1 —eﬁzN(a)) (1—a)’da—1T
1—¢

+ 1

where

\N / (1= e @) ($(a) - v1)(1 - 0)” da

1

<N sup  [¢(a) — ) 1—emaN@| (1 - ) da,

a€ll—e,1) 1—¢

with supge—c 1) [¥(a) —¢1] = 0 as ] 0, by the assumption. First taking limsupy_,
and then ¢ | 0, using (3.41]), we obtain the statement. O
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Chapter 4

Simultaneous limit theorems for the
aggregation of randomized INAR(1)
processes with Poisson innovations

This chapter is about the simultaneous limit theorems for the aggregation of randomized
INAR(1) processes with Poisson innovations. The proofs of this chapter are based on the
paper Barczy et al. [4].

We continue to investigate the temporal and contemporaneous aggregates of the ran-
domized INAR(1) processes with Poisson innovations with the mixing distribution given
in . In Section two simultaneous limit theorems are given, meaning that the time
scale n and number of independent copies N tend to infinity together, at some given
rate. To represent the connection between the two parameters, throughout this chapter,
we will use a sequence N,,n € N, instead of the parameter N, and the theorems
will be given as n tends to infinity, which will always imply that N,, n € N, tends
to infinity as well. The two limit theorems in question cover the cases when S € (—1,0)

with NﬁT%n_l — o0, and when 8 =0 with (logN,)?n~! — oco. This section also
contains a technical result that is needed for the proofs of these theorems, which are given
in Section For the proofs, a new tool, namely Lemma had to be developed, that
is the counterpart of Lemma [3.21] which was applied to prove some of the iterated limit
theorems in Chapter

We note that the rest of the cases (8 >0, and [ € (—1,0] with a different rate of n
and N than those in the previous paragraph) remain for future work. The proof technique
that we applied could not be used for these cases. To be more precise, in the rest of the cases
we could not find an e,, n € N, sequence to satisfy all three conditions of Lemma [4.5]
However, very recently, for randomized autoregressive processes of order 1, Pilipauskaite
et al. |[37] have found a somewhat new approach for studying simultaneous limits. Namely,
they used an infinite series representation of the stationary distribution of their model for
calculating the characteristic function of the finite dimensional distributions in question.
In our case, i.e., in case of randomized INAR(1) processes, we also derived such a formula
given in Barczy et al. [4, Formula (1.4)], and it is much more complicated. As a future work,
using it, we plan to handle the remaining cases, which are left open: S € (0,00), and
B € (—1,0] with different proportions of the time scale n and the number of independent
copies N.
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4.1 Simultaneous limit theorems

Theorem 4.1. If € (—1,0), then

1 —B
e P D 6 -
n~IN, 205D GWNnn) Xy (Va(148)t)ter, as n— oo and NpPn~!'— oo,

where Va(14) is a symmetric 2(1+ f3)-stable random variable (not depending on t) with
characteristic function

E(ewv?(“rﬂ)) _ e—Kﬂ|9|2(1+B)7 0 c R,

where Kg = 1!11(%)“_572(;5),

We note that Theorem can be considered as a counterpart of Theorem [3.8] The
scaling factors and the limit processes coincide in these two theorems.

Theorem 4.2. If =0, then
n~ Y (N, logNn)_% S(Nnm) Pty (Wagi t)ier, as n— oo and (log N,)’n~1 — oo,
where Wy, has a normal distribution with mean 0 and variance M.

We note that Theorem [£.2] can be considered as a counterpart of Theorem [3.9] The
scaling factors and the limit processes coincide in these two theorems. Let us note that the
theorems of this section are summarized in a table in Appendix [A]

In the next remark we compare our assumptions in Theorems and with the
corresponding assumptions in Pilipauskaité and Surgailis 38| for analogous results about
simultaneous aggregation of random coefficient AR(1) processes.

Remark 4.3. In Theorem (where € (—1,0)), the condition anT%nfl — 00 as
n — oo yields that N, - co as n — oo and

1 =B
NF =l = N, N p™t 5 as n — 0o,

which is the form of the condition in Pilipauskaité and Surgailis [38| for their convergence
(2.12) for simultaneous aggregation of random coefficient AR(1) with the same mixing
1

distribution given in (3.6). However, in case of § € (—1,0), the condition NFp1 5
=B
as n — oo does not imply that N, ”n~! — 0o as n — 0o in general. Indeed, for example,

_1
if N, :=[nYlnn| with some ~ € (1—1—5,—1—%), then N,"n=! ~ niHﬁ(lnn)ﬁ —

== —1-8-18 =
00 as n — 00, since —1—1—% >0, but Ny™"n~t~n~ 8 (Inn)™8 — 0 as n — oo,

=B
since 71%5575 < 0. We note that the condition N, n~! — 0o as n — oo in Theorem

1
might be replaced by N, ™”n~! as n — oco. However, a new proof technique would
s

be needed, since our present one uses effectively that NFPp=l 500 as n— oo, for
example, in the proof of Theorem we argue that for large enough n and for any
-1

z e (N1, 1], we have 2 'nNi?|0(1)| < |0(1)| (see ([&8)).
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In Theorem (where B =0), the condition (logN,)?n~! — oo as n — oo yields
that N, — oo as n — oo and N,n ! = n_l(logNn)2(logNiﬁn)2 — 00-00 = 00 as
n — oo, which is the form of the condition (1.6) in Pilipauskaité and Surgailis [38] for
their convergence (2.13). However, the condition N,n~! — co as n — oo does not imply
that (log N,)?n~! — 0o as m — oo in general. Indeed, for example, if N,, :=n?, then
Nyn~t=n— 0o as n— oo, but (log N,)*>n~t =4n~t(Inn)? — 0 as n — co. Further,
one can check that

n~Y (N, log N,,) "2

im
"% n~ 1Ny log(Np/n))~

)

N[

where n~1(N, log(Nn/n))_% is the scaling factor in (2.13) in Pilipauskaité and Surgailis
[38]. Indeed,

[ SIS

. n~1 (N, log Nn)fé . < N, log N, >
lim - = lim
n=o p=1(N, log(N,/n))"2z n—® N, log N,, — N, logn

N

) _
= 1‘ - 1
nggo<1—logn/logNn) ’

since (logn/log N,)? = [(log N,,)?nJn"!(logn)? =+ 0-0 =0 as n — co under the
condition (log N,,)?n~! — co as n — oo. We note that the condition (log N,)?n~! —
oo as n — oo in Theorem might be replaced by N,n~! as n — oco. How-
ever, a new proof technique would be needed, since our present one uses effectively that
(log N,,)?n~t — 0o as n — oo. For example, in the proof of Theorem we argue that
NoTos N, f(ﬁg(ﬁf)ﬁl)il ldz = g%y (1 — N%L> —0 as n— oo (see (4.17)). O
Remark 4.4. The proofs of Theorems and [4.2] are based on the explicit formula of the
joint generator function of (Xj,...,Xy) given in , where k£ € N, and an auxiliary
Lemma [£.5] which gives a set of sufficient conditions for the convergence of the integral
N, fol (1 - eﬁz’l(a)) ¥(a)(1 —a)’da as n — oo, where (2,(a))nen is a sequence of
complex numbers. We were not able to use this proof technique for the cases S € (0, 00),
and [ € (—1,0] with different proportions of the time scale n and the number of
independent copies N. However, as it was explained in the beginning of this chapter, as
future work, using a different technique, we plan to handle these cases as well. O

The next lemma is a variant of Lemma [3.21], and we use it in the proofs of Theorems

A1 and 21

Lemma 4.5. Suppose that (0,1) > z +— (x)(1 — 2)? is a probability density, where
is a function on (0,1) having a limit limgy ¢(z) = Y1 € (0,00) (and then necessarily
B € (—1,00)). Forall a€ (0,1), let (zp(a))nen be a sequence of complex numbers, let
no €N, (en)n>n, be a sequence in (0,1) with lim, oo, =0, and let (Np)pen be a
sequence of positive integers such that

sup €,'N,,  sup |zn(a)| < oo, (4.1)
nzno a€(0,1—en)
1
lim sup N, ‘1 _erann(@) (1 —a)?da < oo,
n—oo l—ep,
1
lim Nn/ (1 - eﬁ'z"(a)) (1-a)®da— I‘ =0
n—00 l—e,
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with some I € C. Then

lim N, / T—a®n a)> Y(a)(1 —a)’ da = 1.

n—o0

4.2 Proofs

In the following two proofs, the notations O(1) and |O(1)| stand for a possibly
complex and respectively real sequence (ax)gen that is bounded and can only depend on
the parameters A, ¥, B, and on some fixed m € N and 604,...,60,, € R. Further, we
call the attention that several O(1)-s (respectively |O(1)]-s) in the same formula do not
necessarily mean the same bounded sequence.

Proof of Theorem To prove this liﬁmit theorem we have to show that for any sequence

(Np)nen of positive integers with anTBn_l — 00, we have
1
[P p— N D
nTIN, 20D S Zh (Vo pyt)ier,  as no— oo

For this, by continuous mapping theorem, it is enough to verify that for any m € N and
to,t1,...,tm € Ry with 0=:ty <t; <...<t,, we have

1 Lntlj )\ LntQJ ( ) )\
—1 T 2(1+8)
TS (S ) Y (W)
k= |_nt1J+1
\_ntmj
3 <X(j) A )
. h .
1— a(])
k:LntWL71J+1
D
—)Vg(l_,_ﬁ)(tl,tg—tl,...,tm—tm_l) as n — o0.
So, by continuity theorem, we have to check that for any m € N, tg,t1,...,t, € Ry with
O=tg<t1 <...<ty, and 0O1,...,0,, € R the convergence

1 N, [nte] ,
(exp{ Zem Ly, 2045 Z Z (XIEJ) _ 1_2@) })

J=Llk=|nt,_1]+1

- [nty| )
:E(exp{in_an 2 ZZGZ Z (Xlgj) o 1 _)\a(])>}>

: /=1 k‘:LTLt[,1J+1

1 m Lnte A i
E(exp{i”_an e Zeﬁ Z <Xk 11— a> })]

Z:l k:Lnte_1J+1

— K (ei 20t 9é(te—tel)V2(1+6>> — o Kpl X0y Oe(te—te—1)POFR) as n — 0o

holds. Note that it suffices to show

1 m [nte] A
— E(exp{in_an 2(1+6) Z@g Z (Xk R )})]

/=1 k:l_ntg,lJ-i-l

0, =N,|1

2(14-8)

— Kpg as n — oo,

> Oulte — i)
=1
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since it implies that for every k¥ € N (1 — 0, /N,)" — e~ Kol TPy Oe(te—te-1) POHD)

n — oo, as desired. Let us recall that, as it was introduced before the proof of Theorem
3-8 the joint conditional generator function of Xg, Xi,..., Xy given « is denoted by
Fo. k(z0,... 2] ), z0,...,25 € D ={z € C:|z| <1}. Then, by applying to the
left hand side, we get

1
. T2(1+
O, = N, E|1 — e "Nn "7 525 S Oullnte] ~Lntes))
—ﬁ _ﬁ
in—1N, 2UtF) g in—1N, 2Py
X FO ..... \_nth—1<e " 1,...,8 " 17
[nt1] items
2 15) T 113)
.1 201+ L 2(1+
.,e N, em,...,em Nn Gm‘a)]

[ntm | —|ntm—1] items

= w1 ] =, [ (1 e ) v - oo

with
L =) s
Ap(a) = Z(em "Nn 0 _ 1 — in_an 21+8) 94)(|_71th — |nte—1])
/=1
[nte, | [nte, ] S - S -
4 Z Z ainkl (ein—an (1+8) 051 _ 1) (ein—an (1+8) 922 _ 1)

[y

Shy<bosmki=|nte, —1]+1 ka=|nte,1]+1

1
o o N D ((Lnte, |—k1)0e, +50520 4y Oe(Lnte)— [nte—1])+(ka—1—|nte, —1])00, )

m 1 1
n Z Z gF2—k1 (ein*INn A+, 1)2€in*1Nn 2045 (ky—ky—1)0,

=1 |ntp_q |+1<ks <ka<|nty]
for a € [0,1]. The aim of the following discussion is to apply Lemma with z,(a) :=
Ap(a), neN, a€(0,1), e,:= an%ﬁ, n €N, and
2(1+8)

m

> Oute —te1)

(=1

I:=9¢ 'Ks

Since f € (—1,0), we have ¢, € (0,1) for n > ng, where ng is sufficiently large, and
lim;, o0 €, = 0. First we check (4.1)). Using (3.11)), for any a € (0,1) we get

m —L92
[An(@)] < 3 n72Na 777 1 ([nte] = [nte-1])
(=1
__1
£ 0N 0 [0 (It ] — Lt 1)) (nte,] — Lt 1))
1<l <la<m
m ) —LQZ
+ 3 on N Ut = Lot Ut = Lote-s] =1
1 1y m 2 7 _ym 2
= §n_2Nn 1+8 (Z 10| (| nte] — Lntgﬂ)) < §Nn e (Z |0¢|(te — to—1 + 1)) ,
=1 =1
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since L(|ntg]—|nti—1]) < 2(ntg—nte1+1) =ti—ti1+1 <ty—t_1+1. Consequently,
1

since £,'N, = N, we have

_ 1/ ?
sup £,'N, sup |A,(a)| < B <Z 00| (te — te—1 + 1)> < 00,
nzng a€(0,1—¢y) —

_1
i.e., (4.1) is satisfied. Therefore, by Lemma substituting a = 1 — z7'N, "’ with
z > 0, the statement of the theorem will follow from

1

lim sup Ny, s 1= eﬁAn(a)‘(l —a)’da
n—00 1_N1TP
00 ! 1 1 (4.2)
= limsup/ 1 — e A (1—=1n, ) ‘Z—(2+5) dz < o0
n—oco JN; !
and
1 A
lim ‘Nn/ &(1—(3”’4"(‘1))(1—&)6(1&—]’
n—00 1-N]
= lim (1 An (127N, HB))H%@) dz— 1| =0
n—oo | Jy-1
with
m 2(1+p) \ | 2\ 1+6 -
=9 'Kp Zaﬁ(tf —te-1) =13 Z@g(tz —tp1) / (1—e )zt qz
/=1 /=1 0

- /°° <1 e E e 92(”_”‘1))2>z—<2+6) dz,
0

where the first equality is justified by Li [31, formula (1.28)].
Next we check (4.2]) and (4.3). By Taylor expansion,

1
. 1 2014B) o 1 _ 1 B __1
el A O —1=in"'N, "0+ n 2N, TP O(1) = n N, T O(1),

N ) — g — L2 SR
eln N, 0 1 i?’L_an 2(1+ﬂ)0£ — _n—ZNn 1+8 5@ + 7’L_3Nn 2(1+8) O(l)

1
=n"2N, "7 0(1)
for all £€ {1,...,m}, resulting

AN A, <1 - z—an_liB> - 2l bl Lot ) L 290 , nOW)

2n’? NI NTE
A2 (7 Bty — to1))? o(1 o1
- _ (Zf_l f( ¢ Y4 1)) —|—ZO(1) + < (1 ) + n S )
2 NP N,H?
(4.4)

for z > N, '. (We recall that for a sequence (a,)nen the notation a, = o(1) means

_1
that a, — 0 as n — oo. ) Indeed, for z > N, !, we also have z > N,, '*? yielding
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o
that 1— 271N, "™ € (0,1), and

__1_
A, (1 —27IN, 1”)
m ~ 3T -
P T 2(1+8)
(e N 0 iU, TP 9, (Inty) — [t ])
/=1

[nte, ] [nte, ] 1

N Z Z Z <1 - z_anl}r@>k2—k1 (einlerj 20145 0, _ 1)

1<l <ba<m klztnt51,1J+1 k2=|_ntg2,u+1

___1
o oin T IN 2 (e, J=kn)0e, + 3524y Oe(Lnte] = [nte—1])+(ka—1=|nte, —1])0, )

1
. T 2(1+8)
% (em N, 0@2 _ 1)
m 1 ko—k1 — 1
_ — 7 o1 2(1+58) 2
+ E § (1 —z7'N, 1+ﬁ> (e Nn b 1)
=1 Lnte,lj+1<k1<k2<|_ntgj

__ 1
I A e )

=S (2 2 ot Lt
=

1 _3 _
1 27’L2Nﬁ+ﬂ n3Ni(1+B)

o1 i0 oQ1 o1
_ 14 (1) ( O ()1>(1+ (1))
1<l <la<m anlTB nN,f(HB) nanlTﬁ Nr@

X ( i9621 + 0(1)1 ><Ubt51J - Lnth*lj)(l_ntbj o lntb*lj)

nNZOB g2 NP

1 & o1 i 0(1) \? o1
13 (1 O (0, OV 0w )
2 (=1 2N, HP nNFD 2 N e N2OHD)
x (nte] — [nte—1])(nte] — [nte—1 —1])
_ 2 6i(nte] — Inte)) | O(1)
QnZNK%ﬁ nQNﬁ(lim
~ Licti<trem 9000 (Inte, | — [nte, 1) ([nte,] — [ntey—1]) n O(1) n nO(1)
nQN,«f%B Nﬁ(%m z]\fﬁ*i‘3
S 8 (Unte) — nty i) (Inte) — Lt 1) O()  nO()
ZnQNﬁ Nrf(liﬁ) anliB

_ (S Ollnte] ~ Intea))* | O) | nO(1),

1
ZnQNJM N;(1+ﬁ) ZNY%+B

where we used the following facts:
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1

ein71N7L 2(1+p8) (( \_ntglj —kl)egl +Zﬁ2:;11+1 04( \_nteJ — \_ntg_lj )+(k‘2—1— I_ntgz_lj )0@2)

. 1 (4.5)
_ N 2(1+8) o) _ 1+ Nn_2(1+6) O(l)
[ ]
o1 1 L
o N P (g —ky )0, _ i, 2P 0(1) + N, T O(1) (4.6)
- - n bl
due to [nte_1] +1 < k1 < ko < |nty],
¢ ko—k
_ 1 \hk2h 0O(1
(1_Z—1Nn1+5> :1+n (1)7
anlTB
following from an application of Bernoulli’s inequality:
_1 N\ kR _
zNﬁ”i’8 anlTB
By (4.4), for large enough n and for any z € [1,00), we have
1 1
AzN, P Re An(l — 27N, Hﬁ)
_ A2 Oc([nte] — |nte_1]))? 1 ReO(1) n nReO(1)
2n? NI NP
m . 2 m . 2
< A2 Oelte — te1))” | nIO(ll)\ < _ M Olte — te-1))” nIO(ll)l <0,
4 NP 4 NP
1 _ 1 _B_
since Ny 5 00 as n— oo, and nN, "7 < nNJ™" — 0 as n — oo, hence we
obtain for large enough n,
> ANTP 4 N T 2
/ 1 — MNn T A=z Nn )| = (B42) g 5
1
(4.7)

0 ﬁ -1 _ﬁ &
</ 14 AN ReAn (171N, 7)) —(842) g 2/ (342 4 < oo,
1 1

Again by (4.4]), for large enough n and for any z € (N —1 1], we have

n )

‘AzNﬁAn(l _ Z—an—ﬁ)‘ o A Oe((nte] — [nte-1]))” N 2| O(1)] n|O(11)\

= 2n2 N;(llﬂa) NP
AT 10| (g — to—y +1))? O(1
2 NP

_B_
where we used that z € (N,;l, 1] and nN,™ — 0 as n — oo imply that

1n[O(1)] < Nnn|0(11)\ _ n|O(;)] — o). (4.8)

1 1 __b_
an+ﬁ NnH—ﬁ Nn 1+38

z
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Hence, using (3.12)), we obtain for large enough n

/1

Nt
1

< /
Nt

1
< |0(1)]e/OM)] / 2~ 48) 4 < o0,
0

1 1
4B —1p I4+P8
1— MNP A (127N TP ) | 24 g,

1 __1
AzNR P A, (L= 271N, ) e

which, together with ., imply .
Now we turn to prove . By (3.10 -, we have

Nt
/ (1 e F 9z(te—te—1))2>z—(2+ﬁ) dz
0

. /Nn (0, Gzéte — té—l))QZ—(Z—&—B) ds
0

1

_ ACEEL Oelte — te1))” /Nn_ ) g - AT Oelle = te1)? N
2 0 2 (=8)

as n — 0o, hence (4.3]) reduces to checking that lim, . I, =0, where

00 1
I, = / [eAZNnHB Ap(1—z7IN, TPy e—%”(ZZ”:l el(té—te—l))2:| 2~ (248 5.
Nyt

Applying again (4.4]), we obtain

_ 1 __1
zo(1)+2N, *F o) +an, TP O() _4],-

|| < /00 o5 (T fe(te—te-1))| o (246) 4.
Nyt
Here, for z € (N1, 00), we have
1 1
!zo(l) + 2N, 2P 0(1) + nN, ° O(l)‘ ( (1) + Ny, ) +n )| 0(1)],

and hence, by (3.12]), we get

__ 1 _ 1
o2 o(D)+2N, 2 o) +nn, TP 0(1) _ 1’

< |zo(1) + an_ﬁ o(1) + nNY:ﬁ o(1)| e |2 0(1)+2N, 2T 0(1)+nN, TP 0(1)|

£
< z(o(l) + Nn_ml“’) + nan%)\ 0(1)| e? ( (1)+N,, 2(1”’)—&— ﬁ)|0(1)\'

Consequently, for large enough n,

[l < (0(1) + N i N”B)IO( )|
ﬁ

" / °°1 (S Bt 1) (0N T NI ) o)) (148) g,
-
< (o(1) + N, SITT | N ) 0(1)] / R (ST Oulte—te))? ,~(148) g,
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that gets arbitrarily close to zero as n approaches infinity, since the integral is finite due
to the fact that
-B

m 2
% (Z Oclte — tzl>> e TG el 0>,
=1

is the density function of a Gamma distributed random variable with parameters —f3 and
AU, 00(te — te—1))?/4. This yields (4.3) completing the proof. O
Proof of Theorem To prove this limit theorem we have to show that for any sequence
(Np)nen of positive integers with (log N, )?n~! — oo we have

n~ (N, log Nn)_% S(Num) Dry (Wagi t)ier, as n — 00.

For this, by continuous mapping theorem, it is enough to verify that for any m € N and
to,t1,...,tm € Ry with 0=:ty <t; <...<ty, we have

nty )\ \_ntzj )\
() _ )
ey (20 - ) B (-2
k:Lntlj—i-l
[ntm |
S (X(j) __A )
e Py :
1— W)
k‘:L’ntm_1J+l
D Wy (bt =t b — tm1)  as n — oo,
So, by continuity theorem, we have to check that for any m € N, tg,t1,...,t, € Ry with
O=tg<t1 <...<ty, and 6Oi,...,0, € R the convergence

Np [nte] ,
<exp{ Z 0o~ Y (N, log N,) Z Z (XIE]) ] _/\a(j)) })

j=1 k=[nt;_1|+1

Np m [nte] 4
R T oy Uy

Jj=14=1  k=|nte_1]+1

m [nt.] N
E(exp{in_l(anOgNn)_éZQK Z (Xk N li\)}>]

=1 k::l_ntg_lj-‘rl

e A1 (S Op(tg—te—1))?
—>]E<e122—1 9e(tzt81)Ww1> R as n — 00

holds. Note that it suffices to show

m [nte]
O, := N, ll—E(exp{inl(NnIOgNn);Zef Z (Xk_ lj()z)})]

(=1 k=|nte_q|+1

A e 0ot —te_1))?

N ¢1(Ze_1 62( 4 -1)) as n — 0o,
P1 (TP 0p(tg—te_1))°

since it implies that (1 — ©,/N,)¥» — e~ B E— as n — oo, as desired.

Let us recall that, as it was introduced before the proof of Theorem [3:8 the joint condi-

tional generator function of Xo, Xi,...,X; given « is denoted by Fy . x(20,...,2k]| ),
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20y...,2k € D ={z € C:|z| <1}. Then, by applying (2.21]) to the left hand side, we get

O, = N, E|1 _ e (NnlogNa) ™2 22 557 6y(Inte)~ nte1])

1 1
in~1(Nplog N,) ™ 26; ein’l(Nn log Ny,) ™ 26,
.

ey P

X Fy, .. ntm]—1 (e

[nt1] items

ey ey

ein_l(Nn logNn)f%Gm ein_l(Nn logNn)f%Om ‘a>]
[ntm | —|ntm—1] items
1
= NpE [1—era ) = Nn/ (1= o) (a)da
0

with

mo _1
Bu(a) = Z(em {Nalog Na) ™20 1 i1, 1ogNn)*%94)(LntzJ ~ |nte])

)
X

[nte, ] [nte, ]

n Z Z gk (einfl(zvn log N)“20,, _ 1)

1<l <la<m k:1=\_ntgl_1j+l k2=l_nt52_1j+1

1
Y _
« (em (Nnlog Nn)™ 260, 1)

s« o (Vo Tog Nu) ™3 ((Inte, |—Fn)6e, + 3042,y Oa(Lnte) ~ [t )+ (k=1 [ty 1 1)6e)

m 1 1
+ Z Z qk2—k (ein_l(Nn log Np,) 26, 1)26m—1(Nn log Np) ™ 2 (ka—k1—1)6,

/=1 \_ntg_ﬂ-l-lgkl <ko< I_Tltd

for a € [0,1]. The aim of the following discussion is to apply Lemma with z,(a) :=
B,(a), n €N, a€ (0,1), &,:= (logNn)_l, neN, and [ := %( Ty Oote — 1))
Note that e, € (0,1) for n > ng, where ng is sufficiently large, and lim,, o &, = 0.

First we check (4.1)). Using (3.11)), for any a € (0,1) we get

m 2
Bala)] < 32 (N log No) 2 (] — nty 1))
/=1
b w2 Nalog Na) 000Ut | — oty 1)) (ntes) — Lnte, 1)

1

N

l1<la<m

2
+5 " n (N, log Nn)’l%(mtd — [nte1])(|nte) — [ntey] — 1)

NE

~

=1

= 2o ) (S 0Lt — Lt )) )
/=1

2

<

m 2
(N log V)~ (Z 0ul(te — o + 1)) |

(=1

(NN
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since L(|ntg]—|nti—1]) < 2(ntg—nte1+1) =ti—ti1+1 <ty—t_1+1. Consequently,

since ¢, = (log N,,)~!, we have

_ 1 (& 2
sup &N, s [Bu(a)] < 5 (Y160t~ tea 1)) < ox,
/=1

nzng a€(0,1—ep)

i.e., (4.1)) is satisfied. Therefore, by Lemma substituting a =1 — zN,;! with z >0,

the statement of the theorem will follow from

' > B,(a)

lim sup N, 1—el-a da
n—00 1—(log Ny )1
o (4.9)
log Nn, Nn, —
—limsup/ ¢ 1—e)‘7B"(1_ZN” 1)‘dz<oo
n—00 0
and
1 A
lim Nn/ (1 — eEB"(a)) da — 1
n—00 1—(log Np)~1
N, (4.10)
= lim /logN" (1 — e/\%Bn(l_ZNnil)) dz —I| =
n—oo 0
with I = %(Z?:l Hg(tg — tg_l))Q.
Next we check (4.9) and (4.10]). We get
2
AL 0([nte] — | nte
,\N"Bn<1 —an‘1> _ AL e([?; o) = [nte1))) L o) : nO(1)
z 2zn?log N, ZN2 (log N,,) 3 N, log N,
(4.11)

for z < N,. Indeed, z < N, yields that 1 — 2N, € (0,1), and

B, (1-2N,71)
moo 1

— Z(eln Y(Nnlog Nn)~"20, _ 1— in_l(Nn logNn)_%Qg)(Lnth . Lntf—lJ)
=1

\_ntﬁl J \_ntfzj

n Z Z Z (1- ZNn—l)kz—/ﬂ (einfl(Nn log Nn) ™20, _ 1)

1<l <bo<m klztnt51,1J+l kQZLntg2,1J+1

X e

- _1
% (em Y(Nylog Nn)~26p, _ 1)

+ i Z (1 — ZNn—l)k2*k1 (ein—l(Nn logNn)*%gZ _ 1)2

=1 [nte—1]+1<ke <k‘2§|_ntgj

_1
x ein_l(anogNn) 2(’627’{171)9@
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m 2
B Z<_2”2Nfﬁog N, " o S)Qntd — |nte-1])

et n3(Ny log Ny,)
Ly <1+nzO(1)>( 0, oW )(H 0(1) >
1<l <ba<m Nn n(anogNn)% TLZanOgNn (anOgNTL)%
6y, 0O(1)
— — — | nty,—
(et oy ) (e — ) inte) = Lot )

1 nzO(l)) < i, O(1) >2< O(1) )
+ = 1+ + 1+ ———
2 ; < Ny, n(Nylog Ny)z  n?Nnlog Ny (N, log N,,)2

x ([nte] — [nte-1])([nte] — [nte—1 —1])

NGt ) O()
2n2N,, log N,, n2(N,, log Nn)%
21<ty<trom 9000, (Inte, | — [nte, 1 ])([nte, | — [ntr, 1)) 0o(1)
- 2 + 3
n*Nylog Ny, (N, log Ny,)2
n20(1) S 03(Inte) — Inte s ))(Inte) — Lntey — 1)
N2log N, 2n2N,, log N,
O(1) nz0(1)
7 T 2
(N,log N,)2  Njlog Ny,
(S Ollnte) = Inten)))” . OQ) nz0(1)
2n2N,, log N,, (Nolog N,)2  NZlog Ny’

1

where we used the corresponding versions of (4.5 and (4.6) after replacing N, > by
(N, log Nn)_%, the Taylor expansions

L _1
el Y(Npnlog Nn)~20, _ 1= inil(Nn logNn)féeg + n72(Nn log Nn)fl O(l)

= n_l(Nn log Nn)_% 0(1),
and
i (Nalog Nu) 20, _ 1 in~1(N, log N,,) 26,

92
= —n*(Nalog Ny) ™' 5+ n” (N, log N,)"2 O(1) = n2(N,, log N,,) " O(1)

forall £ € {1,...,m}, and that
nzO(1)
Np
following from Bernoulli’s inequality. By , for large enough n and for any z € (0, N,,),

we have

(1- ,zN,fl)kz_k1 =1+

A% ReB, (1 - 2N, 1)

MR bellnte) — [nte))’ ,__ReO(1) ), nReO(1)
2zn2log N, (N, log N,,) 2 N, log N,,

m 2
_ A Oe(lnte] — Lntea])) L o)
- 4zn?%log N, N, log N,,’
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hence we obtain that

log Nj) ™! log Nj,) ™!
/(Og ) ‘1 _ ANEBa (12N )| g, < /(Og ) (1 LM ReBn(l—an*1)> dz
0 0

| ) (4.12)
S (Hexp {_A(z“gégtgg;v ST ﬁ?&'}) o

as n — 00, since

i (1 Oe(lnte] = Lntea )’

n—00 n?log Ny,

=0,
and, due to the assumption (log N,,)?>n~! — 0o as n — oo, we have

n n log N, 0 .
= as n — 0o.
Nylog N, (logN,)? N,

Note that for every z € ((log N,,)~ 1, Ny, (log N,,)~1) we have

MEE Bt —tea + 1) [0 n]OQ)|

)\%Bn (1-2N,71)| <

2zlog N, zNé (log Nn)% N, log N,
m 2
M=t + D) oWl 0] _ o
~X 1 - 9
(4.13)

since n(N,log N,,)™' — 0 as n — oo, as we have seen before.
Hence, using (3.12), we obtain for large enough n

Nn(log Ny) ™!
/ (log ) ‘1 _ MEB(1-2Na 1Y)
(log Ni)~*

Ny, (log Np,) ™t
<)
(log Nn)_l

o - m 2
< oy [M AL 10t —tea +)° O] »]O)

dz

N,

A" B, (1 . an—l) e|A%Bn(1—an—1)| &L
z

dz
(log Np)~1 2zlog N, ZNY% (log Nn)% N, log N,
< 00,
since for every N, € N, we have
1 N,L(logNn)71 1
—-dz =1, (4.14)
log Nn (logNn)*l z
and
Ny (log Np)~t N, —1 1
- 1z = M )2: r 2(1—>—>0 (4.15)
Nplog Ni J(iog Nyt N, (log Ny,) (log Ny,) N,

as n — oo due to the assumption n~!(log N,)? — oo as n — oo. Together with (1.12),
this implies (4.9).

80



Now we turn to prove (4.10)). By (4.12), the convergence (4.10)) reduces to showing that
Np(log Np)~ 1

/ (log M) (1 _ eA%Bn@—an*l)) ds — AV Oelte — tel))Q' 50
(

log Np,)~—1 2

as n — oo. Using (4.14)), it is enough to check that

og Np)~ 1 s
/Nn(l g Nn) <e’\Nz"B"(IZN"_1) s A Oe(te — tﬁ—l))2> d
(

z| =0
log Ny)—1 2zlog Ny,

as nm — oo. By applying (3.13), (4.11]) and (4.13)), we have
-1
(

log N,,)~—1 2z log Nn

Ny (log Np) 1 2 B
</ 1‘ANan (1= 28, 1) B (-am )
(log Ny)~—1 2 <

Ny, C1y AT Oe(te — t—1))?
+ ‘)\Bn (1—2N,"Y) + 22 Tog NV,

>dz

/N"“‘)gN")l (1 MSE Ol —tes + 0P[O nlO()
Gog V)=t \2 2zlog N, N2 (log Ny):  Nnlog o

<

ol O]

!O( I »lOQ)]
zNz(logN )% N log N,

(3ot - ) =0 (Y fullnte] - Lnte—lJ))2'> dz,
= (=1
Ny (log Ni)~! A2(om |9 |(tg — to_q +1))4 | O(1)] n? O(1)]
L R o

+

\Ms

22 log N,

log Np)~1 422(log N, )? 22Ny (log Ny,)2  N2(log N,,)?

« ol O]
oWl o)

zN% (log N, )% Ny log Nn

(Zez (te —ty_1) ) _n—2< Y 0s(|nty] — Lntg_1J)>2'> dz.

(=1

+

22 log N,

Indeed, the last but one inequality follows from

AU, Be(te — to1))?
2zlog Ny,

})\]\?Bn (1—2zN,"Y) +
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N,

2
<PEBa(1- 2N ) + M(Zi fullnte] ~ Inter)))

2zn2log N,

A2 Ounte] = ot ) A Ot — te1))?

- 2zn?log N, 2zlog N,

ol o)
an% (log Nn)% Nn log N

: <Zm: Op(ty — tg_1)>2 —n ( Zm: O(lnte] — L”tf—lJ))Z
(=1

~X

* 2zlog Ny, —

9

and the last inequality from (a + b+ ¢)? < 3(a®? +b* + ¢?), a,b,c € R. Consequently,

—1 m
/Nn(logNn) (eAN:Bn(lan_l) s A s Oelte — tzz—l))2> d
&

zl — 0 as n — 0o.

og Np)-1 2zlog Ny,
Indeed,
1 /Nn(lOgNn)_l i dZ _ 1 10 N - log Nn
(log N»)? Jiog Nyt 2277 (log N,)? & n N,
1 1

= — —
log N, N,logN,

as n — 0o, and hence

Ny, (log Nyp,) ™1
; / i dz — 0 as n — 0o
Np(log No)? Jaog -1 22 '

Further, using the assumption (log N,,)?n~! — 0o as n — oo, we have

n2 Ny (log Nyy)~ 1 2 1
N2(log N,,)2 ldz = —————5(log Np) ™ (N, — 1
VTG Jym s 1™ W o008 )=

1 Ny (log Np,) 7t 1 m 9 B m
(logNn /(logNn)l Zdz) (;95(% - tﬁ—l)) -n 2(;@(@@ - Lntg_lj)) |
= ‘(Z Op(te — t671)>2 - n_2(295(tntgj — Lntg,1J)>2 50  as n— oo.

=1 =1
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This together with (4.15) yields (4.10]), completing the proof. O
Proof of Lemma For all a € (0,1) and for sufficiently large n € N, we have
1 —¢e, > a, hence, by (4.1)),

Nulzn(a)] < ene;' N, sup  [2,(b)] — 0 as n — 00, (4.16)
be(0,1—&n)

thus we conclude lim,, o, Ny|z,(a)| = 0. By applying and using (4.16)), for any
neN and a€ (0,1), we get

A
1_
If n>np and a € (0,1 —¢,), then - <&, ! and

1—a n

(1) <,

zn(a)’e|ﬁz’l(a)‘ -0 as n— . (4.17)
a

2 _ 1
‘Nn (1 a elfazn(a))’ <Asup e, 'N,  sup |z (a)] e Przno o SPag—en 20 = 0
nzno a€(0,1—¢n)

where C € Ry (due to (4.1))). Since fol Y(a)(1 —a)’da =1, we have

A

N, /“n (1 - e @) (a)(1 - ) da
0

1
| N (1= ) 10,1 (@0@) 1L~ ) da
0

1
a —a’Ba o0
</ch<><1 ) da <

for n > ng. Therefore, (0,1) > a +— C¥(a)(1 —a)® serves as a dominating integrable
function. Thus, by the dominated convergence theorem, the pointwise convergence in (4.17))
results

1—ep N
lim N, (1 - emzn(“)) W(a)(1 — a)® da = 0. (4.18)

n—oo 0

Moreover, for all n > ng, we have

‘Nn /01 (1 . eﬁzn(“)) W(a)(1 — a)®da — gl

l—en
< ‘Nn/ (1 - eﬁzn(a)) ¥(a)(1 - a)’ da
0

. (4.19)
# v [ (1= e ) (a) - )1 - ) da

o[ (1t @) 0w

—En

+ 1

)

where

Mo [ (1) i) - )1 - P da

—En

1
<( sup |w(a>—w1\>Nn / 1—ema(@| (1 - a) da,
a€] 1

17577‘,1) —€n

with supgep—c, 1) [¥(a) —¥1] — 0 as n — oo, by the assumption limgp P(x) = ¢1.
Taking limsup,,_,., of both sides of (4.19)), by (4.18)) and the assumptions of the lemma,
we obtain the statement. O
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Appendix A

Abridged results of Chapters 3] and

Here we summarize some of the results of Chapters [3] and [4] related to the aggregates
of the randomized INAR(1) processes (defined in Chapter [3) with the specific mixing
distribution introduced in . We summarize so one can compare the results of the
many theorems presented in the thesis. The tables contain the scaling factors of the limit
theorems, the limit processes, and the numbers of the corresponding theorems. Note that
in some cases the limit processes are simplified in the sense that some constants are only
represented with a general ¢ € R notation. For the definitions of the limit processes, see

the referred theorems.

Limit theorems for S® M) centered by the conditional expectations.

The following three tables contain the limit theorems concerning the aggregates cen-

tered with the conditional expectations: S defined in (B.7).
Table of results when first n — oo, then N — oco:

Let us point out that here and in the forthcoming tables the scaling becomes heavier as
the parameter B decreases. This is related to the fact that by Remark the finiteness
of the first and second moments of the stationary distribution depends on this parameter.

B (—1,1) 1 (1,00)
Scaling NT#5n3 (nN log N)% (nN)%
Limit Yi+p)2 B VA1 B oB
Theorem 3.12 3.13 3.14

Table of results when first N — oo, then n — oo:

B (—1,0) 0 (0,1) 1 (1,00)
Scaling N T n(N log N)% nl=3 N3 (n(log n)N)% (nN)%
Limit (‘/2(1-1_-6)75_)teR+ (WA¢1t)t€R+ cB, s V22X B oB
Theorem \ﬁ‘ \ﬁ‘ 3.10 3.11 3.14
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Table of results when n and N increase to infinity simultaneously:

B (—1,0) 0 (0, 00)
Rate an_T%n_l — o0 | (log N,)?n~! — oo | Future plan
Scaling nN,f(l%ﬁ) n(Ny log Nn)% Future plan
Limit (V2(1T5)t.)t€R+ (I/V)ﬂ.mt).teﬂhr Future plan

Theorem M H

Limit theorems for S, centered by the expectations.

The following table contains the limit theorems concerning the aggregates centered
with the expectations: SN defined in . Note that such results exist only when
the expectation is finite, which, by Remark occurs when [ > 0. As we have no
simultaneous limit theorems yet for S > 0, we only summarize the iterated limit theorems
for these aggregates.

Table of results when first n — co, then N — oo, or vice versa:

B (0,1) 1 (1,00)
Scaling nNTHB nay, where vN /ay = o(1) nNz
Limit (ZHg t) _— (W t)er, (W2 var((1—a)-1) t)teRry
Theorem 3.16 3.17 3.18
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Appendix B

Notations

Notation Formula,  theo- | Page number
rem, proposition.

Y, ¢ ¢ E1) 9
m., M¢ 9
v 9
Vv 10
S 27 12
y Proposition [2.6 12
B Proposition [2.7] 12
§(N:m) -10) 13
A 2.14) 14
Fi(4), G(-), H(-), D | (2.16) 16
F() 17
Fo,..k() 18
S(N) 223), (3-4) 18, 35
y Proposition [3.1 35
Yy Proposition |3.3 36
¥(), (3.6) 37
SNm) B-7) 37
Bk% (3.8) 38
Vo148 Theorem [3.8 38
V115, Y1482 Theorem [3.12 39
Zitp Theorem |3.16 40
o(1) Theorem |3.17 40
SNm) (2-26), 20} |41
O(1), |O(1)] 45
Fo( o) (3:17) 45

Table B.1: Notations
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Appendix C

Summary

This thesis is about the limit behavior of the temporal and contemporaneous aggregates
of certain branching processes. Aggregates, also known as partial sums, are well-known
to be very important in stochastics. All of the chapters of this current work deal with
this question, either for different processes, different manners regarding the convergence
(iterated, simultaneous), or different centralizations.

Chapter[I]contains an introduction where we explain the goal of the thesis, the historical
background of the studied topic, along with an overview of this work. In the following
paragraph we specify the scheme of aggregation that we use.

The aggregation problem is concerned with the relationship between individual (micro)
and aggregate (macro) behavior. In general, we consider independent copies of a stationary

branching process, we denote these by (X,Sj))keN, j €N, where N:={1,2,...}. We

are interested in the limit behavior of the aggregate process (Zjvzl lgg X lij )) 0,00
t€|0,00

as both n, the time parameter, and N, the number of copies tend to infinity in some
manner. If we take the limits in an iterated manner, i.e., first n tends to infinity and then
N tends to infinity, or vice versa, then the resulting limit theorem is called an iterated one.
If both converge to infinity at the same time, then it is called a simultaneous limit theorem.
To achieve such limit theorems, we also consider the simple aggregates, » ;| X ,gj ), which

is called temporal (or time-aggregated), and Z;VZI X ,gj )

, which is called contemporaneous
(or space-aggregated).

Let us recall the most important antecedents of the work presented in this thesis. The
scheme of contemporaneous aggregation of random coefficient autoregressive processes of
order 1 (AR(1)) was firstly proposed by the Nobel prize winner Clive W. J. Granger [18]
in order to obtain the long memory phenomena in aggregated time series. In a series of
papers, Donatas Surgailis and his co-authors studied the aggregation of random coefficient
AR(1) processes, where (X;(Cj))kez+::{0,1,... }» J € N, are independent copies of a stationary

random coefficient AR(1) process
X =aXp_ 1+ g, keN,

with standardized independent and identically distributed (i.i.d.) innovations (ex)reny and
a random coefficient a with valuesin (0, 1), being independent of (ex)ren and admitting
a probability density function of the form

P@)(1—x)’, xe€(0,1),
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where (€ (—1,00) and ¢ is an integrable function on (0,1) with limg ¢¥(x) =
11 € (0,00). In the paper Pilipauskaité and Surgailis 38|, both iterated and simultane-
ous limit theorems were presented concerning the limit behavior of the aggregate process
(ZXsit X))

t€[0,00)

Our aim is to provide such results when branching processes take the place of the
random coefficient AR(1) model explained before. These processes are widely applica-
ble as they can model integer-valued phenomena, such as migration and the spreading
of contagious diseases like COVID-19. These possible applications are more thoroughly
detailed in Chapter [2] which is devoted to the investigation of the aggregates of mul-
titype Galton—Watson processes with immigration. The p-dimensional process (Y =
Yi1,... ,kap]T)kesz, where p € N, is a p-type Galton-Watson branching process with
immigration if

(1,1) (p,1) (1)

Yi_11 gkl Yi—1,p 5 €k p Ye-14 .
Yi=> | ¢ |+t Cle | =55 € ve
=1 | (1p) =1 | (p,p) 2P =1 £=1

k.t k.0 k

for every k € N, where we define 22:1 =0, and {Yo,fﬁ)z,sk ck,leNjie{l,... ,p}}
are independent Z" -valued random vectors. Moreover, for all i € {1,...,p}, {5,(;)[ NS
N} and {ey: k € N} consist of identically distributed random vectors, respectively. By
choosing Yy as the unique stationary distribution, which is shown to exist under some
general conditions, the considered process is strictly stationary. Then we take independent
copies, (Y;(Cj))kezw j € N, of this process. For each N,n € N, we consider the stochastic
process SN = (SEN’n))teRJr given by

[nt]

SV ZZ YY),  telo,00).

7j=1k=1

We show that the finite dimensional distributions of the aggregate process scaled by the
usual scaling sequence +nN converge to those of a zero mean p-dimensional (non-
standard, with a given covariance structure) Brownian motion if

e all entries of the vectors E(i), i €{l,...,p}, and e have finite second moments
and first NN, then n converges to infinity;

e all entries of the vectors E(i), i€{l,...,p}, and e have finite third moments and
first n, then N converges to infinity, or they converge to infinity together at any
rate.

The proofs of these theorems rely on the multidimensional central limit theorem and the
functional martingale central limit theorem.

Among others, we also discuss these results in the special case of integer-valued au-
toregressive processes of order 1 (INAR(1)) with Poisson innovations. These are one-
dimensional Galton—Watson processes with immigration where the offsprings have Bernoul-
li distribution with parameter « € (0,1) and the immigrations have Poisson distribution.
The proofs of Chapter [2| are based on the paper Barczy et al. [3].
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In Chapters [3| and {4 we consider a certain randomized INAR(1) process (Xj)rez,
with randomized thinning parameter «, given formally by the recursive equation

Xp—1

Xp=Y &Guter=ao0Xe1+e,  keEN,
=1

where o is the so-called Steutel and van Harn thinning operator, « is a random variable
with values in (0,1), and X, is some appropriate random variable. This means that,
conditionally on «, the process (Xj)rez, is an INAR(1) process with thinning param-
eter «, i.e., conditionally on «, the offsprings, (&k¢)keen, have Bernoulli distribution
with parameter «. Conditionally on «, the i.i.d. innovations (eg)reny have a Poisson
distribution with parameter A € (0,00), and the conditional distribution of the initial
value Xy given « is the unique stationary distribution, namely, a Poisson distribution
with parameter A/(1 — «). In Chapter [3| we provide a rigorous construction of this pro-
cess. For the desired iterated and simultaneous limit theorems we assume that the random

parameter « admits a mixing distribution having a probability density of the form
(@)(1-2),  ze(01),

where ¢ is a function on (0,1) having a limit limg4 ¢(z) = 91 € (0,00). Note
that necessarily 5 € (—1,00) (otherwise fol Y(z)(1 — 2)Pdz = o0), and the function
(0,1) > = — ¢(z) is integrable on (0,1). The Beta distribution is a special case of
this form. Certain o operators, where the summands are random parameter Bernoulli
distributions with a parameter having Beta distribution, appear in catastrophe models.
Moreover, Clive W. J. Granger used the square root of a Beta distribution as a mixing
distribution for random coefficient AR(1) processes.

Chapter [3|contains an exhaustive list of iterated limit theorems related to the aggregates
in multiple manners. For every N,n € N, we consider three different aggregate processes
regarding the centralization:

3

N nt] o
SN x - Ex P a)) ,

7j=1 1

T

te[0,00)

where we center with the conditional expectation with respect to the random parameter
belonging to the corresponding process,

Nl |
NS - Ex) :
j=1 k=1

te[0,00)
where we center with the expectation (note that this only exists for g > 0), and

N [nt] n )
5 (X(j) Dy Ep )
k n ’

J=1k=1 t€]0,00)

where we center with the empirical mean of the first n observations for the corresponding
process in order to provide a well-applicable, observable alternative. As there are two
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different approaches to iterated limit theorems (n — oo and then N — oo or vice
versa), and we have different limit theorems for different ranges of the parameter 3, this
chapter contains many limit theorems. The proofs rely heavily on the multidimensional
central limit theorem and a lemma that was developed for this research, which helps us
prove the convergence of characteristic functions. We also use that in case of zero mean
Gaussian processes, to show their convergence in distribution, the convergence of their
covariance functions has to be shown. Furthermore, both Theorem 4.3 of Beran et al. [7],
which is about convergence of partial sums of a Hermite function of a stationary sequence
of standard normal random variables, and Theorem 7.1 of Resnick 46|, which is about
weak convergence of partial sum processes for a triangular array towards a Lévy process,
are used once. The limit theorems corresponding to the process centered by the empirical
mean follow from those of the process centered by the conditional expectation by Slutsky’s
lemma. In these cases, by the nature of this process, we get bridge-type limit processes.
Let us point out that the the scaling of the processes becomes heavier as the parameter
decreases, since the finiteness of the first and second moments of the stationary distribution
of the randomized INAR(1) process depends on this parameter. Also, it is interesting that
in most of the cases the two different orders of iteration result in significantly different
limit theorems as the scaling factors and limit processes differ. In Chapter [3] the proofs are
based on the papers Nedényi and Pap [35] and Barczy et al. |6].

In Chapter [4] two simultaneous limit theorems are presented. Contrary to the iterated
limit theorems, the list of the simultaneous ones is not complete, some cases remain for
future work. The proofs of the achieved limit theorems are based on our lemma developed
for this research, which is a counterpart of the one applied for the iterated limit theorems.
We plan to handle the remaining cases as future work which will require a different proof
technique. The proofs of Chapter [4| are based on the paper Barczy et al. [4] that has been
submitted to a journal.
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Appendix D

Osszefoglald

Ebben a dolgozatban bizonyos elagazd folyamatok (centralt és skalazott) térbeli és
idébeli aggregéltjainak hatéareloszlasaival foglalkozunk. J6l ismert, hogy az aggregéltaknak,
mas néven részletdsszegeknek kiilondsen fontos szerepe van a sztochasztikaban. A dolgozat
mindegyik fejezete ezzel a kérdéssel foglalkozik, kiilonb6zs folyamatok, konvergencia-tipus
(iteralt, vagy szimultan), illetve centrélas esetében.

Az els§ fejezet (Chapter [1)) az értekezés bevezetGje, ahol felvazoljuk a dolgozat céljat,
a kutatott téma el6zményeit, valamint a disszertacio felépitését. A kovetkezd bekezdésben
részletesebben bemutatjuk az altalunk alkalmazott aggregéciot.

Az aggregacio célja, hogy kapcsolatot teremtsen az egyéni (mikro) és az Osszesitett
(makro) viselkedés kozott. Mi minden esetben egy stacionarius elagazod folyamat fiigget-
len kopiaibol fogunk kiindulni, jeldlje ezeket (X,gj))keN, j €N, ahol N:={1,2,...}.
Azt vizsgaljuk, hogyan viselkedik a (Zjvzl Zgﬂ X ,ij )>t€[0 - aggregalt folyamat, amint
n, az id6 paramétere, valamint N, a koépidk szama Valaniilyen modon végtelenhez tart.
Amennyiben iteralt modon tekintjiilk a hatarérték-képzést, azaz elGszor n tart végte-
lenhez, majd N, vagy forditva, akkor a kapott hatareloszlas-tételt iteraltnak nevezzik.
Amennyiben a két paraméter egyszerre konvergal végtelenhez, akkor a tételt szimultan-
nak nevezziik. Ahhoz, hogy ilyen hatareloszlas-tételeket lassunk be, vizsgaljuk a kovetkezd
egyszeres aggregaltakat is: > ), X ,gj ), melyet idébeli, illetve Zj\;l X ]gj ), melyet térbeli
aggregaltnak neveziink.

A tovabbiakban felelevenitjiik az értekezés legfontosabb elézményeit. Az els6rendi au-
toregresszios (AR(1)) folyamatok térbeli aggregaciojat elszor a Nobel-dijas Clive W. J.
Granger [18] vizsgalta azzal a céllal, hogy hosszi memoriat valtson ki aggregélt idGsorok
esetében. Donatas Surgailis és szerz6téarsai cikksorozatukban véletlen egyiitthatoju AR(1)
folyamatok aggregéciojat tanulményoztak, ahol (X,gj))keer;:{o’l,“.}, j € N, a kévetkezs
stacionérius véletlen egyiitthatoju AR(1) folyamat fiiggetlen kopiai:

X =aXp_1 + €, keN,

standardizalt, fliggetlen és azonos eloszlast (e)ren bevandorlassal, ahol a (0,1) érték-
készletd a véletlen egyiitthato fiiggetlen az (ex)ren sorozattol, és

Zﬁ(l‘)(l - :L')/B’ LS (07 1)7

a striségfliiggvénye, ahol B € (—1,00) és 1 olyan integralhato fiiggvény a (0,1) inter-
vallumon, melyre limgq ¢(z) := 91 € (0,00). Pilipauskaité és Surgailis [38] cikkiikben a
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(Z i1 ZLmJ ) 000 aggregalt folyamathoz tartozo iteralt és szimultan hatareloszlas-
te|0,00

tételeket adtak meg.

Célunk, hogy hasonlé eredményeket irjunk le abban az esetben, amikor a véletlen
egylitthatoju AR(1) modellek helyét elagazo folyamatok veszik at. Ezen folyamatok szé-
les korben alkalmazhatoak egészértéki jelenségek, mint a migracio, vagy fertézé beteg-
ségek (példaul COVID-19) modellezése. Részletesebben leirjuk ezt a két lehetséges alkal-
mazast a dolgozat masodik fejezetében (Chapter [2)), melyben tébbtipusos bevandorlasos
Galton—Watson folyamatok aggregéltjaival foglalkozunk. A p-dimenzios (p € N) folyamat,

(Yi = [Yi,... ,th]T)keZ . bevandorlasos p-tipusos Galton—Watson elagazo folyamat,
amennyiben
(1,1) (»,1) 1)
Y11 f Yi_1,p 5 €k p Ye_1; '
=1 1, =1 , i=1 ¢=1
5( p) f(pp 8l(cp)

minden k£ € N esetén, ahol 22:1 =0, és {Yofﬁ)@ek skl e Nji e {1,...,p}}
fiiggetlen ZF -értéki véletlen vektorok. Tovabba minden ¢ € {1,...,p} esetén mind
{5,% :k,0 € N}, mind {ej:k € N} azonos eloszlast vektorokbol all. Amennyiben Y-
t ugy valasztjuk meg, hogy eloszlasa az egyértelmd stacionarius eloszlas legyen (melyrdl
megmutatjuk, hogy altalanos feltételek mellett létezik), akkor a tekintett folyamat erésen
stacionarius. Ezen folyamat (Y')pez,, j € N, fiiggetlen kopidit tekintjiik. Minden
N,n €N, esetén legyen SOV = (SEN’n))teR+, ahol

[nt]
S Z YY),  telo,00).

7=1k=1

Megmutatjuk, hogy az elbbi aggregalt folyamat véges dimenzids eloszlasai a szokasos
VnN sorozattal skalazva konvergalnak egy 0 varhato értékid p-dimenzios (nem stan-
dard, adott kovariancia-strukturaju) Brown-mozgéis megfelels véges dimenzios eloszlasa-
ihoz, amennyiben

e a E(i), i€ {l,...,p}, és e vektorok masodik momentuma véges és elGszor N,
majd n konvergil végtelenhez;

ea £ e {1,...,p}, és & vektorok harmadik momentuma véges és elGszor n,
majd N konvergal végtelenhez, vagy egylitt tartanak végtelenhez, barmilyen rataval.

Ezen tételek bizonyitasanak alapja a tobbdimenzios centralis hatéareloszlas-tétel és a funk-
cionalis martingal centralis hatareloszlas-tétel.

Tobb specidlis esetben is targyaljuk az eredményeket, koztiik Poisson bevandorlasu,
els6rendd egészértéki autoregresszios (INAR(1)) folyamatokra. Ezek olyan bevandorlasos
egydimenzios Galton—Watson folyamatok, melyek esetében az utddeloszlasok Bernoulli el-
oszlastak « € (0,1) paraméterrel, a bevandorlasok pedig Poisson eloszlasuak. A masodik
fejezet (Chapter [2) bizonyitasainak alapja a Barczy et al. |3| cikk.
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A harmadik és negyedik fejezetben (Chapter |3 és 4)) az (Xj)rez, véletlenitett, «
ritkitasi paraméterrel rendelkezd, véletlenitett INAR(1) folyamatokat vizsgaljuk, melyekre

Xg—1

Xp= > &Guten=a0Xy1+e, keN,
=1

ahol o az tigynevezett Steutel and van Harn ritkitasi operator, a egy valoszintiségi valtozd
(0,1)-beli értékekkel, Xy pedig egy megfelels valoszintiségi valtozo. Ez azt jelenti, hogy
az « valtozora feltételesen az (Xj)rez, folyamat egy o ritkitasi paramétert INAR(1)
folyamat, azaz a-ra feltételesen a (&4 ¢)kecn, utodeloszlasok Bernoulli eloszlastak o para-
méterrel. Szintén a-ra feltételesen a fiiggetlen (ep)keny bevandorlasok Poisson eloszlastiak
A € (0,00) paraméterrel, az Xy kezdeti érték feltételes eloszlasa pedig az egyértelmd
stacionarius eloszlas, mely egy Poisson eloszlas A/(1—«) paraméterrel. A harmadik feje-
zetben (Chapter|3) precizen belatjuk, hogy ilyen folyamat létezik. A célként kittizott iteralt
és szimultan hatareloszlas-tételekhez feltessziik, hogy az « véletlen egyiitthaté abszolut
folytonos

?Z)(?ﬂ)(l - :C)ﬁﬁ LS (07 1)7

stirtiségfiiggvénnyel, ahol ¢ olyan fiiggvény a (0,1) intervallumon, melyre limg4q (z) =
1 € (0,00). Jegyezziik meg, hogy 8 € (—1,00) (masképp fo )1 —2)Pdz = 00),
ésa (0,1) >z — (xr) fuggvény (0,1)-en integralhato. A Beta—eloszlas specialis esete
ennek az alaknak. Katasztrofa modellek esetén megjelennek azok a o operatorok, ahol
az Osszeadandok véletlen egyiitthat6ju Bernoulli eloszlast véletlen valtozok Béta-eloszlast
paraméterrel. Tovabba Clive W. J. Granger Béta-eloszlas négyzetgyokét alkalmazta vélet-
lenitett AR(1) folyamatok paraméterének véletlenitésére.

A harmadik fejezetben (Chapter [3)) az aggregaltakhoz tartozo, tobbféle modon tekintett
iteralt hatareloszlastételeket prezentalunk. Minden N,n € N esetén harom, a centralés
tekintetében kiilonb6z6 aggregalt folyamatot tekintiink:

N LtJ o
> E(X o)) ,

7=1 1 t€]0,00)

3

?

ahol az adott folyamathoz tartoz6 véletlenitett paraméterre vett feltételes varhato értékkel

centralunk,
N |nt]

ZZ X(J ~E(X J))) ,

j=1k=1 t€[0,00)

ahol a varhato értékkel centralunk (mely csak [ > 0 esetén létezik), valamint

N_|nt] )
ZZ (X(j) i Xy )
k )

— = n

=lk=1 te[0,00)
ahol az els6 n megfigyelés atlagaval centralunk, hogy egy jol alkalmazhatd, megfigyelhe-
t6 alternativat kapjunk. Mivel az iteralt hatareloszlas-tételeknek két tipusa van (n — oo,
majd N — oo, vagy forditva), és kiillonb6z6 hatareloszlas-tételeket kapunk [ kiilon-
b6z6 értékeire, igy szamos tétel szerepel a fejezetben. Ezek listaja teljes. A bizonyitésok
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alapja a tObbdimenziés centralis hatareloszlas-tétel és egy altalunk kidolgozott lemma,
mely a karakterisztikus fiiggvények konvergencidjanak ellenérzésében nyujt segitséget. Azt
is alkalmazzuk, hogy 0 varhato értékd Gauss-folyamatok eloszlasbeli konvergencidjanak
ellendrzésekor elegends a kovariancia-fliggvények konvergenciajat belatni. Tovabbé egy-
egy tétel bizonyitasa soran felhasznéaljuk Beran et al. |7] 4.3. Tételét, mely standard nor-
maélis eloszlast véletlen véltozok stacionérius sorozatanak Hermite-fiiggvényének részlet-

cz 2

c sz

A mintaétlaggal centralt aggregalt folyamathoz tartozo tételek Slutsky lemméajanak segit-
ségével vezethetGek le a feltételes varhato értékkel centralt folyamathoz tartozé tételekbdsl.
Ezek esetében az aggregalt folyamat szerkezete miatt hid tipusi folyamatokat kapunk
hatareloszlasként. Megjegyezziik, hogy annal inkabb stlyozni kell a folyamatokat, minél
kisebb a [ paraméter. Ennek oka, hogy a véletlenitett INAR(1) folyamat stacionarius el-
oszlasanak els6 és masodik momentumanak létezése ezen paraméter értékétdl fiigg. Tovabbi
érdekesség, hogy a kiilonb6z6 sorrend iterdlas sordn igen kiilonbozéek a kapott tételek is:
sok esetben mind a skalazas, mind a hatarfolyamat mas. A harmadik fejezet (Chapter |3))
bizonyit4sainak alapja a Nedényi és Pap |35|, valamint a Barczy et al. [6] cikk.

A negyedik fejezetben (Chapter ) két szimultan hatareloszlas-tétel szerepel. Az ite-
ralt hatareloszlas-tételekkel szemben ezek listdja nem teljes, a kimaradt eseteket jovSbeli
kutatasunk soran szeretnénk kezelni. A két belatott tétel bizonyitasanak alapja az a lem-
ma, melyet az iterdlt tételeknél felhasznélt lemma mintéjara dolgoztunk ki. A jov&ben
més bizonyitasi technikaval szeretnénk kezelni a fennmaradé eseteket. A negyedik fejezet
(Chapter {4) bizonyitasainak alapja a Barczy et al. [4] cikk, mely benyujtasra keriilt egy
folyoirathoz.
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