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Chapter 1

Introduction

1.1 Motivation, historical background, and an overview of
our results and methods

During my master’s studies I started working with branching processes with my su-
pervisor at the time, Gábor Szűcs. I found this widely applicable class of processes really
interesting while we performed change–point detection of their parameters. As I started
my doctoral studies with the supervision of Professor Gyula Pap, he suggested that I could
join him and his longtime coauthor Mátyás Barczy to study these processes from a dif-
ferent aspect, namely, the limit behavior of their aggregates. Our research arose from the
work of Pilipauskaitė and Surgailis [38], who investigated random coefficient autoregressive
processes of order 1 (AR(1)) in the same sense. We got really invested in this topic through
the years and answered many related questions in the four published and two submitted
papers that we wrote together. In this current work, I am going to present the results
of four of these papers. These four share the assumption that the innovation (also called
immigration) has finite second moment, while in the two other papers it does not. These
two are left out due to the length limitations and the fact that the covered four form a
unit together, with some unanswered questions remaining.

In general, we consider independent copies of a stationary branching process, we denote
these by (X

(j)
k )k=1,2,..., j = 1, 2, . . . . We are interested in the limit behavior of the

aggregate process
(∑N

j=1

∑bntc
k=1 X

(j)
k

)
t∈[0,∞)

, as both n, the time parameter, and N ,

the number of copies tend to infinity in some manner. If we take the limits in an iterated
manner, i.e., first n tends to infinity and then N tends to infinity, or vice versa, then the
resulting limit theorem is called an iterated one. If both converge to infinity at the same
time, then it is called a simultaneous limit theorem. To achieve such limit theorems, we also
consider the simple aggregates,

∑n
k=1X

(j)
k , which is called temporal (or time-aggregated),

and
∑N

j=1X
(j)
k , which is called contemporaneous (or space-aggregated).

The aggregation problem is concerned with the relationship between individual (micro)
and aggregate (macro) behavior. Random coefficient AR(1) models, where the coefficient
of the autoregressive component is a random variable instead of a constant, appeared
in Robinson [47]. However, the scheme of contemporaneous aggregation of random coef-
ficient AR(1) models was firstly proposed by Granger [18] in order to obtain the long
memory phenomena in aggregated time series. In Gonçalves and Gouriéroux [17], the con-
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temporaneous aggregation of random coefficient AR(1) models is thoroughly studied. They
examine whether the aggregated process inherits certain properties from the random coef-
ficient AR(1) processes, such as stationarity and long memory. They also characterize the
processes that can appear as the contemporaneous aggregates of such AR(1) processes.
Zaffaroni [58] continues the previous research by examining the convergence of the previ-
ously discussed aggregates. Moreover, they extend the results by considering autoregressive
moving averages (ARMA) models instead or the AR ones. Some economical and empirical
examples are also provided in the paper. Oppenheim and Viano [36] deal with aggregates of
discrete and continuous time stochastic processes as well. In particular, they give the limit
of the contemporaneous aggregate of random parameter AR(p) processes and investigate
the long memory property of the limit. Celov et al. [11] is about the so-called disaggrega-
tion problem. By observing an aggregated process, their aim is to determine the individual
processes that lead to that aggregated one, if such exist. Again, they confine the search to
random coefficient AR(1) processes as these individual processes. Beran et al. [8] is also
about this disaggregation problem, more specifically, they consider a Beta mixing distribu-
tion for the squared coefficient of the random coefficient AR(1) processes, and estimate its
parameters based on the aggregated process. Puplinskaitė and Surgailis [41, 42] discussed
contemporaneous aggregation of random coefficient AR(1) processes with infinite variance
and innovations in the domain of attraction of a stable law.

As this thesis is about discrete time stochastic processes, we are only going to provide a
non-exhaustive list of resources for the aggregation of continuous time stochastic processes.
Related problems for some network traffic models were studied in Willinger et al. [56],
Taqqu et al. [53], Gaigalas and Kaj [16] and Dombry and Kaj [13], where independent
and centered ON/OFF processes are aggregated, in Mikosch et al. [33], where aggregation
of M/G/∞ queues with heavy-tailed activity periods are investigated, in Pipiras et
al. [40], where integrated renewal or renewal-reward processes are considered, or in Iglói
and Terdik [20], where the limit behavior of the aggregate of certain random coefficient
Ornstein–Uhlenbeck processes is examined. On page 521 in Jirak [23] one can find a lot
of further references for papers dealing with the aggregation of continuous time stochastic
processes.

As we will be working on similar limit theorems for our models, we recall some of the
results in Pilipauskaitė and Surgailis [38], which describe the limit behavior of sums

S
(N,n)
t :=

N∑
j=1

bntc∑
k=1

X
(j)
k , t ∈ [0,∞), N, n ∈ {1, 2, . . .}, (1.1)

where (X
(j)
k )k∈{0,1,...}, j ∈ {1, 2, . . .}, are independent copies of a stationary random

coefficient AR(1) process

Xk = aXk−1 + εk, k ∈ {1, 2, . . .}, (1.2)

with standardized independent and identically distributed (i.i.d.) innovations (εk)k∈{1,2,...}
having E(ε1) = 0 and Var(ε1) = 1, and a random coefficient a with values in (0, 1),
being independent of (εk)k∈{1,2,...} and admitting a probability density function of the
form

ψ(x)(1− x)β, x ∈ (0, 1),
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where β ∈ (−1,∞) and ψ is an integrable function on (0, 1) with limx↑1 ψ(x) :=

ψ1 > 0. Here the distribution of X0 is chosen as the unique stationary distribution of
the model (1.2). Its existence was shown in Puplinskaitė and Surgailis [41, Proposition 1].
We point out that they considered so-called idiosyncratic innovations, i.e., the innovations
(ε

(j)
k )k∈{1,2,... }, j = 1, 2, . . . , belonging to (X

(j)
k )k∈{0,1,... }, j = 1, 2, . . . , are independent.

In Pilipauskaitė and Surgailis [38], scaling limits of the finite dimensional distributions of
(A−1

N,nS
(N,n)
t )t∈[0,∞), are derived, where AN,n are some scaling factors and first N →∞

and then n → ∞, or vice versa, or both N and n increase to infinity, possibly
with different rates. Then, Pilipauskaitė and Surgailis [39] extended their results in [38]
from the case of idiosyncratic innovations to the case of common innovations, i.e., when
(ε

(j)
k )k∈{1,2,... } = (ε

(1)
k )k∈{1,2,... }, j = 1, 2, . . . . Very recently, Pilipauskaitė et al. [37] have

extended their earlier results again in the sense that they released the assumptions on
the idiosyncratic innovations. In this new paper the innovations can be in the domain
of attraction of a stable law, while in Pilipauskaitė and Surgailis [38] they had to be in
that of the normal law. For historical fidelity, we note that Theil [54] already considered
contemporaneous aggregations of linear regression models with non-random coefficients,
and later Zellner [59] investigated the case of random coefficients. They both examined the
estimators of the coefficients and their properties.

Now let us introduce the integer-valued autoregressive (INAR) processes, which will
have a very important role in this work. The theory and application of integer-valued
time series models are rapidly developing and important topics, see, e.g., Steutel and van
Harn [50] and Weiß [55]. The INAR(1) process is among the most fertile integer-valued time
series models, and it was first introduced by McKenzie [32] and Al-Osh and Alzaid [1]. An
INAR(1) time series model is a stochastic process (Xk)k∈{0,1,...} satisfying the recursive
equation

Xk =

Xk−1∑
j=1

ξk,j + εk, k ∈ {1, 2, . . .}, (1.3)

where (εk)k∈{1,2,...} are i.i.d. non-negative integer-valued random variables, (ξk,j)k,j∈{1,2,...}
are i.i.d. Bernoulli random variables with mean α ∈ (0, 1), and X0 is a non-negative
integer-valued random variable such that X0, (ξk,j)k,j∈{1,2,...}, and (εk)k∈{1,2,...} are
independent. By using the binomial thinning operator α ◦ due to Steutel and van Harn
[50], the INAR(1) model in (1.3) can be written as

Xk = α ◦Xk−1 + εk, k ∈ {1, 2, . . .}, (1.4)

which form captures the resemblance with the AR model. We note that an INAR(1) process
can also be considered as a special branching process with immigration having Bernoulli
offspring distribution. Leonenko et al. [30] introduced the aggregate

∑∞
j=1X

(j) of a

sequence of independent stationary INAR(1) processes X(j), j ∈ {1, 2, . . .}, where X(j)
k =

α(j) ◦X(j)
k−1 + ε

(j)
k , k, j ∈ {1, 2, . . .}. Under appropriate conditions on α(j), j ∈ {1, 2, . . .},

and on the distributions of ε(j)
k , k, j ∈ {1, 2, . . .}, they showed that the process

∑∞
j=1X

(j)

is well-defined in L2-sense and it has long memory. INAR(1) processes with Poisson
innovations and generalized integer-valued autoregressive processes of order p (GINAR(p))
are the special cases of multitype Galton–Watson processes with immigration. Chapter
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2 is devoted to the temporal and contemporaneous aggregates of stationary multitype
Galton–Watson processes with immigration.

Then in Chapters 3 and 4 we will consider a certain randomized (also called random
coefficient) INAR(1) process (Xk)k∈{0,1,... } with randomized thinning parameter α, given
formally by the recursive equation

Xk = α ◦Xk−1 + εk, k ∈ {1, 2, . . .}, (1.5)

where α is a random variable with values in (0, 1) and X0 is some appropriate
random variable. This means that, conditionally on α, the process (Xk)k∈{0,1,... } is an
INAR(1) process with thinning parameter α. Conditionally on α, the i.i.d. innovations
(εk)k∈{1,2,...} are supposed to have a Poisson distribution with parameter λ ∈ (0,∞), and
the conditional distribution of the initial value X0 given α is supposed to be the unique
stationary distribution, namely, a Poisson distribution with parameter λ/(1 − α). For a
rigorous construction of this process, see Section 3.1. Here we only note that (Xk)k∈{0,1,... }
is a strictly stationary sequence, but it is not even a Markov chain (so it is not an INAR(1)
process) if α is not degenerate, see Appendix A of Barczy et al. [5]. Let us also remark
that the choice of Poisson distributed innovations serves a technical purpose. It allows us
to calculate and use the explicit stationary distribution and the joint generator function
given in (2.21). We are planning to try releasing this assumption and giving more general
results in future research.

Note that there is another way of randomizing the INAR(1) model (1.4), a so-called
random coefficient INAR(1) process (RCINAR(1)), proposed by Zheng et al. [60] and
Leonenko et al. [30]. It differs from (1.5), namely, it is a stochastic process formally given
by the recursive equation

Xk = αk ◦Xk−1 + εk, k ∈ {1, 2, . . .},

where (αk)k∈{1,2,...} is an i.i.d. sequence of random variables with values in (0, 1). An
RCINAR(1) process can be considered as a special kind of branching process with immi-
gration in a random environment, see Key [28], where a rigorous construction is given on
the state space of the so-called genealogical trees.

In Chapters 3 and 4, we have similar limit theorems for randomized INAR(1) processes
that Pilipauskaitė and Surgailis [38, Theorems 2.1, 2.2 and 2.3] have for random coefficient
AR(1) processes. The techniques of our proofs differ from those of Pilipauskaitė and Sur-
gailis [38] in many cases. Concerning the iterated limit theorems, for a somewhat detailed
comparison, see Remark 3.15. For the case of the simultaneous limit theorems, see the be-
ginning of Chapter 4 and Remark 4.4. Also, in our work, centralization has an important
role, since, opposed to the AR(1) and random coefficient AR(1) processes, the considered
branching processes do not have zero mean. We present limit theorems with three different
centerings. In some cases, when possible, we apply the expected values, and for the ran-
domized INAR(1) processes, the conditional expected values with respect to the random
coefficient as centralization. Moreover, as both of these are theoretical values instead of
observable ones, we also investigate the limit behavior of the aggregates centered with the
average of the random variables in question. Our proofs rely heavily on the multidimen-
sional central limit theorem, the functional martingale central limit theorem, and Lemmas
3.21 and 4.5. We developed the latter two for this research. We also use that in case of
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zero mean Gaussian processes, to prove their convergence in distribution, the convergence
of their covariance functions has to be shown. Furthermore, both Theorem 4.3 of Beran et
al. [7], which is about convergence of partial sums of a Hermite function of a stationary
sequence of standard normal random variables, and Theorem 7.1 of Resnick [46], which
is about weak convergence of partial sum processes for a triangular array towards a Lévy
process, are used once. In a few cases, the proofs reduce to showing that some random
variables are in the domain of attraction of a stable or normal distribution.

Pilipauskaitė and Surgailis [38, Page 1014] formulated an open problem that concerns
the possible existence and description of the limit distribution of the double sum (1.1) for
general i.i.d. processes (X

(j)
t )t∈[0,∞), j = 1, 2, . . . . We partially solve this open problem

for some randomized INAR(1) processes. The list of iterated limit theorems is complete,
however, we only have some of the possible simultaneous limit theorems. The rest of them
remain for future work, where we plan to follow the technique of Pilipauskaitė et al. [37].
(For more details, see the introduction of Chapter 4.) Since INAR(1) processes are special
branching processes with immigration, based on our results, later on, one may proceed
with general branching processes with immigration.

Note that the proofs are always presented in a dedicated section at the end of the
respective chapter. The notations used in this work are the standard ones applied in the
literature. In what follows we collect the general ones, while the special ones, for example
the symbols denoting certain processes, are compiled in Table B.1 at the end of the thesis.
Let Z+, N, R, R+, and C denote the set of non-negative integers, positive integers, real
numbers, non-negative real numbers, and complex numbers, respectively. For all d ∈ N,
the d × d identity matrix is denoted by Id. The standard basis in Rd is denoted by
{e1, . . . , ed}. For v ∈ Rd, the Euclidean norm is denoted by ‖v‖, and for A ∈ Rd×d,
the induced matrix norm is denoted by ‖A‖ as well (with a little abuse of notation). As
a reminder, it is defined as ‖A‖ := sup

{
‖Av‖ : v ∈ Rd with ‖v‖ = 1

}
for any matrix

A ∈ Rd×d. Let %(A) denote the spectral radius of A, i.e., the maximum of the absolute
values of the eigenvalues of A for any matrix A ∈ Rd×d. The notations a.s.−→, P−→, and
D−→ denote convergence in almost sure sense, in probability, and in distribution, respec-
tively, while Df−→ and Df -lim mean the convergence of finite dimensional distributions.
Furthermore, the notation D

= denotes the equality in distribution of random variables
or stochastic processes. All the random variables will be defined on a probability space
(Ω,F ,P). For any set B ⊆ Ω, we define 1B : Ω → {0, 1}, the indicator function of B

as

1B(x) :=

{
1, x ∈ B,
0, x /∈ B.

1.2 Presentation overview

This thesis is about the limit behavior of the temporal and contemporaneous aggre-
gates of certain branching processes. All of the chapters of this current work deal with
this question, either for different processes, different manners regarding the convergence
(iterated, simultaneous), or different centralizations.

More precisely, this work consists of the following parts. The introduction (first chapter)
contains our motivation, the historical background, the essence of our main results, and
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the presentation overview.
The second chapter deals with the aggregation of stationary multitype Galton–Watson

branching processes with immigration. Many properties of these processes are discussed,
and limit theorems are presented concerning their aggregates, and those of two special
cases: GINAR(p) processes and INAR(1) processes with Poisson immigration.

The third and fourth chapters are devoted to stationary randomized INAR(1) pro-
cesses with Poisson innovations. The third chapter contains the definition and properties
of these processes, along with the limit theorems concerning simple aggregates and the iter-
ated limit theorems related to the temporal and contemporaneous aggregates. The fourth
chapter solely consists of the simultaneous limit theorems related to these temporal and
contemporaneous aggregates. At the end of the thesis, in Appendix A, there is an overview
of the many lengthy theorems of these two chapters. We present the essence of these limit
theorems together to show their resemblance and differences as well.

1.3 Credits

All the proofs of this dissertation are joint work with my supervisors Gyula Pap, and
with the exception of a few, with Mátyás Barczy.

The proofs of Chapter 2 are based on the paper, [3],
M. Barczy, F. K. Nedényi, and G. Pap. On aggregation of multitype Galton–Watson

branching processes with immigration. Mod. Stoch. Theory Appl. 5(1):53–79, 2018.

In Chapter 3 the proofs of Theorems 3.11 and 3.13 are based on the paper, [35],
F. Nedényi and G. Pap. Iterated scaling limits for aggregation of random coefficient

AR(1) and INAR(1) processes. Statist. Probab. Lett. 118:16–23, 2016.

The rest of the proofs of Chapter 3 is based on the paper, [6],
M. Barczy, F. Nedényi, and G. Pap. Iterated limits for aggregation of randomized INAR(1)

processes with Poisson innovations. J. Math. Anal. Appl. 451(1):524–543, 2017.

The proofs of Chapter 4 are based on the paper, submitted to a journal, [4],
M. Barczy, F. K. Nedényi, and G. Pap. On simultaneous limits for aggregation of sta-

tionary randomized INAR(1) processes with Poisson innovations. ArXiv 2001.07127,
2020+.
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Chapter 2

Limit theorems for the aggregation of
multitype Galton–Watson branching
processes with immigration

This chapter deals with the aggregation of multitype Galton–Watson branching pro-
cesses with immigration. The proofs of this chapter are based on the paper Barczy et
al. [3].

In Section 2.1 many properties of these processes are discussed. In Lemma 2.5 we
state that for a subcritical, positively regular multitype Galton–Watson branching process
with nontrivial immigration, its unique stationary distribution admits finite γth moments
provided that the branching and immigration distributions have finite γth moments,
where γ ∈ {1, 2, 3}. In case of γ ∈ {1, 2}, Quine [44] contains this result, however, in
case of γ = 3, we have not found any precise published proof in the literature for it. The
result is something like a folklore. In the unpublished work by Szűcs [52], under ergodicity
assumptions, the existence of general moments of the stationary distribution were obtained
for multitype Galton–Watson processes with immigration. In a recent work by Kevei and
Wiandt [27], that is yet to be published, they show that for a subcritical multitype Galton–
Watson process with immigration, the stationary distribution admits finite γth moments
provided that the branching and immigration distributions have finite max{γ, 1}th and
γth moments, respectively, for any γ > 0. In Barczy et al. [3, Proof of Lemma 1] one
can find the direct proof of our Lemma 2.5. As a by-product, that proof gives an explicit
formula for the third moment in question, which is not available in the above mentioned
papers by the other authors. We note that these moments have been studied before, e.g.,
in the paper of Quine [43], a recursion is given for the central moments which expresses
the considered central moment of the random variable at time n with that and the lower
moments of the variable at time n− 1.

As the main results of Section 2.1, limit theorems are presented concerning the ag-
gregates of the considered stationary multitype Galton–Watson branching processes with
immigration. In two further sections of this chapter two special cases of these processes are
presented: GINAR(p) processes in Section 2.2 and INAR(1) processes with Poisson immi-
gration in Section 2.4. Section 2.3 is a preparation for the INAR(1) processes with Poisson
innovations, containing some rather technical results. Let us note here that in the paper
Barczy et al. [5], which is the extended ArXiv version of the paper Barczy et al. [6], direct
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proofs were presented for the results of Section 2.4. However, that paper preceded Barczy
et al. [3], the one about the aggregation of general multitype Galton–Watson processes
with immigration. Since the results of Section 2.4 are special cases of those derived for
the multitype Galton–Watson processes with immigration, we omit their original proofs.
In Section 2.5 we give two interesting and relevant examples on how the aggregates of
branching processes can model some current phenomena. All of the proofs of this chapter
are in Section 2.6.

2.1 Aggregation of multitype Galton–Watson branching pro-
cesses

In this section we define the multitype Galton–Watson branching processes with immi-
gration and examine some of their general properties. We also present the limit theorems
corresponding to the temporal and contemporaneous aggregates of these processes. In the
following sections, we will investigate the same for the following special Galton–Watson
branching processes with immigration: GINAR(p) models and INAR(1) processes with
Poisson innovations.

Let (Y k = [Yk,1, . . . , Yk,p]
>)k∈Z+ be a p-type Galton–Watson branching process with

immigration, where p ∈ N. For each k, ` ∈ Z+ and i, j ∈ {1, . . . , p}, Yk,j denotes the
number of j-type individuals in the kth generation, and ξ

(i,j)
k,` denotes the number of

j-type offsprings produced by the `th individual belonging to type i of the (k − 1)th

generation, while ε
(i)
k denotes the number of immigrants of type i in the kth generation.

Then we have

Y k =

Yk−1,1∑
`=1


ξ

(1,1)
k,`
...

ξ
(1,p)
k,`

+ · · ·+
Yk−1,p∑
`=1


ξ

(p,1)
k,`
...

ξ
(p,p)
k,`

+


ε

(1)
k
...
ε

(p)
k

 =:

p∑
i=1

Yk−1,i∑
`=1

ξ
(i)
k,` + εk (2.1)

for every k ∈ N, where we define
∑0

`=1 := 0. Here
{
Y 0, ξ

(i)
k,`, εk : k, ` ∈ N, i ∈ {1, . . . , p}

}
are supposed to be independent Zp+-valued random vectors. Note that we do not assume
independence among the components of these vectors. Moreover, for all i ∈ {1, . . . , p},
{ξ(i), ξ

(i)
k,` : k, ` ∈ N} and {ε, εk : k ∈ N} are supposed to consist of identically distributed

random vectors, respectively.
Let us introduce the notations mε := E(ε) ∈ Rp+, Mξ := E

([
ξ(1), . . . , ξ(p)

])
∈ Rp×p+

and

v(i,j) :=
[
Cov(ξ(1,i), ξ(1,j)), . . . ,Cov(ξ(p,i), ξ(p,j)),Cov(ε(i), ε(j))

]> ∈ R(p+1)×1 (2.2)

for i, j ∈ {1, . . . , p}, provided that the expectations and covariances in question are finite.
Recall that %(Mξ) denotes the spectral radius of Mξ, i.e., the maximum of the absolute
values of the eigenvalues of Mξ. The process (Y k)k∈Z+ is called subcritical, critical or
supercritical if %(Mξ) is smaller than 1, equal to 1, or larger than 1, respectively. This
classification can be motivated by calculating the expected values of the process. First we
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observe that for each n ∈ N, using (2.1), we obtain

E(Y n | FYn−1) =

p∑
i=1

Yn−1,i∑
`=1

E(ξ
(i)
n,` | F

Y
n−1) + E(εn | FYn−1) =

p∑
i=1

Yn−1,i E(ξ(i)) + E(ε)

=

p∑
i=1

E(ξ(i))e>i Y n−1 +mε = MξY n−1 +mε,

(2.3)

where FYn−1 := σ(Y 0, . . . ,Y n−1), n ∈ N, and Yn−1,i := e>i Y n−1, i ∈ {1, . . . , p}. Then,
by taking the expectation, and further iterating this step, we get

E(Y n) = Mξ E(Y n−1) +mε = . . .

= Mn
ξ E(Y 0) + (Mn−1

ξ +Mn−2
ξ + · · ·+Mξ + Ip)mε

= Mn
ξ E(Y 0) + (Mξ − Ip)−1(Mn

ξ − Ip)mε.

This form clearly shows that the limit behavior of the expectation as n→∞ depends on
that of Mn

ξ , which originates in the magnitude of the spectral radius of the matrix Mξ.
This classification is even further detailed for GINAR(p) processes in Remark 2.11.

The matrix Mξ is called primitive if there is a positive integer n ∈ N such that all
the entries of Mn

ξ are positive. The process (Y k)k∈Z+ is called positively regular if Mξ

is primitive. In what follows, we suppose that

E(ξ(i)) ∈ Rp+, i ∈ {1, . . . , p}, mε ∈ Rp+ \ {0},
%(Mξ) < 1, Mξ is primitive.

(2.4)

For further application, we define the matrix

V := (Vi,j)
p
i,j=1 :=

(
v>(i,j)

[
(Ip −Mξ)

−1mε

1

])p
i,j=1

∈ Rp×p, (2.5)

provided that the covariances in question are finite.

Remark 2.1. Note that the matrix (Ip−Mξ)
−1, which appears in (2.5) and throughout

the chapter, exists. Indeed, λ ∈ C is an eigenvalue of Ip −Mξ if and only if 1− λ is
that of Mξ. Therefore, since %(Mξ) < 1, all eigenvalues of Ip −Mξ are non-zero.
This means that det(Ip−Mξ) 6= 0, so (Ip−Mξ)

−1 does exist. One could also refer to
Corollary 5.6.16 and Lemma 5.6.10 in Horn and Johnson [19]. 2

Now we recall the definitions of the reducibility and irreducibility of a matrix. See, e.g.,
Horn and Johnson [19, Definitions 6.2.21 and 6.2.22].

Definition 2.2. A matrix A ∈ Rp×p is reducible if there is a permutation matrix P ∈
Rp×p such that

P>AP =

[
B C

0p−q,q D

]
, 1 6 q 6 p− 1,

where 0p−q,q is a matrix of size (p− q)× q with all zero entries. The matrix A ∈ Rp×p

is irreducible if it is not reducible.

Next we recall the definition of aperiodicity, see, e.g., Danka and Pap [12, Introduction].

10



Definition 2.3. The types {1, . . . , p} can be partitioned according to communication
of types, namely, into r nonempty mutually disjoint subsets D1, . . . , Dr such that an
individual of type j may not have offspring of type i unless there exists ` ∈ {1, . . . , r}
with i ∈ D`−1 and j ∈ D`, where subscripts are considered modulo r. This partitioning
is unique up to cyclic permutation of the subsets. The number r is called the index of
cyclicity of the matrix Mξ. The matrix Mξ is called aperiodic if its index of cyclicity
is 1.

Under (2.4), by the Theorem in Quine [44], there is a unique stationary distribution π

for (Y k)k∈Z+ . Indeed, under (2.4), Mξ is irreducible (see Definition 2.2) following from
the primitivity of Mξ, see Definition 8.5.0 and Theorem 8.5.2 in Horn and Johnson [19].
Further, Mξ is aperiodic (see Definition 2.3), since this is equivalent to the primitivity
of Mξ, see Kesten and Stigum [26, page 314] and Kesten and Stigum [25, Section 3].
Finally, since mε ∈ Rp+ \ {0}, the probability generator function of ε at 0 is less than
1, and

E

(
log

(
p∑
i=1

ε(i)

)
1{ε 6=0}

)
6 E

(
p∑
i=1

ε(i)
1{ε 6=0}

)
6 E

(
p∑
i=1

ε(i)

)
=

p∑
i=1

E(ε(i)) <∞,

so one can apply the Theorem in Quine [44].

Remark 2.4. Note that V is symmetric and positive semidefinite, since v(i,j) = v(j,i),
i, j ∈ {1, . . . , p}, and for all x ∈ Rp,

x>V x =

p∑
i=1

p∑
j=1

Vi,jxixj =

 p∑
i=1

p∑
j=1

xixjv
>
(i,j)

[(Ip −Mξ)
−1mε

1

]
,

where
p∑
i=1

p∑
j=1

xixjv
>
(i,j) =

[
x>Cov(ξ(1), ξ(1))x, . . . ,x>Cov(ξ(p), ξ(p))x,x>Cov(ε, ε)x

]
.

Here x>Cov(ξ(i), ξ(i))x > 0, i ∈ {1, . . . , p}, x>Cov(ε, ε)x > 0, and (Ip−Mξ)
−1mε ∈

Rp+ since (Ip −Mξ)
−1mε is nothing else but the expectation vector of the unique

stationary distribution of (Y k)k∈Z+ , see 2.28 or formula (26) of Quine [44] (as all of the
conditions of that formula are satisfied). Since the matrix V is symmetric and positive
semidefinite, V 1/2 exists, which we will need in the upcoming statements. 2

For the proofs of some of our main results (Propositions 2.6 and 2.7), we are going to
need a connection between the finiteness of the moments of the offspring and immigration
distributions, and that of the stationary distribution. The following lemma captures this
connection. On the possible alternatives of this lemma see the the introduction of this
chapter.

For each γ ∈ N, we say that the γth moment of a random vector is finite if all of its
mixed moments of order γ are finite.

Lemma 2.5. Let us assume (2.4). For each γ ∈ {1, 2, 3}, the unique stationary distribu-
tion π has a finite γth moment, provided that the γth moments of ξ(i), i ∈ {1, . . . , p},
and ε are finite.
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For a more general version of this lemma, see the main theorem of Kevei and Wiandt
[27]. We omit the lengthy, direct proof of this lemma in this thesis, however, it is presented
in Barczy et al. [3, Proof of Lemma 1]. Note that the latter proof, as a by-product, gives
also an explicit formula for the third moment in question.

In what follows, we suppose (2.4) and that the distribution of Y 0 is the unique
stationary distribution π, hence the Markov chain (Y k)k∈Z+ is strictly stationary.
Recall that, by (2.1) in Quine and Durham [45], for any measurable function f : Rp → R
satisfying E(|f(Y 0)|) <∞, we have

1

n

n∑
k=1

f(Y k)
a.s.−→ E(f(Y 0)) as n→∞. (2.6)

First we consider a simple aggregation procedure. For each N ∈ N, consider the
stochastic process S(N) = (S

(N)
k )k∈Z+ given by

S
(N)
k :=

N∑
j=1

(Y
(j)
k − E(Y

(j)
k )), k ∈ Z+, (2.7)

where Y (j) = (Y
(j)
k )k∈Z+ , j ∈ N, is a sequence of independent copies of the strictly

stationary p-type Galton–Watson process (Y k)k∈Z+ with immigration. Here we point
out that we consider so-called idiosyncratic immigrations, i.e., the immigrations belonging
to Y (j), j ∈ N, are independent. Note that throughout the thesis we will keep using
the notation S(N) for the same aggregate of the current processes considered in different
parts of this work.

Proposition 2.6. If all entries of the vectors ξ(i), i ∈ {1, . . . , p}, and ε have finite
second moments, then

N−
1
2S(N) Df−→ Y as N →∞,

where Y = (Yk)k∈Z+ is a stationary p-dimensional zero mean Gaussian process with
covariances

E(Y0Y>k ) = Cov(Y 0,Y k) = Var(Y 0)(M>
ξ )k, k ∈ Z+, (2.8)

where

Var(Y 0) =

∞∑
k=0

Mk
ξV (M>

ξ )k. (2.9)

Proposition 2.7. If all entries of the vectors ξ(i), i ∈ {1, . . . , p}, and ε have finite
third moments, then

(
n−

1
2

bntc∑
k=1

S
(1)
k

)
t∈R+

=

(
n−

1
2

bntc∑
k=1

(Y
(1)
k − E(Y

(1)
k ))

)
t∈R+

D−→ (Ip −Mξ)
−1V

1
2B

as n → ∞, where B = (Bt)t∈R+ is a p-dimensional standard Brownian motion, and
the matrix V is defined in (2.5). (Note that, by Remark 2.4, V 1/2 does exist.)
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Note that Propositions 2.6 and 2.7 are about the scalings of the space-aggregated
process S(N) and the time-aggregated process

(∑bntc
k=1 S

(1)
k

)
t∈R+

, respectively.
Now we turn to examine the space- and time-aggregated process. For each N,n ∈ N,

consider the stochastic process S(N,n) = (S
(N,n)
t )t∈R+ given by

S
(N,n)
t :=

N∑
j=1

bntc∑
k=1

(Y
(j)
k − E(Y

(j)
k )), t ∈ R+. (2.10)

Note that throughout the thesis we will keep using the notation S(N,n) for the same
aggregate of the current processes considered in different parts of this work.

Theorem 2.8. If all entries of the vectors ξ(i), i ∈ {1, . . . , p}, and ε have finite second
moments, then

Df- lim
n→∞

Df- lim
N→∞

(nN)−
1
2S(N,n) = (Ip −Mξ)

−1V
1
2B, (2.11)

where B = (Bt)t∈R+ is a p-dimensional standard Brownian motion, and the matrix V

is defined in (2.5).
If all entries of the vectors ξ(i), i ∈ {1, . . . , p}, and ε have finite third moments,

then

Df- lim
N→∞

Df- lim
n→∞

(nN)−
1
2S(N,n) = (Ip −Mξ)

−1V
1
2B, (2.12)

where B = (Bt)t∈R+ is a p-dimensional standard Brownian motion, and the matrix V

is defined in (2.5).

Theorem 2.9. If all entries of the vectors ξ(i), i ∈ {1, . . . , p}, and ε have finite third
moments, then

(nN)−
1
2S(N,n) D−→ (Ip −Mξ)

−1V
1
2B, (2.13)

if both n and N converge to infinity (at any rate), where B = (Bt)t∈R+ is a standard
p-dimensional Brownian motion and the matrix V is defined in (2.5).

A key ingredient of the proofs is the fact that (Y k − E(Y k))k∈Z+ can be rewritten
as a subcritical first order vector autoregressive process with coefficient matrix Mξ and
with heteroscedastic innovations, see (2.30).

In the following remark we investigate the meaning of taking iterated limits, and the no-
tations Df -limN→∞ Df -limn→∞ and Df -limn→∞ Df -limN→∞, that appeared in Theorem
2.8, and which will be important in all of the iterated limit theorems of this thesis.

Remark 2.10. Let us begin with the understanding of (2.12). Taking the first limit (
Df -limn→∞(nN)−

1
2S(N,n)), by Proposition 2.7, means that for each N ∈ N, every m ∈

Z+, and 0 = t0 < t1 < · · · < tm <∞, we have that(nN)−
1
2

N∑
j=1

bnt0c∑
k=1

(Y
(j)
k − E(Y

(j)
k )), . . . , (nN)−

1
2

N∑
j=1

bntmc∑
k=1

(Y
(j)
k − E(Y

(j)
k ))


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converges in distribution as n→∞ to the following limit:N− 1
2

N∑
j=1

(Ip −Mξ)
−1V

1
2B

(j)
t0
, . . . , N−

1
2

N∑
j=1

(Ip −Mξ)
−1V

1
2B

(j)
tm

 .

The summations in the latter formula could be problematic since there is no guarantee
that the terms of the sums are defined on the same probability space. However, since
the processes B(j), j ∈ N, are independent of each other, they can be considered on a
probability space that can be chosen as the infinite product probability space. Then we
can investigate whether the latter m + 1-dimensional vector converges in distribution as
N →∞.

Now we turn to (2.11). Taking the first limit (Df -limN→∞(nN)−
1
2S(N,n)), by Proposi-

tion 2.6, means that for each n ∈ N, every m ∈ Z+, and 0 = t0 < t1 < · · · < tm <∞,
we have that(nN)−

1
2

N∑
j=1

bnt0c∑
k=1

(Y
(j)
k − E(Y

(j)
k )), . . . , (nN)−

1
2

N∑
j=1

bntmc∑
k=1

(Y
(j)
k − E(Y

(j)
k ))


converges in distribution as N →∞ to the following limit:n− 1

2

bnt0c∑
k=1

Yk, . . . , n
− 1

2

bntmc∑
k=1

Yk

 .

Here the summations do not cause any issues as Yk, k ∈ N, is a stochastic process. Then
it remains to show whether the latter m+ 1-dimensional vector converges in distribution
as n→∞.

Note that similar arguments hold for the limit theorems presented in the forthcoming
sections and chapters as well. 2

2.2 A special case: aggregation of GINAR processes

We devote this section to the analysis of aggregation of generalized integer-valued
autoregressive processes of order p ∈ N (GINAR(p) processes), which are special cases of
the p-type Galton–Watson branching processes with immigration introduced in (2.1). For
historical fidelity, we note that it was Latour [29] who introduced GINAR(p) processes as
generalizations of INAR(p) processes. This class of processes became popular in modeling
integer-valued time series data such as the daily number of claims at an insurance company.
In fact, a GINAR(1) process is a (general) single-type Galton–Watson branching process
with immigration.

Let (Zk)k>−p+1 be a GINAR(p) process. Namely, for each k, ` ∈ Z+ and i ∈
{1, . . . , p}, the number of individuals in the kth generation will be denoted by Zk, the
number of offsprings produced by the `th individual belonging to the (k− i)th generation
will be denoted by ξ

(i,1)
k,` , and the number of immigrants in the kth generation will be

denoted by ε
(1)
k . Here the 1-s in the superscripts of ξ

(i,1)
k,` and ε

(1)
k are displayed in

order to have a better comparison with (2.1). Then we have

Zk =

Zk−1∑
`=1

ξ
(1,1)
k,` + · · ·+

Zk−p∑
`=1

ξ
(p,1)
k,` + ε

(1)
k , k ∈ N. (2.14)
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Here
{
Z0, Z−1, . . . , Z−p+1, ξ

(i,1)
k,` , ε

(1)
k : k, ` ∈ N, i ∈ {1, . . . , p}

}
are supposed to be in-

dependent nonnegative integer-valued random variables. Moreover, for all i ∈ {1, . . . , p},
{ξ(i,1), ξ

(i,1)
k,` : k, ` ∈ N} and {ε(1), ε

(1)
k : k ∈ N} are supposed to consist of identically

distributed random variables, respectively.
A GINAR(p) process can be embedded in a p-type Galton–Watson branching process

with immigration (Y k = [Zk, . . . , Zk−p+1]>)k∈Z+ with the corresponding p-dimensional
random vectors

ξ
(1)
k,` =


ξ

(1,1)
k,`

1

0
...
0

 , · · · , ξ
(p−1)
k,` =


ξ

(p−1,1)
k,`

0
...
0

1

 , ξ
(p)
k,` =


ξ

(p,1)
k,`

0

0
...
0

 , εk =


ε

(1)
k

0

0
...
0


for any k, ` ∈ N.

In what follows, we reformulate the classification that was introduced for multitype
Galton–Watson processes for GINAR(p) processes in terms of the expectations of the
offspring distributions.

Remark 2.11. In case of a GINAR(p) process, if E(ξ(p,1)) > 0, then by Proposition 2.2
in Barczy et al. [2],

%(Mξ)


<

=

>

1 ⇐⇒
p∑
i=1

E(ξ(i,1))


<

=

>

1.

2

Next we specialize the matrix V , defined in (2.5), in case of a subcritical GINAR(p)
process.

Remark 2.12. In case of a GINAR(p) process, the vectors

v(i,j) =
[
Cov(ξ(1,i), ξ(1,j)), . . . ,Cov(ξ(p,i), ξ(p,j)),Cov(ε(i), ε(j))

]> ∈ R(p+1)×1

for i, j ∈ {1, . . . , p} are all zero vectors except for when i = j = 1. Therefore, in case of
%(Mξ) < 1, the matrix V , defined in (2.5), reduces to

V = v>(1,1)

[
(Ip −Mξ)

−1 E(ε(1))e1

1

]
(e1e

>
1 ). (2.15)

2

Finally, we specialize the limit distribution in Theorems 2.8 and 2.9 in case of a sub-
critical GINAR(1) process.

Remark 2.13. Let us note that in case of p = 1 and E(ξ(1,1)) < 1 (yielding that the
corresponding GINAR(1) process is subcritical), the limit process in Theorems 2.8 and 2.9
can be written as

1

1− E(ξ(1,1))

√
E(ε(1)) Var(ξ(1,1)) + (1− E(ξ(1,1))) Var(ε(1))

1− E(ξ(1,1))
B,
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where B = (Bt)t∈R+ is a standard one-dimensional Brownian motion. Indeed, this holds,
since in this special case Mξ = E(ξ(1,1)), yielding that (Ip−Mξ)

−1 = (1−E(ξ(1,1)))−1,
and, by (2.15),

V =

[
Cov(ξ(1,1), ξ(1,1))

Cov(ε(1), ε(1))

]> [ E(ε(1))

1−E(ξ(1,1))

1

]
=

Var(ξ(1,1))E(ε(1))

1− E(ξ(1,1))
+ Var(ε(1)).

2

2.3 Some properties of Galton–Watson and INAR(1) pro-
cesses

This section is a technical one to support Section 2.4, which concerns the aggregation
of INAR(1) processes with Poisson immigration.

Let us consider a single-type Galton–Watson process with immigration, (Yk)k∈Z+ . For
each k, ` ∈ Z+, the number of individuals in the kth generation will be denoted by
Yk, the number of offsprings produced by the `th individual belonging to the (k − 1)th

generation will be denoted by ξk,`, and the number of immigrants in the kth generation
will be denoted by εk. Then, as a special case of (2.1), we have

Yk =

Yk−1∑
`=1

ξk,` + εk, k ∈ N,

where we recall that
∑0

`=1 = 0. Here
{
Y0, ξk,`, εk : k, ` ∈ N

}
are supposed to be

independent nonnegative integer-valued random variables. Moreover, {ξk,` : k, ` ∈ N}
and {εk : k ∈ N} are supposed to consist of identically distributed random variables,
respectively.

Let us introduce the generator functions

Fk(z) := E(zYk), k ∈ Z+, G(z) := E(zξ1,1), H(z) := E(zε1) (2.16)

for z ∈ D := {z ∈ C : |z| 6 1}. First we observe that for each k ∈ N, the conditional
generator function E(zYkk |Yk−1) of Yk given Yk−1 takes the form

E(zYkk |Yk−1) = E
(
z
∑Yk−1
`=1 ξk,`+εk

k

∣∣∣Yk−1

)
= E(zεkk )

Yk−1∏
`=1

E(z
ξk,`
k ) = H(zk)G(zk)

Yk−1 (2.17)

for zk ∈ D, where we define
∏0
`=1 := 1. The aim of the following discussion is to

calculate the joint generator function of the finite dimensional distributions of (Yk)k∈Z+ .
Using (2.17), we also have the recursion

Fk(z) = E(E(zYk |Yk−1)) = E(H(z)G(z)Yk−1) = H(z)E
(
G(z)Yk−1

)
= H(z)Fk−1(G(z))

for z ∈ D and k ∈ N. Put G(0)(z) := z and G(1)(z) := G(z) for z ∈ D, and introduce
the iterates G(k+1)(z) := G(k)(G(z)), z ∈ D, k ∈ N. The above recursion yields

Fk(z) = H(z)H(G(z)) · · ·H(G(k−1)(z))F0(G(k)(z)) = F0(G(k)(z))

k−1∏
j=0

H(G(j)(z))
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for z ∈ D and k ∈ N. Supposing that E(ξ1,1) = G′(1−) < 1, 0 < P(ξ1,1 = 0) < 1,
0 < P(ξ1,1 = 1) and 0 < P(ε1 = 0) < 1, the Markov chain (Yk)k∈Z+ is irreducible and
aperiodic. Further, it is ergodic (positive recurrent) if and only if

∑∞
`=1 log(`)P(ε1 = `) <

∞, and in this case the unique stationary distribution has the generator function

F̃ (z) :=

∞∏
j=0

H(G(j)(z)), z ∈ D, (2.18)

see, e.g., Seneta [48, Chapter 5] and Foster and Williamson [15, Theorem, part (iii)].
Now we turn to the case of INAR(1) processes with Poisson immigration. From here

on, we are going to denote the process in question with X instead of the previous Y to
be in accordance with Chapter 3, where the randomized INAR(1) process is also denoted
by X. We consider this special case with Bernoulli offspring and Poisson immigration
distributions, namely,

P(ξ1,1 = 1) = α = 1− P(ξ1,1 = 0),

P(ε1 = `) =
λ`

`!
e−λ, ` ∈ Z+,

(2.19)

with α ∈ (0, 1) and λ ∈ (0,∞). With the special choices (2.19), the single-type Galton–
Watson process with immigration (Xk)k∈Z+ is an INAR(1) process with Poisson innova-
tion. Then

G(z) = 1− α+ αz, H(z) =
∞∑
`=0

z`λ`

`!
e−λ = eλ(z−1), z ∈ C,

hence
G(j)(z) = 1− αj + αjz, z ∈ C, j ∈ N.

Indeed, by induction, for all j ∈ Z+,

G(j+1)(z) = G(G(j)(z)) = αG(j)(z) + 1−α = α(1−αj +αjz) + 1−α = 1−αj+1 +αj+1z.

Since E(ξ1,1) = G′(1−) = α ∈ (0, 1), P(ξ1,1 = 0) = 1 − α ∈ (0, 1), P(ξ1,1 = 1) = α > 0,
P(ε1 = 0) = e−λ ∈ (0, 1), and

∞∑
`=1

log(`)
λ`

`!
e−λ 6

∞∑
`=1

`
λ`

`!
e−λ = E(ε1) = λ <∞,

the Markov chain (Xk)k∈Z+ has a unique stationary distribution admitting a generator
function of the form

F̃ (z) =

∞∏
j=0

eλ(G(j)(z)−1) =
∞∏
j=0

eα
jλ(z−1) = e(1−α)−1λ(z−1), z ∈ C,

thus it is a Poisson distribution with expectation (1− α)−1λ.
Suppose now that the initial distribution is a Poisson distribution with expectation

(1− α)−1λ, hence the Markov chain (Xk)k∈Z+ is strictly stationary and

F0(z0) = E(zX0
0 ) = e(1−α)−1λ(z0−1), z0 ∈ C. (2.20)
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Proposition 2.14. Under (2.19) and supposing that the distribution of X0 is Poisson
distribution with expectation (1−α)−1λ, the joint generator function of (X0, X1, . . . , Xk),
k ∈ Z+, takes the form

F0,...,k(z0, . . . , zk) := E(zX0
0 zX1

1 · · · z
Xk
k )

= exp

 λ

1− α
∑

06i6j6k

αj−i(zi − 1)zi+1 · · · zj−1(zj − 1)

 (2.21)

for all k ∈ N and z0, . . . , zk ∈ C, where, for i = j, the term in the sum above is zi−1.
Alternatively, one can write up the joint generator function as

F0,...,k(z0, . . . , zk) = exp

λ ∑
06i6j6k

(1− α)Ki,j,kαj−i(zizi+1 · · · zj − 1)

 , (2.22)

where

Ki,j,k :=


−1 if i = 0 and j = k,

0 if i = 0 and 0 6 j 6 k − 1,

0 if 1 6 i 6 k and j = k,

1 if 1 6 i 6 j 6 k − 1.

Remark 2.15. Under the conditions of Proposition 2.14, the distribution of (X0, X1)

can be represented using independent Poisson distributed random variables. Namely, if
U , V and W are independent Poisson distributed random variables with parameters
λ(1− α)−1α, λ and λ, respectively, then (X0, X1)

D
= (U + V,U +W ). Indeed, for all

z0, z1 ∈ C,

E(zU+V
0 zU+W

1 ) = E((z0z1)UzV0 z
W
1 ) = E((z0z1)U )E(zV0 )E(zW1 )

= eλ(1−α)−1α(z0z1−1)eλ(z0−1)eλ(z1−1),

as desired based on (2.22). Further, note that formula (2.22) shows that (X0, . . . , Xk) has
a (k + 1)-variate Poisson distribution, see, e.g., Johnson et al. [24, (37.85)]. 2

2.4 A special case: aggregation of INAR(1) processes

In this section we investigate the aggregation of stationary INAR(1) processes with
Poisson innovation, which are special cases of the p-type Galton–Watson branching pro-
cesses with immigration introduced in (2.1). This section also serves a basis for Chapter 3,
which concerns the aggregation of certain randomized INAR(1) processes.

Let (Xk)k∈Z+ be an INAR(1) process with offspring and immigration distributions
given in (2.19) and with initial distribution given in (2.20), hence the process is strictly
stationary. Let X(j) = (X

(j)
k )k∈Z+ , j ∈ N, be a sequence of independent copies of the

stationary INAR(1) process (Xk)k∈Z+ .
First we consider a simple aggregation procedure. For each N ∈ N, consider the

stochastic process S(N) = (S
(N)
k )k∈Z+ given by

S
(N)
k :=

N∑
j=1

(X
(j)
k − E(X

(j)
k )), k ∈ Z+, (2.23)
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where E(X
(j)
k ) = (1 − α)−1λ, k ∈ Z+, j ∈ N, since the stationary distribution is

Poisson with expectation (1 − α)−1λ. The following propositions and theorems are the
special cases of Propositions 2.6 and 2.7, and Theorems 2.8 and 2.9, since the offspring and
innovation variables all have finite moments. In our special case, one can easily verify the
limit process of Proposition 2.7 and Theorems 2.8 and 2.9 by Remark 2.13. Indeed, all we
have to do is substitute E(ξ(1,1)) = α, Var(ξ(1,1)) = α(1−α) and E(ε(1)) = Var(ε(1)) = λ

into the formula of Remark 2.13.

Proposition 2.16. We have

N−
1
2S(N) Df−→ X as N →∞,

where X = (Xk)k∈Z+ is a stationary Gaussian process with zero mean and covariances

E(X0Xk) = Cov(X0, Xk) =
λαk

1− α
, k ∈ Z+. (2.24)

The latter covariance is the special case of (2.8) since the variance of the stationary
distribution (which is Poisson distribution with parameter (1 − α)−1λ) is Var(X0) =

(1 − α)−1λ and the matrix Mξ reduces to α. Note that formula (2.9) also results
Var(X0) = (1− α)−1λ.

Proposition 2.17. We have

(
n−

1
2

bntc∑
k=1

S
(1)
k

)
t∈R+

=

(
n−

1
2

bntc∑
k=1

(X
(1)
k − E(X

(1)
k ))

)
t∈R+

D−→
√
λ(1 + α)

1− α
B

as n→∞, where B = (Bt)t∈R+ is a standard Brownian motion.

Note that Propositions 2.16 and 2.17 are about the scaling of the space-aggregated
process S(N) and the time-aggregated process

(∑bntc
k=1 S

(1)
k

)
t∈R+

, respectively.

For each N,n ∈ N, consider the stochastic process S(N,n) = (S
(N,n)
t )t∈R+ given by

S
(N,n)
t :=

N∑
j=1

bntc∑
k=1

(X
(j)
k − E(X

(j)
k )), t ∈ R+. (2.25)

Theorem 2.18. We have

Df- lim
n→∞

Df- lim
N→∞

(nN)−
1
2S(N,n) = Df- lim

N→∞
Df- lim

n→∞
(nN)−

1
2S(N,n) =

√
λ(1 + α)

1− α
B,

where B = (Bt)t∈R+ is a standard Brownian motion.

Theorem 2.19. We have

(nN)−
1
2S(N,n) D−→

√
λ(1 + α)

1− α
B,

if both n and N converge to infinity (at any rate), where B = (Bt)t∈R+ is a standard
Brownian motion.
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We point out that the process S(N,n) contains the expected values of the processes
X(j), j ∈ N. Therefore, in a statistical testing, it could not be used directly. So we consider
a similar process

Ŝ
(N,n)
t :=

N∑
j=1

bntc∑
k=1

[
X

(j)
k −

∑n
`=1X

(j)
`

n

]
, t ∈ R+, (2.26)

which does not require the knowledge of the expectation of the processes X(j), j ∈ N.
Note that the summands in Ŝ

(N,n)
t have 0 means, so we do not need any additional

centering. Moreover, Ŝ(N,n) is related to the previously examined process in the following
way:

Ŝ
(N,n)
t =

N∑
j=1

bntc∑
k=1

[
X

(j)
k − E(X

(j)
k )−

∑n
`=1(X

(j)
` − E(X

(j)
` ))

n

]
= S

(N,n)
t − bntc

n
S

(N,n)
1 .

Therefore, by Theorems 2.18 and 2.19, using Slutsky’s lemma, the following limit
theorems hold.

Corollary 2.20. We have

Df- lim
n→∞

Df- lim
N→∞

(nN)−
1
2 Ŝ(N,n)

= Df- lim
N→∞

Df- lim
n→∞

(nN)−
1
2 Ŝ(N,n) =

√
λ(1 + α)

1− α
(Bt − tB1)t∈R+ ,

where B = (Bt)t∈R+ is a standard Brownian motion.

Corollary 2.21. We have

(nN)−
1
2 Ŝ(N,n) D−→

√
λ(1 + α)

1− α
(Bt − tB1)t∈R+ ,

if both n and N converge to infinity (at any rate), where B = (Bt)t∈R+ is a standard
Brownian motion.

2.5 Applications

In this section, to illustrate the fact that the aggregation of branching processes is
an important topic from the point of view of applications as well, now we present two
interesting and relevant examples, where the phenomena of aggregation of this kind of
processes may come into play.

Example 2.22. A usual INAR(1) process with immigration, (Xk)k∈Z+ , can be used to
model migration, which is an important task nowadays all over the world. More precisely,
given a camp, for all k ∈ Z+, the random variable Xk can be interpreted as the number
of migrants present in the camp at time k, and every migrant will stay in the camp
with probability α ∈ (0, 1) independently of each other (i.e., with probability 1 − α

each migrant leaves the camp) and, at any time k ∈ N, new migrants may come to the
camp. Given several camps in a country, we may suppose that the corresponding INAR(1)
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processes share the same parameter α and they are independent. So, the temporal and
contemporaneous aggregates of these INAR(1) processes is the total usage of the camps
in terms of the number of migrants in the given country in a given time period, and this
quantity may be worth studying. 2

Example 2.23. As of 2020, modeling the COVID-19 contamination of the population of a
certain region or country is of great importance. Multitype Galton–Watson processes with
immigration have been frequently used to model the spreading of a number of diseases,
and they can be applied for this new disease as well. For example, Yanev et al. [57] applied
a two-type Galton–Watson process with immigration to model the number of undetected,
COVID-19-infected, and detected, COVID-19-infected people in a population. The tem-
poral and contemporaneous aggregation of the first coordinate process of the two-type
branching process in question would mean the total number of undetected, infected people
up to some given time point across several regions, which is of great importance. The aim
of their paper is to use the daily statistics (which is the number of detected infected people)
to estimate the expected value of the non-observed number of undetected contaminated
individuals. 2

2.6 Proofs

Proof of Proposition 2.6. Similarly as (2.3), we have

E(Y k | FYk−1) = MξY k−1 +mε, k ∈ N,

where FYk = σ(Y 0, . . . ,Y k), k ∈ Z+. Consequently,

E(Y k) = Mξ E(Y k−1) +mε, k ∈ N, (2.27)

and, taking into account the fact that E(Y k) = E(Y 0), k ∈ Z+ (following from the strict
stationarity of (Y k)k∈Z+), we have

E(Y 0) = (Ip −Mξ)
−1mε. (2.28)

Note that this also follows by formula (26) of Quine [44] (as all of the conditions of that
formula are satisfied). Put

Uk : = Y k − E(Y k | FYk−1) = Y k − (MξY k−1 +mε)

=

p∑
i=1

Yk−1,i∑
`=1

(ξ
(i)
k,` − E(ξ

(i)
k,`)) + (εk − E(εk)), k ∈ N.

Then E(Uk | FYk−1) = 0, k ∈ N, and using the independence of
{
ξ

(i)
k,`, εk : k, ` ∈ N, i ∈

{1, . . . , p}
}
, we have

E(Uk,iUk,j | FYk−1) =

p∑
q=1

Yk−1,q Cov(ξ
(q,i)
k,1 , ξ

(q,j)
k,1 ) + Cov(ε

(i)
k , ε

(j)
k ) = v>(i,j)

[
Y k−1

1

]
(2.29)

for i, j ∈ {1, . . . , p} and k ∈ N, where [Uk,1, . . . , Uk,p]
> := Uk, k ∈ N. For each k ∈ N,

using Y k = MξY k−1 +mε +Uk and (2.27), we obtain

Y k − E(Y k) = Mξ(Y k−1 − E(Y k−1)) +Uk, k ∈ N. (2.30)
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Consequently,

E((Y k − E(Y k))(Y k − E(Y k))
> | FYk−1)

= E((Mξ(Y k−1 − E(Y k−1)) +Uk)(Mξ(Y k−1 − E(Y k−1)) +Uk)
> | FYk−1)

= E(UkU
>
k | FYk−1) +Mξ(Y k−1 − E(Y k−1))(Y k−1 − E(Y k−1))>M>

ξ

for all k ∈ N. Taking the expectation, by (2.28) and (2.29), we conclude

Var(Y k) = E(UkU
>
k ) +Mξ Var(Y k−1)M>

ξ = V +Mξ Var(Y k−1)M>
ξ , k ∈ N.

Under the conditions of the proposition, by Lemma 2.5, the unique stationary distribution
π has a finite second moment, hence, using again the stationarity of (Y k)k∈Z+ , for each
N ∈ N, we get

Var(Y 0) = V +Mξ Var(Y 0)M>
ξ =

N−1∑
k=0

Mk
ξV (M>

ξ )k +MN
ξ Var(Y 0)(M>

ξ )N . (2.31)

Here limN→∞M
N
ξ Var(Y 0)(M>

ξ )N = 0 ∈ Rp×p. Indeed, %(Mξ) = limk→∞ ‖Mk
ξ‖1/k

by the Gelfand formula, see, e.g., Horn and Johnson [19, Corollary 5.6.14]. Hence there
exists k0 ∈ N such that

‖Mk
ξ‖1/k 6 %(Mξ) +

1− %(Mξ)

2
=

1 + %(Mξ)

2
< 1 for all k > k0, (2.32)

since %(Mξ) < 1. Thus, for all N > k0,

‖MN
ξ Var(Y 0)(M>

ξ )N‖ 6 ‖MN
ξ ‖‖Var(Y 0)‖‖(M>

ξ )N‖ = ‖MN
ξ ‖‖Var(Y 0)‖‖MN

ξ ‖

6

(
1 + %(Mξ)

2

)2N

‖Var(Y 0)‖,

hence ‖MN
ξ Var(Y 0)(M>

ξ )N‖ → 0 as N →∞. Consequently,

Var(Y 0) =
∞∑
k=0

Mk
ξV (M>

ξ )k,

yielding (2.9). Moreover, by (2.30),

E((Y 0 − E(Y 0))(Y k − E(Y k))
> | FYk−1) = (Y 0 − E(Y 0))E((Y k − E(Y k))

> | FYk−1)

= (Y 0 − E(Y 0))(Y k−1 − E(Y k−1))>M>
ξ , k ∈ N.

Taking the expectation, we conclude

Cov(Y 0,Y k) = Cov(Y 0,Y k−1)M>
ξ , k ∈ N.

Hence, by induction, we obtain the formula for Cov(Y 0,Y k). The statement will follow
from the multidimensional central limit theorem. Due to the continuous mapping theorem,
it is sufficient to show the convergence N−1/2(S

(N)
0 ,S

(N)
1 , . . . ,S

(N)
k )

D−→ (Y0,Y1, . . . ,Yk)

as N → ∞ for all k ∈ Z+. For all k ∈ Z+, the random vectors
(
(Y

(j)
0 −
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E(Y
(j)
0 ))>, (Y

(j)
1 − E(Y

(j)
1 ))>, . . . , (Y

(j)
k − E(Y

(j)
k ))>

)>, j ∈ N, are independent, iden-
tically distributed having zero mean vector and covariances

Cov(Y
(j)
`1
,Y

(j)
`2

) = Cov(Y
(j)
0 ,Y

(j)
`2−`1) = Var(Y 0)(M>

ξ )`2−`1

for j ∈ N, `1, `2 ∈ {0, 1, . . . , k}, `1 6 `2, following from the strict stationarity of Y (j)

and from (2.8). 2

Proof of Proposition 2.7. It is known that

Uk = Y k − E(Y k | FYk−1) = Y k −MξY k−1 −mε, k ∈ N,

are martingale differences with respect to the filtration (FYk )k∈Z+ . The functional mar-
tingale central limit theorem can be applied, see, e.g., Jacod and Shiryaev [21, Theorem
VIII.3.33]. Indeed, using (2.29) and the fact that the first moment of Y 0 exists and is
finite, by (2.6), for each t ∈ R+, and i, j ∈ {1, . . . , p}, we have

1

n

bntc∑
k=1

E(Uk,iUk,j | FYk−1)
a.s.−→ v>(i,j)

[
E(Y 0)

1

]
t = Vi,jt as n→∞,

and hence the convergence holds in probability as well. Moreover, the conditional Lindeberg
condition holds, namely, for all δ > 0,

1

n

bntc∑
k=1

E
(
‖Uk‖21{‖Uk‖>δ√n} | F

Y
k−1

)
6

1

δn3/2

bntc∑
k=1

E(‖Uk‖3 | FYk−1)

6
C3(p+ 1)3

δn3/2

bntc∑
k=1

∥∥∥∥∥
[
Y k−1

1

]∥∥∥∥∥
3

a.s.−→ 0

(2.33)

with C3 := max{E(‖ξ(i) − E(ξ(i))‖3), i ∈ {1, . . . , p}, E(‖ε − E(ε)‖3)}, where the last
inequality follows by Proposition 3.3 of Nedényi [34], and the almost sure convergence is a
consequence of (2.6), since, under the third order moment assumptions in Proposition 2.7,
by Lemma 2.5 and (2.6),

1

n

bntc∑
k=1

∥∥∥∥∥
[
Y k−1

1

]∥∥∥∥∥
3

a.s.−→ tE

∥∥∥∥∥
[
Y 0

1

]∥∥∥∥∥
3
 as n→∞.

Hence we obtain (
1√
n

bntc∑
k=1

Uk

)
t∈R+

D−→ B̃ as n→∞,

where B̃ = (B̃t)t∈R+ is a p-dimensional zero mean Brownian motion such that Var(B̃1) =

V . Using (2.30), we have

Y k − E(Y k) = Mk
ξ(Y 0 − E(Y 0)) +

k∑
j=1

Mk−j
ξ U j , k ∈ N.
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Consequently, for each n ∈ N and t ∈ R+,

1√
n

bntc∑
k=1

(Y k − E(Y k))

=
1√
n

[(bntc∑
k=1

Mk
ξ

)
(Y 0 − E(Y 0)) +

bntc∑
k=1

k∑
j=1

Mk−j
ξ U j

]

=
1√
n

[
(Ip −Mξ)

−1(Mξ −M
bntc+1
ξ )(Y 0 − E(Y 0)) +

bntc∑
j=1

(bntc∑
k=j

Mk−j
ξ

)
U j

]

=
1√
n

(Ip −Mξ)
−1

(Mξ −M
bntc+1
ξ )(Y 0 − E(Y 0)) +

bntc∑
j=1

(Ip −M bntc−j+1
ξ )U j

 ,
(2.34)

implying the statement using Slutsky’s lemma since %(Mξ) < 1. Indeed,

1√
n

(Ip −Mξ)
−1(Mξ −M

bntc+1
ξ )(Y 0 − E(Y 0))

a.s.−→ 0 as n→∞,

since limn→∞M
bntc+1
ξ = 0 by (2.32). Moreover, n−1/2(Ip−Mξ)

−1
∑bntc

j=1 M
bntc−j+1
ξ U j

converges in L1 and hence in probability to 0 as n→∞, since by (2.29),

E(|Uk,j |) 6
√
E(U2

k,j) =

√√√√v>(j,j)
[
E(Y 0)

1

]
=
√
Vj,j , j ∈ {1, . . . , p}, k ∈ N, (2.35)

and hence

E
(∥∥∥∥ 1√

n

bntc∑
k=1

M
bntc−k+1
ξ Uk

∥∥∥∥) 6
1√
n

bntc∑
k=1

E(‖M bntc−k+1
ξ Uk‖)

6
1√
n

bntc∑
k=1

‖M bntc−k+1
ξ ‖E(‖Uk‖) 6

1√
n

bntc∑
k=1

‖M bntc−k+1
ξ ‖

p∑
j=1

E(|Uk,j |)

6
1√
n

bntc∑
k=1

‖M bntc−k+1
ξ ‖

p∑
j=1

√
Vj,j → 0 as n→∞, (2.36)

since, applying (2.32) for bntc > k0, we have

bntc∑
k=1

‖M bntc−k+1
ξ ‖ =

bntc∑
k=1

‖Mk
ξ‖ =

k0−1∑
k=1

‖Mk
ξ‖+

bntc∑
k=k0

‖Mk
ξ‖

6
k0−1∑
k=1

‖Mk
ξ‖+

bntc∑
k=k0

(
1 + %(Mξ)

2

)k
6

k0−1∑
k=1

‖Mk
ξ‖+

∞∑
k=k0

(
1 + %(Mξ)

2

)k
<∞.

Consequently, by Slutsky’s lemma,(
n−

1
2

bntc∑
k=1

(Y k − E(Y k))

)
t∈R+

D−→ (Ip −Mξ)
−1B̃ as n→∞,
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where B̃ = (B̃t)t∈R+ is a p-dimensional zero mean Brownian motion such that Var(B̃1) =

V , as desired. Furthermore, V 1/2B
D
= B̃, which completes the proof. 2

Proof of Theorem 2.8. First, we prove (2.12). For all N,m ∈ N and all t1, . . . , tm ∈ R+,
by Proposition 2.7 and the continuity theorem, we have

1√
n

(S
(N,n)
t1

, . . . ,S
(N,n)
tm )

D−→ (Ip −Mξ)
−1V

1
2

N∑
`=1

(B
(`)
t1
, . . . ,B

(`)
tm)

as n → ∞, where B(`) = (B
(`)
t )t∈R+ , ` ∈ {1, . . . , N}, are independent p-dimensional

standard Brownian motions. Since

1√
N

N∑
`=1

(B
(`)
t1
, . . . ,B

(`)
tm)

D
= (Bt1 , . . . ,Btm), N ∈ N, m ∈ N,

we obtain the convergence (2.12).
Now, we turn to prove (2.11). For all n ∈ N and for all t1, . . . , tm ∈ R+ with

t1 < . . . < tm, m ∈ N, by Proposition 2.6 and by the continuous mapping theorem, we
have

1√
N

(
(S

(N,n)
t1

)>, . . . , (S
(N,n)
tm )>

)> D−→

(bnt1c∑
k=1

Y>k , . . . ,
bntmc∑
k=1

Y>k

)>
D
= Npm

(
0,Var

((bnt1c∑
k=1

Y>k , . . . ,
bntmc∑
k=1

Y>k

)>))
as N →∞, where (Yk)k∈Z+ is the p-dimensional zero mean stationary Gaussian process
given in Proposition 2.6 and, by (2.8),

Var

((bnt1c∑
k=1

Y>k , . . . ,
bntmc∑
k=1

Y>k

)>)
=

Cov

(bntic∑
k=1

Yk,

bntjc∑
k=1

Yk

)m

i,j=1

=

bntic∑
k=1

bntjc∑
`=1

Cov(Yk,Y`)

m

i,j=1

=

( bntic∑
k=1

(k−1)∧bntjc∑
`=1

Mk−`
ξ Var(Y 0) + (bntic ∧ bntjc) Var(Y 0)

+ Var(Y 0)

bntic∑
k=1

bntjc∑
`=k+1

(M>
ξ )`−k

)m
i,j=1

,

where
∑q2

`=q1
:= 0 for all q2 < q1, q1, q2 ∈ N. By the continuity theorem, for all

θ1, . . . ,θm ∈ Rp, m ∈ N, we conclude

lim
N→∞

E
(

exp

{
i

m∑
j=1

θ>j n
− 1

2N−
1
2S

(N,n)
tj

})

= exp

− 1

2n

m∑
i=1

m∑
j=1

θ>i

bntic∑
k=1

bntjc∑
`=1

Cov(Yk,Y`)

θj

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→ exp

{
−1

2

m∑
i=1

m∑
j=1

(ti ∧ tj)θ>i
[
Mξ(Ip −Mξ)

−1 Var(Y 0) + Var(Y 0)

+ Var(Y 0)(Ip −M>
ξ )−1M>

ξ

]
θj

}
as n→∞.

Indeed, for all s, t ∈ R+ with s < t, we have

1

n

bnsc∑
k=1

bntc∑
`=1

Cov(Yk,Y`)

=
1

n

bnsc∑
k=1

k−1∑
`=1

Mk−`
ξ Var(Y 0) +

bnsc
n

Var(Y 0) +
1

n
Var(Y 0)

bnsc∑
k=1

bntc∑
`=k+1

(M>
ξ )`−k

=
1

n

bnsc∑
k=1

(Mξ −Mk
ξ)(Ip −Mξ)

−1 Var(Y 0) +
bnsc
n

Var(Y 0)

+
1

n
Var(Y 0)(Ip −M>

ξ )−1

bnsc∑
k=1

(M>
ξ − (M>

ξ )bntc−k+1)

=
1

n

(
bnscMξ −Mξ(Ip −M

bnsc
ξ )(Ip −Mξ)

−1
)

(Ip −Mξ)
−1 Var(Y 0)

+
bnsc
n

Var(Y 0) +
1

n
Var(Y 0)(Ip −M>

ξ )−1

×
(
bnscM>

ξ − (Ip −M>
ξ )−1(Ip − (M>

ξ )bnsc)(M>
ξ )bntc−bnsc+1

)
=
bnsc
n

(
Mξ(Ip −Mξ)

−1 Var(Y 0) + Var(Y 0) + Var(Y 0)(Ip −M>
ξ )−1M>

ξ

)
− 1

n

(
Mξ(Ip −M

bnsc
ξ )(Ip −Mξ)

−2 Var(Y 0)

+ Var(Y 0)(Ip −M>
ξ )−2(Ip − (M>

ξ )bnsc)(M>
ξ )bntc−bnsc+1

)
→ s

(
Mξ(Ip −Mξ)

−1 Var(Y 0) + Var(Y 0) + Var(Y 0)(Ip −M>
ξ )−1M>

ξ

)
as n→∞,

since limn→∞M
bnsc
ξ = 0, limn→∞(M>

ξ )bnsc = 0 and limn→∞(M>
ξ )bntc−bnsc+1 = 0 by

(2.32). It remains to show that

Mξ(Ip −Mξ)
−1 Var(Y 0) + Var(Y 0) + Var(Y 0)(Ip −M>

ξ )−1M>
ξ

= (Ip −Mξ)
−1V (Ip −M>

ξ )−1.
(2.37)

We have

Mξ(Ip −Mξ)
−1 = (Ip − (Ip −Mξ))(Ip −Mξ)

−1 = (Ip −Mξ)
−1 − Ip, (2.38)

and hence (Ip −M>
ξ )−1M>

ξ = (Ip −M>
ξ )−1 − Ip, thus the left-hand side of equation

(2.37) can be written as

((Ip −Mξ)
−1 − Ip) Var(Y 0) + Var(Y 0) + Var(Y 0)((Ip −M>

ξ )−1 − Ip)
= (Ip −Mξ)

−1 Var(Y 0)−Var(Y 0) + Var(Y 0)(Ip −M>
ξ )−1.
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By (2.31), we have V = Var(Y 0) −Mξ Var(Y 0)M>
ξ , hence, by (2.38), the right-hand

side of the equation (2.37) can be written as

(Ip −Mξ)
−1(Var(Y 0)−Mξ Var(Y 0)M>

ξ )(Ip −M>
ξ )−1

= (Ip −Mξ)
−1 Var(Y 0)(Ip −M>

ξ )−1 − (Ip −Mξ)
−1Mξ Var(Y 0)M>

ξ (Ip −M>
ξ )−1

= (Ip −Mξ)
−1 Var(Y 0)(Ip −M>

ξ )−1

− ((Ip −Mξ)
−1 − Ip) Var(Y 0)((Ip −M>

ξ )−1 − Ip)
= (Ip −Mξ)

−1 Var(Y 0)−Var(Y 0) + Var(Y 0)(Ip −M>
ξ )−1,

and we conclude (2.37). This implies the convergence (2.11). 2

Proof of Theorem 2.9. As n and N converge to infinity simultaneously, (2.13) is
equivalent to (nNn)−

1
2S(Nn,n) D−→ (Ip −Mξ)

−1V
1
2B as n → ∞ for any sequence

(Nn)n∈N of positive integers such that limn→∞Nn =∞. As we have seen in the proof of
Proposition 2.7, for each j ∈ N,

U
(j)
k := Y

(j)
k − E(Y

(j)
k | F

Y (j)

k−1 ) = Y
(j)
k −MξY

(j)
k−1 −mε, k ∈ N,

are martingale differences with respect to the filtration (FY (j)

k )k∈Z+ . We are going to apply
the functional martingale central limit theorem, see, e.g., Jacod and Shiryaev [21, Theorem
VIII.3.33], for the triangular array consisting of the random vectors

(V
(n)
k )k∈N := (nNn)−

1
2
(
U

(1)
1 , . . . ,U

(Nn)
1 ,U

(1)
2 , . . . ,U

(Nn)
2 ,U

(1)
3 , . . . ,U

(Nn)
3 , . . .

)
in the nth row for each n ∈ N with the filtration (F (n)

k )k∈Z+ given by F (n)
k := FY

(n)

k =

σ(Y
(n)
0 , . . . ,Y

(n)
k ), where

(Y
(n)
k )k∈Z+ :=

(
(Y

(1)
0 , . . . ,Y

(Nn)
0 ),Y

(1)
1 , . . . ,Y

(Nn)
1 ,Y

(1)
2 , . . . ,Y

(Nn)
2 , . . .

)
.

Hence F (n)
0 = σ(Y

(1)
0 , . . . ,Y

(Nn)
0 ), and for each k = `Nn + r with ` ∈ Z+ and

r ∈ {1, . . . , Nn}, we have

F (n)
k = σ

((
∪rj=1FY

(j)

`+1

)
∪
(
∪Nnj=r+1F

Y (j)

`

))
,

where ∪Nnj=Nn+1 := ∅. Moreover, Y (n)
0 = (Y

(1)
0 , . . . ,Y

(Nn)
0 ), and for k = `Nn + r with

` ∈ Z+ and r ∈ {1, . . . , Nn}, we have Y
(n)
k = Y

(r)
`+1 and V

(n)
k = (nNn)−

1
2U

(r)
`+1.

Next we check that for each n ∈ N, (V
(n)
k )k∈N is a sequence of martingale differences

with respect to (F (n)
k )k∈Z+ . We will use that E(ξ |σ(G1 ∪ G2)) = E(ξ | G1) for a random

vector ξ and for σ-algebras G1 ⊂ F and G2 ⊂ F such that σ(σ(ξ) ∪ G1) and G2

are independent and E(‖ξ‖) < ∞. For each k = `Nn + 1 with ` ∈ Z+, we have
E(V

(n)
k | F

(n)
k−1) = (nNn)−

1
2 E(U

(1)
`+1 | F

Y (1)

` ) = 0, since

E(U
(1)
`+1 | F

(n)
k−1) = E(U

(1)
`+1 |σ(∪Nnj=1F

Y (j)

` )) = E(U
(1)
`+1 | F

Y (1)

` ) = 0.

In a similar way, for each k = `Nn + r with ` ∈ Z+ and r ∈ {2, . . . , Nn}, we have
E(V

(n)
k | F

(n)
k−1) = (nNn)−

1
2 E(U

(r)
`+1 | F

Y (r)

` ) = 0, since

E(U
(r)
`+1 | F

(n)
k−1) = E(U

(r)
`+1 |σ((∪r−1

j=1F
Y (j)

`+1 ) ∪ (∪Nnj=rF
Y (j)

` ))) = E(U
(r)
`+1 | F

Y (r)

` ) = 0.
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We want to obtain a functional central limit theorem for the sequence(bntcNn∑
k=1

V
(n)
k

)
t∈R+

=

(
1√
nNn

bntc∑
`=1

Nn∑
r=1

U
(r)
`

)
t∈R+

, n ∈ N.

First, we calculate the conditional variance matrix of V (n)
k . If k = `Nn+1 with ` ∈ Z+,

then

E(V
(n)
k (V

(n)
k )> | F (n)

k−1) = (nNn)−1 E(U
(1)
`+1(U

(1)
`+1)> |σ(∪Nnj=1F

Y (j)

` ))

= (nNn)−1 E(U
(1)
`+1(U

(1)
`+1)> | FY

(1)

` ).

In a similar way, if k = `Nn + r with ` ∈ Z+ and r ∈ {2, . . . , Nn}, then

E(V
(n)
k (V

(n)
k )> | F (n)

k−1) = (nNn)−1 E(U
(r)
`+1(U

(r)
`+1)> |σ((∪r−1

j=1F
Y (j)

`+1 ) ∪ (∪Nnj=rF
Y (j)

` )))

= (nNn)−1 E(U
(r)
`+1(U

(r)
`+1)> | FY

(r)

` ).

Consequently, for each n ∈ N and t ∈ R+, we have
bntcNn∑
k=1

E(V
(n)
k (V

(n)
k )> | F (n)

k−1) =

bntc∑
`=1

Nn∑
r=1

E(V
(n)
(`−1)Nn+r(V

(n)
(`−1)Nn+r)

> | F (n)
(`−1)Nn+r−1)

=
1

nNn

bntc∑
`=1

Nn∑
r=1

E(U
(r)
` (U

(r)
` )> | FY

(r)

`−1 ).

Next, we show that for each t ∈ R+ and i, j ∈ {1, . . . , p}, we have

1

nNn

bntc∑
`=1

Nn∑
r=1

E(U
(r)
`,i U

(r)
`,j | F

Y (r)

`−1 ) =
1

nNn

bntc∑
`=1

Nn∑
r=1

v>(i,j)

[
Y

(r)
`−1

1

]
P−→ v>(i,j)

[
E(Y 0)

1

]
t = Vi,jt

as n→∞. Indeed, the equality follows by (2.29), and for the convergence in probability,
note that limn→∞

bntc
n = t, t ∈ R+, and, by the Cauchy-Schwarz inequality,

E

 1

bntcNn

bntc∑
`=1

Nn∑
r=1

v>(i,j)

[
Y

(r)
`−1 − E(Y 0)

0

]2
=

1

bntc2N2
n

E

((
v>(i,j)

bntc∑
`1=1

Nn∑
r1=1

[
Y

(r1)
`1−1 − E(Y 0)

0

])

×

( bntc∑
`2=1

Nn∑
r2=1

[
Y

(r2)
`2−1 − E(Y 0)

0

]>
v(i,j)

))

=
1

bntc2N2
n

v>(i,j)

bntc∑
`1=1

bntc∑
`2=1

Nn∑
r1=1

Nn∑
r2=1

[
E((Y

(r1)
`1−1 − E(Y 0))(Y

(r2)
`2−1 − E(Y 0))>) 0

0 0

]
v(i,j)

=
1

bntc2Nn

v>(i,j)

bntc∑
`1=1

bntc∑
`2=1

[
E((Y `1−1 − E(Y 0))(Y `2−1 − E(Y 0))>) 0

0 0

]
v(i,j)

6
1

bntc2Nn

‖v(i,j)‖2
bntc∑
`1=1

bntc∑
`2=1

E
(
‖(Y `1−1 − E(Y 0))(Y `2−1 − E(Y 0))>‖

)
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6
1

bntc2Nn

‖v(i,j)‖2
bntc∑
`1=1

bntc∑
`2=1

p∑
m1=1

p∑
m2=1

E(|(Y`1−1,m1 − E(Y0,m1))(Y`2−1,m2 − E(Y0,m2))|)

6
1

bntc2Nn

‖v(i,j)‖2
bntc∑
`1=1

bntc∑
`2=1

p∑
m1=1

p∑
m2=1

√
Var(Y`1−1,m1) Var(Y`2−1,m2)

=
1

Nn
‖v(i,j)‖2

p∑
m1=1

p∑
m2=1

√
Var(Y0,m1) Var(Y0,m2)→ 0 as n→∞,

where we used that ‖Q‖ 6
∑p

i=1

∑p
j=1 |qi,j | for every matrix Q = (qi,j)

p
i,j=1 ∈ Rp×p.

Moreover, in a similar way, the conditional Lindeberg condition holds, namely, for all
δ > 0,

bntcNn∑
k=1

E(‖V (n)
k ‖

2
1{‖V (n)

k ‖>δ}
| F (n)

k−1) =
1

nNn

bntc∑
`=1

Nn∑
r=1

E(‖U (r)
` ‖

2
1{‖U (r)

` ‖>δ
√
nNn}

| FY
(r)

`−1 )

6
1

δn3/2N
1/2
n

bntc∑
`=1

E(‖U (1)
` ‖

3 | FY
(1)

`−1 )
a.s.−→ 0

as n→∞, where the almost sure convergence follows by (2.33). Hence we obtain

(
1√
nNn

bntc∑
`=1

Nn∑
r=1

U
(r)
`

)
t∈R+

=

(bntcNn∑
k=1

V
(n)
k

)
t∈R+

D−→ V
1
2B as n→∞,

where B = (Bt)t∈R+ is a p-dimensional standard Brownian motion. Using (2.34), for
each n ∈ N and t ∈ R+, we have

1√
nNn

bntc∑
`=1

Nn∑
r=1

(Y
(r)
` − E(Y

(r)
` ))

=
1√
n

[
(Ip −Mξ)

−1(Mξ −M
bntc+1
ξ )

1√
Nn

Nn∑
r=1

(Y
(r)
0 − E(Y

(r)
0 ))

]

− 1√
n

[
(Ip −Mξ)

−1

bntc∑
m=1

M
bntc−m+1
ξ

1√
Nn

Nn∑
r=1

U (r)
m

]

+ (Ip −Mξ)
−1 1√

nNn

bntc∑
m=1

Nn∑
r=1

U (r)
m ,

implying the statement using Slutsky’s lemma, since %(Mξ) < 1. Indeed, by (2.32),
limn→∞M

bntc+1
ξ = 0, thus

lim
n→∞

(Ip −Mξ)
−1(Mξ −M

bntc+1
ξ ) = (Ip −Mξ)

−1Mξ,

and, by Proposition 2.6,

1√
Nn

Nn∑
r=1

(Y
(r)
0 − E(Y

(r)
0 ))

D−→ Np(0,Var(Y 0)) as n→∞,
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where Np(0,Var(Y 0)) denotes a p-dimensional normal distribution with zero mean and
with covariance matrix Var(Y 0), and then Slutsky’s lemma yields that

1√
n

[
(Ip −Mξ)

−1(Mξ −M
bntc+1
ξ )

1√
Nn

Nn∑
r=1

(Y
(r)
0 − E(Y

(r)
0 ))

]
P−→ 0 as n→∞.

Further,∥∥∥∥E( 1√
n

bntc∑
m=1

M
bntc−m+1
ξ

1√
Nn

Nn∑
r=1

U (r)
m

)∥∥∥∥ 6
1√
n

bntc∑
m=1

E
(∥∥∥∥M bntc−m+1

ξ

1√
Nn

Nn∑
r=1

U (r)
m

∥∥∥∥)

6
1√
n

bntc∑
m=1

‖M bntc−m+1
ξ ‖E

(∥∥∥∥ 1√
Nn

Nn∑
r=1

U (r)
m

∥∥∥∥)

6
1√
n

bntc∑
m=1

‖M bntc−m+1
ξ ‖

p∑
j=1

E
(∣∣∣∣ 1√

Nn

Nn∑
r=1

U
(r)
m,j

∣∣∣∣)

6
1√
n

bntc∑
m=1

‖M bntc−m+1
ξ ‖

p∑
j=1

√√√√E
((

1√
Nn

Nn∑
r=1

U
(r)
m,j

)2)

=
1√
n

bntc∑
m=1

‖M bntc−m+1
ξ ‖

p∑
j=1

√
E((U

(1)
m,j)

2)

6
1√
n

bntc∑
m=1

‖M bntc−m+1
ξ ‖

p∑
j=1

√
Vj,j → 0 as n→∞,

by (2.36), where for the last inequality we used (2.35). This completes the proof. 2

Proof of Proposition 2.14. First we prove (2.21) by induction. Note that by (2.20) the
statement holds for k = 0. We suppose that it holds for 0, . . . , k, and show that it is
also true for k + 1. Using (2.17) it is easy to see that

F0,...,k,k+1(z0, . . . , zk, zk+1) = E
(
zX0

0 · · · z
Xk
k z

Xk+1

k+1

)
= E

(
zX0

0 · · · z
Xk
k E

(
z
Xk+1

k+1 |X0, . . . , Xk

))
= E

(
zX0

0 · · · z
Xk
k E

(
z
Xk+1

k+1 |Xk

))
= E

(
zX0

0 · · · z
Xk
k eλ(zk+1−1)(1− α+ αzk+1)Xk

)
.

On the one hand, for any z0, . . . , zk+1 ∈ C, by the assumption of the induction,

F0,...,k,k+1(z0, . . . , zk, zk+1) = eλ(zk+1−1)F0,...,k(z0, . . . , zk−1, zk(1− α+ αzk+1))

= exp

{
λ

1− α

[
(1− α)(zk+1 − 1) +

∑
06i6j6k−1

αj−i(zi − 1)zi+1 · · · zj−1(zj − 1)

+ Sum1 + zk(1− α+ αzk+1)− 1

]}
,

with
Sum1 :=

∑
06i6k−1

αk−i(zi − 1)zi+1 · · · zk−1[zk(1− α+ αzk+1)− 1].
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On the other hand, the right hand side of (2.21) for k + 1 has the form

exp

{
λ

1− α

[ ∑
06i6j6k−1

αj−i(zi − 1)zi+1 · · · zj−1(zj − 1) + Sum2 + Sum3

]}
,

where

Sum2 =
∑

06i6k

αk−i(zi − 1)zi+1 · · · zk−1(zk − 1)

= (zk − 1) +
∑

06i6k−1

αk−i(zi − 1)zi+1 · · · zk−1(zk − 1),

and

Sum3 =
∑

06i6k+1

αk+1−i(zi − 1)zi+1 · · · zk(zk+1 − 1)

= (zk+1 − 1) + α(zk − 1)(zk+1 − 1) +
∑

06i6k−1

αk+1−i(zi − 1)zi+1 · · · zk(zk+1 − 1).

Since

Sum1 =
∑

06i6k−1

αk−i(zi−1)zi+1 · · · zk−1(zk−1)+
∑

06i6k−1

αk+1−i(zi−1)zi+1 · · · zk(zk+1−1),

in order to show (2.21) for k + 1, it is enough to check that

(1− α)(zk+1 − 1) + zk(1− α+ αzk+1)− 1 = (zk − 1) + (zk+1 − 1) + α(zk − 1)(zk+1 − 1),

which holds trivially.
Now we prove (2.22). In formula (2.21), for fixed indices 0 6 i 6 j 6 k the term in

the sum gives

(zi − 1)zi+1 · · · zj−1(zj − 1)

= (zi · · · zj − 1)− (zi · · · zj−1 − 1)− (zi+1 · · · zj − 1) + (zi+1 · · · zj−1 − 1),

meaning that the sum consists of similar terms as in (2.22). We only have to show that the
coefficients coincide in the formulas (2.22) and (2.21). In (2.22) the coefficient of zi · · · zj−1

is λ(1 − α)Ki,j,kαj−i. In (2.21) this term may appear multiple times, depending on the
indices i and j. If i = 0 and j = k, then it only appears once, with coefficient
λαj−i/(1 − α), that is the same as in (2.22). However, if i = 0 and 0 6 j 6 k − 1 in
(2.22), then the term also appears when the indices are i and j + 1 in (2.21), meaning
that the coefficient is

λ

(
αj−i

1− α
− αj+1−i

1− α

)
= λαj−i,

which is the same as in (2.22). Similarly, if 1 6 i 6 k and j = k in (2.22), then the term
also appears when the indices are i− 1 and j in (2.21), meaning that the coefficient is

λ

(
αj−i

1− α
− αj−(i−1)

1− α

)
= λαj−i,
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which is the same as in (2.22). If 1 6 i 6 j 6 k− 1 in (2.22), then the term appears three
more times, for the index pairs (i− 1, j), (i, j + 1), (i− 1, j + 1) in (2.21), resulting the
coefficient

λ

(
αj−i

1− α
− αj−(i−1)

1− α
− α(j+1)−i

1− α
+
α(j+1)−(i−1)

1− α

)
= λαj−i

1− 2α+ α2

1− α
= λαj−i(1− α),

which is the same as in (2.22). This completes the proof. 2

32



Chapter 3

Iterated limit theorems for the aggregation
of randomized INAR(1) processes with
Poisson innovations

This chapter is about the introduction of certain randomized (or random coefficient)
INAR(1) processes with Poisson innovations, the behavior of the simple (temporal or con-
temporaneous) aggregates of these processes, and the iterated limit theorems belonging to
the temporal and contemporaneous aggregates. The proofs of this chapter are based on the
paper Barczy et al. [6], except for those of Theorems 3.11 and 3.13, which were published
in Nedényi and Pap [35]. These two are the iterated theorems corresponding to β = 1,
where β is a parameter of the mixing distribution. The latter paper also contains the
corresponding iterated limit theorems of the random coefficient AR(1) processes, which
were left out of the work of Pilipauskaitė and Surgailis as they require a different proof
technique. Theorem 3.17, and the two results for the case β = 1 in Corollary 3.19 were
developed for this thesis, these are not contained in any of our papers. However, these com-
plete the results of the chapter, as here all the iterated limit theorems are presented with
the three considered centerings (the expectation, the conditional expectation, the empirical
expectation), when applicable.

As it was already stated in the Introduction, in this chapter, and the forthcoming one,
we will consider a certain strictly stationary randomized (also called random coefficient)
INAR(1) process (Xk)k∈Z+ with randomized thinning parameter α, given formally by
the recursive equation

Xk = α ◦Xk−1 + εk, k ∈ N,

where α is a random variable with values in (0, 1) and X0 is some appropriate
random variable. This means that, conditionally on α, the process (Xk)k∈Z+ is an
INAR(1) process with thinning parameter α. Conditionally on α, the i.i.d. innovations
(εk)k∈N are supposed to have a Poisson distribution with parameter λ ∈ (0,∞), and the
conditional distribution of the initial value X0 given α is supposed to be the unique
stationary distribution, namely, a Poisson distribution with parameter λ/(1−α). In Sec-
tion 3.1 a rigorous proof is presented verifying that such a process exists. Section 3.2 is
about the simple aggregates of the independent copies of the defined random coefficient
process, without specifying the distribution of the random coefficient (called the mixing
distribution). Then we introduce a specific type of mixing distribution and start investi-

33



gating the temporal and contemporaneous aggregates of the processes. The iterated limit
theorems (when first the time scale n → ∞ and then the number of independent copies
N → ∞ or vice versa) are presented in Section 3.3. We have similar limit theorems for
randomized INAR(1) processes that Pilipauskaitė and Surgailis [38, Theorems 2.1 and 2.3]
have for random coefficient AR(1) processes. However, the techniques of our proofs differ
from theirs in many cases, for a somewhat detailed comparison, see Remark 3.15. Section
3.4 contains some technical results that are necessary for the proofs, which can be found
in Section 3.5.

3.1 Random coefficient INAR(1) processes with Poisson in-
novations

Let λ ∈ (0,∞), and let Pα be a probability measure on (0, 1). Then there exist
a probability space (Ω,A,P), a random variable α with distribution Pα, and random
variables {X0, ξk,`, εk : k, ` ∈ N}, conditionally independent given α on (Ω,A,P) such
that

P(ξk,` = 1 |α) = α = 1− P(ξk,` = 0 |α), k, ` ∈ N, (3.1)

P(εk = j |α) =
λj

j!
e−λ, j ∈ Z+, k ∈ N, (3.2)

P(X0 = j |α) =
λj

j!(1− α)j
e−(1−α)−1λ, j ∈ Z+. (3.3)

(Note that the conditional distribution of εk does not depend on α.) Indeed, for each
n ∈ N, by Ionescu Tulcea’s theorem (see, e.g., Shiryaev [49, II. § 9, Theorem 2]), there
exist a probability space (Ωn,An,Pn) and random variables α(n), X(n)

0 , ε(n)
k and ξ

(n)
k,`

for k, ` ∈ {1, . . . , n} on (Ωn,An,Pn) such that

Pn(α(n) ∈ B, X
(n)
0 = x0, ε

(n)
k = jk, ξ

(n)
k,` = xk,` for all k, ` ∈ {1, . . . , n})

=

∫
B
pn
(
a, x0, (jk)

n
k=1, (xk,`)

n
k,`=1

)
Pα(da)

for all B ∈ B(R), x0 ∈ Z+, (jk)
n
k=1 ∈ Zn+, (xk,`)

n
k,`=1 ∈ {0, 1}n×n, with

pn
(
a, x0, (jk)

n
k=1, (xk,`)

n
k,`=1

)
:=

λx0

x0!(1− a)x0
e−(1−a)−1λ

n∏
k=1

λjk

jk!
e−λ

n∏
k,`=1

axk,`(1− a)1−xk,` ,

since the mapping (0, 1) 3 a 7→ pn

(
a, x0, (jk)

n
k=1, (xk,`)

n
k,`=1

)
is Borel measurable for all

x0 ∈ Z+, (jk)
n
k=1 ∈ Zn+, (xk,`)

n
k,`=1 ∈ {0, 1}n×n, and∑{

pn
(
a, x0, (jk)

n
k=1, (xk,`)

n
k,`=1

)
: x0 ∈ Z+, (jk)

n
k=1 ∈ Zn+, (xk,`)

n
k,`=1 ∈ {0, 1}n×n

}
= 1

for all a ∈ (0, 1). Then the Kolmogorov consistency theorem implies the existence of a
probability space (Ω,A,P) and random variables α, X0, εk and ξk,` for k, ` ∈ N on
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(Ω,A,P) with the desired properties (3.1), (3.2) and (3.3), since for all n ∈ N, we have∑{
pn+1

(
a, x0, (jk)

n+1
k=1 , (xk,`)

n+1
k,`=1

)
: jn+1 ∈ Z+, (xn+1,`)

n
`=1, (xk,n+1)nk=1 ∈ {0, 1}n, xn+1,n+1 ∈ {0, 1}

}
= pn

(
a, x0, (jk)

n
k=1, (xk,`)

n
k,`=1

)
.

Define a process (Xk)k∈Z+ by

Xk =

Xk−1∑
`=1

ξk,` + εk, k ∈ N.

By Section 2.3, conditionally on α, the process (Xk)k∈Z+ is a strictly stationary INAR(1)
process with thinning parameter α and with Poisson innovations. Moreover, by the law
of total probability, it is also (unconditionally) strictly stationary. However, it was shown
in Barczy et al. [5, Appendix A] that the process (Xk)k∈Z+ is not a Markov chain (so it
is not an INAR(1) process) if α is not degenerate.

The process (Xk)k∈Z+ can be called a randomized INAR(1) process with Poisson
innovations, and the distribution of α is the so-called mixing distribution of the model.
The conditional expectation of X0 given α is E(X0 |α) = (1 − α)−1λ. Here and in
the sequel conditional expectations like E(X0 |α) are meant in the generalized sense, see,
e.g., in Stroock [51, § 5.1.1]. Then, as the negative part of X0 is 0, which is integrable,
the conditional expectation does exist in this generalized sense.

Let α(j), j ∈ N, be a sequence of independent copies of the random variable α, and
let (X

(j)
k )k∈Z+ , j ∈ N, be a sequence of independent copies of the process (Xk)k∈Z+ with

idiosyncratic innovations (i.e., the innovations (ε
(j)
k )k∈Z+ , j ∈ N, belonging to (X

(j)
k )k∈Z+ ,

j ∈ N, are independent) such that (X
(j)
k )k∈Z+ conditionally on α(j) is a strictly stationary

INAR(1) process with thinning parameter α(j) and with Poisson innovations for all j ∈ N.

3.2 Limit theorems with general mixing distribution

First we consider a simple aggregation procedure. For each N ∈ N, consider the
stochastic process S̃(N) = (S̃

(N)
k )k∈Z+ given by

S̃
(N)
k :=

N∑
j=1

(X
(j)
k − E(X

(j)
k |α

(j))) =
N∑
j=1

(
X

(j)
k −

λ

1− α(j)

)
, k ∈ Z+. (3.4)

Proposition 3.1. If E
(
(1− α)−1

)
<∞, then

N−
1
2 S̃(N) Df−→ Ỹ as N →∞,

where (Ỹk)k∈Z+ is a stationary Gaussian process with zero mean and covariances

E(Ỹ0Ỹk) = Cov

(
X0 −

λ

1− α
,Xk −

λ

1− α

)
= λE

( αk

1− α

)
, k ∈ Z+. (3.5)
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Proposition 3.2. We have

(
n−

1
2

bntc∑
k=1

S̃
(1)
k

)
t∈R+

=

(
n−

1
2

bntc∑
k=1

(X
(1)
k − E(X

(1)
k |α

(1)))

)
t∈R+

Df−→
√
λ(1 + α)

1− α
B

as n→∞, where B = (Bt)t∈R+ is a standard Brownian motion that is independent of
α.

In the next two propositions, which are counterparts of Propositions 2.16 and 2.17, we
point out that the usual centralization leads to limit theorems similar to Propositions 3.1
and 3.2, but with occasionally different scaling and with different limit processes. We use
again the notation S(N) = (S

(N)
k )k∈Z+ given in (2.23) for the simple aggregation (with

the usual centralization) of the randomized process.

Proposition 3.3. If E
(
(1− α)−2

)
<∞, then

N−
1
2S(N) Df−→ Y as N →∞,

where Y = (Yk)k∈Z+ is a stationary Gaussian process with zero mean and covariances

E(Y0Yk) = Cov(X0, Xk) = λE
( αk

1− α

)
+ λ2 Var

(
1

1− α

)
, k ∈ Z+.

Proposition 3.4. If E
(
(1− α)−1

)
<∞, then(

n−1

bntc∑
k=1

S
(1)
k

)
t∈R+

=

(
n−1

bntc∑
k=1

(X
(1)
k − E(X

(1)
k ))

)
t∈R+

Df−→
((

λ

1− α
− E

(
λ

1− α

))
t

)
t∈R+

as n→∞.

In Proposition 3.4 the limit process is simply a line with a random slope.

3.3 Iterated limit theorems with specific mixing distribution

First we recall the definition of regularly varying sequences and functions, which we will
need in the forthcoming paragraph and during a proof of this chapter. For the definition,
see, e.g., Bojanic and Seneta [9, Corollary 1 and Formula (1.4)].

Definition 3.5. A sequence of positive numbers an, n ∈ N, is regularly varying with some
finite index A if for every b > 0 we have

lim
n→∞

abbnc

an
= bA.

Similarly, f , a positive and measurable function on [0,∞) is regularly varying with some
finite index A if for every b > 0 we have

lim
x→∞

f(bx)

f(x)
= bA.
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In the forthcoming results we assume that the distribution of the random variable α,
i.e., the mixing distribution, has a probability density of the form

ψ(x)(1− x)β, x ∈ (0, 1), (3.6)

where ψ is a function on (0, 1) having a limit limx↑1 ψ(x) = ψ1 ∈ (0,∞). Note that
necessarily β ∈ (−1,∞) (otherwise

∫ 1
0 ψ(x)(1−x)β dx =∞), the function (0, 1) 3 x 7→

ψ(x) is integrable on (0, 1), and the function (0, 1) 3 x 7→ ψ(x)(1 − x)β is regularly
varying at the point 1 (i.e., (0,∞) 3 x 7→ ψ(1 − 1

x)x−β is regularly varying at infinity).
For the definition of a regularly varying function see Definition 3.5. Further, in case of
ψ(x) = Γ(a+β+2)

Γ(a+1)Γ(β+1)x
a, x ∈ (0, 1), with some a ∈ (−1,∞), the random variable α is

Beta distributed with parameters a + 1 and β + 1. Certain ◦ operators, where the
summands are random parameter Bernoulli distributions with a parameter having Beta
distribution, appear in catastrophe models. Moreover, the Nobel prize winner Clive W. J.
Granger used the square root of a Beta distribution as a mixing distribution for random
coefficient AR(1) processes, see Granger [18].

Remark 3.6. Under the condition (3.6), for each ` ∈ N, the expectation E
(
(1− α)−`

)
is finite if and only if β > `− 1. Indeed, if β > `− 1, then, by choosing ε ∈ (0, 1) with
supa∈(1−ε,1) ψ(a) 6 2ψ1, we have E

(
(1− α)−`

)
= I1(ε) + I2(ε), where

I1(ε) :=

∫ 1−ε

0
ψ(a)(1− a)β−` da 6 max{εβ−`, 1}

∫ 1−ε

0
ψ(a) da <∞,

I2(ε) :=

∫ 1

1−ε
ψ(a)(1− a)β−` da 6 2ψ1

∫ 1

1−ε
(1− a)β−` da =

2ψ1ε
β−`+1

β − `+ 1
<∞.

Conversely, if β 6 ` − 1, then, by choosing ε ∈ (0, 1) with supa∈(1−ε,1) ψ(a) > ψ1/2,
we have

E
(

(1− α)−`
)
>
∫ 1

1−ε
ψ(a)(1− a)β−` da >

ψ1

2

∫ 1

1−ε
(1− a)β−` da =∞.

This means that in case of β ∈ (−1, 0], the processes S(N,n) = (S
(N,n)
t )t∈R+ , N,n ∈ N,

given in (2.25) are not defined for the randomized INAR(1) process introduced in this
section with mixing distribution given in (3.6). Moreover, with this mixing distribution,
Propositions 3.1, 3.2, 3.3 and 3.4 are valid in case of β > 0, β > −1, β > 1 and β > 0,
respectively. 2

For each N,n ∈ N, consider the stochastic process S̃(N,n) = (S̃
(N,n)
t )t∈R+ given by

S̃
(N,n)
t :=

N∑
j=1

bntc∑
k=1

(X
(j)
k − E(X

(j)
k |α

(j))), t ∈ R+. (3.7)

Remark 3.7. If β > 0, then the covariances of the strictly stationary process (Xk −
E(Xk |α))k∈Z+ = (Xk − λ

1−α)k∈Z+ exist and take the form

Cov
(
X0 − E(X0 |α), Xk − E(Xk |α)

)
= E

(
λαk

1− α

)
, k ∈ Z+,
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see (3.15). Further,

∞∑
k=0

∣∣∣Cov(X0 − E(X0 |α), Xk − E(Xk |α))
∣∣∣ =

∞∑
k=0

E
(
λαk

1− α

)
= λE

(
1

1− α

∞∑
k=0

αk

)

= λE
(

1

(1− α)2

)
,

which is finite if and only if β > 1, see Remark 3.6. This means that the strictly stationary
process (Xk − E(Xk |α))k∈Z+ has short memory (i.e., it has summable covariances) if
β > 1, and long memory if β ∈ (0, 1] (i.e., it has non-summable covariances). 2

For β ∈ (0, 2), let (B
1−β

2
(t))t∈R+ denote a fractional Brownian motion with parameter

1− β/2, that is a Gaussian process with zero mean and covariance function

Cov(B
1−β

2
(t1),B

1−β
2
(t2)) =

t2−β1 + t2−β2 − |t2 − t1|2−β

2
, t1, t2 ∈ R+. (3.8)

The next four results are limit theorems for appropriately scaled versions of S̃(N,n),
first taking the limit N → ∞ and then n → ∞ in the case β ∈ (−1, 1]. The
first three are counterparts of (2.8), (2.9) and (2.7) of Theorem 2.1 in Pilipauskaitė and
Surgailis [38], respectively. The counterpart of the fourth (for β = 1), however, was not
done by Pilipauskaitė and Surgailis, as it could not be handled by the same proof technique
as the other ones. It was published in Nedényi and Pap [35, Theorem 3.3] along with the
result of our Theorem 3.11.

Theorem 3.8. If β ∈ (−1, 0), then

Df- lim
n→∞

Df- lim
N→∞

n−1N
− 1

2(1+β) S̃(N,n) = (V2(1+β)t)t∈R+ ,

where V2(1+β) is a symmetric 2(1+β)-stable random variable (not depending on t) with
characteristic function

E(eiθV2(1+β)) = e−Kβ |θ|
2(1+β)

, θ ∈ R,

where

Kβ := ψ1

(
λ

2

)1+β Γ(−β)

1 + β
.

Theorem 3.9. If β = 0, then

Df- lim
n→∞

Df- lim
N→∞

n−1(N logN)−
1
2 S̃(N,n) = (Wλψ1t)t∈R+ ,

where Wλψ1 is a normally distributed random variable with mean zero and with variance
λψ1.

Theorem 3.10. If β ∈ (0, 1), then

Df- lim
n→∞

Df- lim
N→∞

n−1+β
2N−

1
2 S̃(N,n) =

√
2λψ1Γ(β)

(2− β)(1− β)
B

1−β
2
.
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Theorem 3.11. If β = 1, then

Df- lim
n→∞

Df- lim
N→∞

(n log n)−
1
2N−

1
2 S̃(N,n) =

√
2λψ1B,

where B = (Bt)t∈R+ is a standard Wiener process.

The next two results are limit theorems for an appropriately scaled version of S̃(N,n),
first taking the limit n → ∞ and then N → ∞ in the case β ∈ (−1, 1]. The first is
a counterpart of (2.10) of Theorem 2.1 in Pilipauskaitė and Surgailis [38]. The second one
is the counterpart of Nedényi and Pap [35, Theorem 3.4], which is about the respective
aggregate of the random coefficient AR(1) processes. Again, this case was not covered in
Pilipauskaitė and Surgailis [38] due to requiring a different proof technique.

Theorem 3.12. If β ∈ (−1, 1), then

Df- lim
N→∞

Df- lim
n→∞

N
− 1

1+β n−
1
2 S̃(N,n) = Y1+β,

where Y1+β =
(
Y1+β(t) :=

√
Y(1+β)/2Bt

)
t∈R+

, and Y(1+β)/2 is a positive 1+β
2 -stable

random variable with Laplace transform E(e−θY(1+β)/2) = e−kβθ
1+β
2 , θ ∈ R+, with

kβ :=
(2λ)

1+β
2 ψ1

1 + β
Γ

(
1− β

2

)
,

and (Bt)t∈R+ is an independent standard Wiener process. The process Y1+β has (1+β)-
stable one-dimensional distributions and stationary increments.

Let us note that in Barczy et al. [5, Second proof of Theorem 4.10], which is the
extended ArXiv version of the paper Barczy et al. [6], by an additional proof, we showed
that the characteristic function of Y(1+β)/2 introduced in Theorem 3.12 is

E(eiθY(1+β)/2) = exp
{
−kβ|θ|

1+β
2 e−i sign(θ)

π(1+β)
4

}
, θ ∈ R,

where kβ is given in Theorem 3.12.

Theorem 3.13. If β = 1, then

Df- lim
N→∞

Df- lim
n→∞

n−
1
2 (N logN)−

1
2 S̃(N,n) =

√
λψ1B,

where B = (Bt)t∈R+ is a standard Wiener process.

Next we show an iterated scaling limit theorem where the order of the iteration can be
arbitrary in the case β ∈ (1,∞), which is a counterpart of Theorem 2.3 in Pilipauskaitė
and Surgailis [38].

Theorem 3.14. If β ∈ (1,∞), then

Df- lim
n→∞

Df- lim
N→∞

(nN)−
1
2 S̃(N,n) = Df- lim

N→∞
Df- lim

n→∞
(nN)−

1
2 S̃(N,n) = σB,

where σ2 := λE((1 + α)(1− α)−2) and (Bt)t∈R+ is a standard Wiener process.
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By Remark 3.6, if β > 1, then E
(
(1− α)−2

)
<∞, and hence σ2 <∞, where σ2

is given in Theorem 3.14.
In the following remark we compare our results to those of Pilipauskaitė and Surgailis

[38], which paper motivated our work. Moreover, we summarize the proof techniques of
our results.

Remark 3.15. Theorems 3.8, 3.9 and 3.12 are counterparts of (2.8), (2.9) and (2.10)
of Theorem 2.1 in Pilipauskaitė and Surgailis [38]. The proofs of these theorems use the
same technique, namely, expansions of characteristic functions, and we provide all the
technical details. Theorem 3.10 is a counterpart of (2.7) of Theorem 2.1 in Pilipauskaitė
and Surgailis [38]. Our proof of Theorem 3.10 is completely different from the proof of its
counterpart as we apply Theorem 4.3 of Beran et al. [7], which is about the convergence
of partial sums of a Hermite function of a stationary sequence of standard normal random
variables. The proof of Theorem 3.13, which result has no counterpart in Pilipauskaitė
and Surgailis [38], uses the well-known theorem about weak convergence of partial sum
processes for a triangular array towards a Lévy process due to Resnick [46, Theorem 7.1].
Theorem 3.14 is a counterpart of Theorem 2.3 in Pilipauskaitė and Surgailis [38]. The
proofs of the first convergence of Theorem 3.14 and that of Theorem 3.11, which result,
again, does not have a counterpart in Pilipauskaitė and Surgailis [38], rely on checking
the convergence of the covariances of some Gaussian processes. The proof of the second
convergence of Theorem 3.14 is based on the multidimensional central limit theorem. 2

In the next theorems we consider the usual centralization with E(X
(j)
k ), when appli-

cable. These are the counterparts of Theorems 3.10, 3.11, 3.12, 3.13 and 3.14. Recall that,
due to Remark 3.6, the expectation E(X0) = E

(
λ

1−α
)

is finite if and only if β > 0, so
Theorems 3.8 and 3.9 can not have counterparts in this sense.

Theorem 3.16. If β ∈ (0, 1), then

Df- lim
n→∞

Df- lim
N→∞

n−1N
− 1

1+βS(N,n) = Df- lim
N→∞

Df- lim
n→∞

n−1N
− 1

1+βS(N,n) =
(
Z1+β t

)
t∈R+

,

where Z1+β is a (1+β)-stable random variable with characteristic function E(eiθZ1+β ) =

e−|θ|
1+βωβ(θ), θ ∈ R, where

ωβ(θ) :=
ψ1Γ(1− β)λ1+β

−β(1 + β)
e−iπ sign(θ)(1+β)/2, θ ∈ R.

Note that the following theorem was developed for this thesis, it has not appeared in
any of our papers.

Theorem 3.17. If β = 1, then there exists a sequence (aN )N∈N such that
√
N/aN = o(1)

as N →∞ (meaning that limN→∞
√
N/aN = 0) and

Df- lim
n→∞

Df- lim
N→∞

n−1a−1
N S(N,n) = Df- lim

N→∞
Df- lim

n→∞
n−1a−1

N S(N,n) = (W t)t∈R+ ,

where W is a standard normally distributed random variable.
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Theorem 3.18. If β ∈ (1,∞), then

Df- lim
n→∞

Df- lim
N→∞

n−1N−
1
2S(N,n) = Df- lim

N→∞
Df- lim

n→∞
n−1N−

1
2S(N,n)

= (Wλ2 Var((1−α)−1) t)t∈R+ ,

where Wλ2 Var((1−α)−1) is a normally distributed random variable with mean zero and with
variance λ2 Var((1− α)−1).

In case of Theorems 3.8, 3.9, 3.16, 3.17 and 3.18 the limit processes are lines with
random slopes. Let us note that the theorems of this section are summarized in some
tables in Appendix A.

We point out that the processes of doubly indexed partial sums, S(N,n) and S̃(N,n)

contain the expected or conditional expected values of the processes X(j), j ∈ N. There-
fore, in a statistical testing, they could not be used directly. So we consider a similar
process

Ŝ
(N,n)
t :=

N∑
j=1

bntc∑
k=1

[
X

(j)
k −

∑n
`=1X

(j)
`

n

]
, t ∈ R+, (3.9)

which does not require the knowledge of the expectation or conditional expectation of the
processes X(j), j ∈ N. Note that the summands in Ŝ

(N,n)
t have 0 conditional means with

respect to α, so we do not need any additional centering. Moreover, Ŝ(N,n) is related to
the two previously examined processes in the following way: in case of β ∈ (0,∞) (which
ensures the existence of E(X

(j)
k ), k ∈ Z+), we have

Ŝ
(N,n)
t =

N∑
j=1

bntc∑
k=1

[
X

(j)
k − E(X

(j)
k )−

∑n
`=1(X

(j)
` − E(X

(j)
` ))

n

]
= S

(N,n)
t − bntc

n
S

(N,n)
1 ,

and in case of β ∈ (−1,∞),

Ŝ
(N,n)
t =

N∑
j=1

bntc∑
k=1

[
X

(j)
k − E(X

(j)
k |α

(j))−
∑n

`=1(X
(j)
` − E(X

(j)
` |α

(j)))

n

]

= S̃
(N,n)
t − bntc

n
S̃

(N,n)
1

for every t ∈ R+. Therefore, by Theorems 3.10, 3.12, 3.11, 3.13, and 3.14, using Slut-
sky’s lemma, the following limit theorems hold. Note that the two results of the following
corollary which hold when β = 1 have not been published before.

Corollary 3.19. If β ∈ (0, 1), then

Df- lim
n→∞

Df- lim
N→∞

n−1+β
2N−

1
2 Ŝ(N,n) =

√
2λψ1Γ(β)

(2− β)(1− β)

(
B

1−β
2
(t)− tB

1−β
2
(1)
)
t∈R+

,

where the process B
1−β

2
is given by (3.8).

If β ∈ (−1, 1), then

Df- lim
N→∞

Df- lim
n→∞

N
− 1

1+β n−
1
2 Ŝ(N,n) = (Y1+β(t)− tY1+β(1))t∈R+

,
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where the process Y1+β is given in Theorem 3.12.
If β = 1, then

Df- lim
n→∞

Df- lim
N→∞

(n log n)−
1
2N−

1
2 Ŝ(N,n) =

√
2λψ1(Bt − tB1)t∈R+ ,

moreover,

Df- lim
N→∞

Df- lim
n→∞

n−
1
2 (N logN)−

1
2 Ŝ(N,n) =

√
λψ1(Bt − tB1)t∈R+ ,

where B = (Bt)t∈R+ is a standard Wiener process.
If β ∈ (1,∞), then

Df- lim
n→∞

Df- lim
N→∞

(nN)−
1
2 Ŝ(N,n) = Df- lim

N→∞
Df- lim

n→∞
(nN)−

1
2 Ŝ(N,n) = σ(Bt − tB1)t∈R+ ,

where σ2 is given in Theorem 3.14 and B = (Bt)t∈R+ is a standard Wiener process.

In Corollary 3.19, the limit processes restricted on the time interval [0, 1] are bridges
in the sense that they take the same value (namely, 0) at the time points 0 and 1, and
especially, in case of β ∈ (1,∞), it is a Wiener bridge. We note that no counterparts
appear for the rest of the theorems because in those cases the limit processes are lines
with random slopes, which result the constant zero process in this alternative case. In
case of β ∈ (−1, 0], by applying some smaller scaling factors, one could try to achieve a
non-degenerate weak limit of Ŝ(N,n) by first taking the limit N →∞ and then that of
n→∞.

Let us point out that Example 2.22, which was discussed in Chapter 2, is also relevant
for the aggregation of randomized INAR(1) processes with Poisson innovations. Indeed, in
this case, the camps in question can each have independent parameters α coming from a
certain distribution.

3.4 Some technical results

In this section we gather some technical results that are used in the upcoming proofs.
We will frequently use the following well-known inequalities:

1− e−x 6 x, x ∈ R, (3.10)

|eiu − 1| 6 |u|, |eiu − 1− iu| 6 u2/2, u ∈ R. (3.11)

The next lemma is about how the inequalities in (3.11) change if we replace u ∈ R
with an arbitrary complex number.

Lemma 3.20. We have

|ez − 1| 6 |z|e|z|, z ∈ C, (3.12)

|ez − 1− z| 6 |z|
2

2
e|z|, z ∈ C. (3.13)

The next lemma gives a set of sufficient conditions for the convergence of the integral
N
∫ 1

0

(
1− e

λ
1−a zN (a)

)
ψ(a)(1 − a)β da as N → ∞, where (zN (a))N∈N is a sequence of

complex numbers. We use this lemma in the proofs of Theorems 3.8, 3.9, and 3.12.
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Lemma 3.21. Suppose that (0, 1) 3 x 7→ ψ(x)(1 − x)β is a probability density, where
ψ is a function on (0, 1) having a limit limx↑1 ψ(x) = ψ1 ∈ (0,∞) (and necessarily
β ∈ (−1,∞)). For all a ∈ (0, 1), let (zN (a))N∈N be a sequence of complex numbers
such that

lim
N→∞

sup
a∈(0,1−ε)

|NzN (a)| = 0 for all ε ∈ (0, 1), (3.14)

lim sup
N→∞

N

∫ 1

1−ε0

∣∣∣1− e
λ

1−a zN (a)
∣∣∣ (1− a)β da <∞ for some ε0 ∈ (0, 1),

lim
ε↓0

lim sup
N→∞

∣∣∣∣N ∫ 1

1−ε

(
1− e

λ
1−a zN (a)

)
(1− a)β da− I

∣∣∣∣ = 0

with some I ∈ C. Then

lim
N→∞

N

∫ 1

0

(
1− e

λ
1−a zN (a)

)
ψ(a)(1− a)β da = ψ1I.

3.5 Proofs

Proof of Proposition 3.1. We have

E
(
Xk −

λ

1− α

)
= E

[
E
(
Xk −

λ

1− α

∣∣∣α)] = 0, k ∈ Z+,

and hence, for all k ∈ Z+,

Cov
(
X0 −

λ

1− α
,Xk −

λ

1− α

)
= E

[(
X0 −

λ

1− α

)(
Xk −

λ

1− α

)]
= E

{
E
[(
X0 −

λ

1− α

)(
Xk −

λ

1− α

) ∣∣∣α]} = E
( λαk

1− α

)
,

(3.15)

where we applied (2.24). Now the statement follows from the multidimensional central limit
theorem. Due to the continuous mapping theorem, it is sufficient to show the convergence
N−1/2(S̃

(N)
0 , S̃

(N)
1 , . . . , S̃

(N)
k )

D−→ (Y0,Y1, . . . ,Yk) as N → ∞ for all k ∈ Z+. For all
k ∈ Z+, the random vectors

(
X

(j)
0 − λ

1−α , X
(j)
1 − λ

1−α , . . . , X
(j)
k −

λ
1−α

)
, j ∈ N, are

independent, identically distributed having zero expectation vector and covariances

Cov(X
(j)
`1
, X

(j)
`2

) = Cov(X
(j)
0 , X

(j)
|`2−`1|) = λE

(
α|`2−`1|

1− α

)
, j ∈ N, `1, `2 ∈ {0, 1, . . . , k},

following from the strict stationarity of X(j) and from the form of Cov(X0, Xk). 2

Proof of Proposition 3.2. For each n ∈ N and each t ∈ R+, put

T̃
(n)
t := n−

1
2

bntc∑
k=1

S̃
(1)
k .

For each m ∈ N, each t1, . . . , tm ∈ R+, and each bounded continuous function g : Rm →
R, we have

E(g(T̃
(n)
t1
, . . . , T̃

(n)
tm )) =

∫ 1

0
E(g(T̃

(n)
t1
, . . . , T̃

(n)
tm ) |α = a) Pα(da)

=

∫ 1

0
E
(
g

(
n−

1
2

bnt1c∑
k=1

(
Xk −

λ

1− a

)
, . . . , n−

1
2

bntmc∑
k=1

(
Xk −

λ

1− a

)) ∣∣∣∣ α = a

)
Pα(da).
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Proposition 2.17, the portmanteau theorem and the boundedness of g justify the usage
of the dominated convergence theorem, and we get

lim
n→∞

E(g(T̃
(n)
t1
, . . . , T̃

(n)
tm )) =

∫ 1

0
E
(
g

(√
λ(1 + a)

1− a
Bt1 , . . . ,

√
λ(1 + a)

1− a
Btm

))
Pα(da)

=

∫ 1

0
E
(
g

(√
λ(1 + α)

1− α
Bt1 , . . . ,

√
λ(1 + α)

1− α
Btm

)∣∣∣∣α = a

)
Pα(da)

= E
(
g

(√
λ(1 + α)

1− α
Bt1 , . . . ,

√
λ(1 + α)

1− α
Btm

))
,

hence we obtain the statement by the portmanteau theorem. 2

Proof of Proposition 3.3. For all k ∈ Z+, by the strict stationarity of (Xk)k∈Z+ and
(3.15), we have

Cov(X0, Xk) = E
[(
X0 − E

(
λ

1− α

))(
Xk − E

(
λ

1− α

))]
= E

[(
X0 −

λ

1− α

)(
Xk −

λ

1− α

)]
+ E

[(
λ

1− α
− E

(
λ

1− α

))2
]

= λE
(

αk

1− α

)
+ λ2 Var

(
1

1− α

)
,

(3.16)

since

E
[(
Xk −

λ

1− α

)(
λ

1− α
− E

(
λ

1− α

))]
= E

{
E
[(
Xk −

λ

1− α

)(
λ

1− α
− E

(
λ

1− α

)) ∣∣∣∣α]}
= E

{(
λ

1− α
− E

(
λ

1− α

))
E
(
Xk −

λ

1− α

∣∣∣∣α)} = 0

for all k ∈ Z+.
The statement follows from the multidimensional central limit theorem as in the proof

of Proposition 3.1. Indeed, for all k ∈ Z+, the random vectors(
X

(j)
0 − λE

(
1

1− α

)
, X

(j)
1 − λE

(
1

1− α

)
, . . . , X

(j)
k − λE

(
1

1− α

))
, j ∈ N,

are independent, identically distributed having zero expectation vector and covariances

Cov(X
(j)
`1
, X

(j)
`2

) = Cov(X
(j)
0 , X

(j)
|`2−`1|) = λE

(
α|`2−`1|

1− α

)
+ λ2 Var

(
1

1− α

)

for j ∈ N and `1, `2 ∈ {0, 1, . . . , k}, following from the strict stationarity of X(j) and
from the form of Cov(X0, Xk) given in (3.16). 2

Proof of Proposition 3.4. We have a decomposition S
(1)
k = S̃

(1)
k +R

(1)
k , k ∈ Z+, with

R
(1)
k := E(X

(1)
k |α

(1))− E(X
(1)
k ) =

λ

1− α(1)
− E

(
λ

1− α(1)

)
, k ∈ Z+.
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We have (
1

n

bntc∑
k=1

R
(1)
k

)
t∈R+

=

(
bntc
n

(
λ

1− α(1)
− E

(
λ

1− α(1)

)))
t∈R+

Df−→
((

λ

1− α
− E

(
λ

1− α

))
t

)
t∈R+

as n→∞. Moreover, by Proposition 3.2, Df -limn→∞
(
n−1/2

∑bntc
k=1 S̃

(1)
k

)
t∈R+

exists, hence(
1

n

bntc∑
k=1

S̃
(1)
k

)
t∈R+

Df−→ 0 as n→∞,

implying that for all m ∈ N and all t1, . . . , tm ∈ R+, we have(
1

n

bnt1c∑
k=1

S̃
(1)
k , . . . ,

1

n

bntmc∑
k=1

S̃
(1)
k

)
P−→ 0 as n→∞.

By Slutsky’s lemma we conclude the statement. 2

In the following two proofs, the notations O(1) and |O(1)| stand for a possibly
complex and respectively real sequence (ak)k∈N that is bounded and can only depend on
the parameters λ, ψ1, β, and on some fixed m ∈ N and θ1, . . . , θm ∈ R. Further, we
call the attention that several O(1)-s (respectively |O(1)|-s) in the same formula do not
necessarily mean the same bounded sequence.

In the forthcoming proof (and in Chapter 4) we are going to need some conditional
generator functions. The conditional generator function of X0 given α ∈ (0, 1) has the
form

F0(z0 |α) := E(zX0
0 |α) = e(1−α)−1λ(z0−1) (3.17)

for z0 ∈ D := {z ∈ C : |z| 6 1}. The joint conditional generator function of X0, X1, . . . , Xk

given α will be denoted by F0,...,k(z0, . . . , zk |α), z0, . . . , zk ∈ D.
Proof of Theorem 3.8. To prove this limit theorem it is enough to show that for any
n ∈ N,

Df - lim
N→∞

N
− 1

2(1+β) S̃(N,n) = (bntcV2(1+β))t∈R+ .

For this, by the continuous mapping theorem, it is enough to verify that for any m ∈ N,

N
− 1

2(1+β)

N∑
j=1

(
X

(j)
1 − λ

1− α(j)
, . . . , X(j)

m −
λ

1− α(j)

)
D−→ V2(1+β)(1, . . . , 1)

as N → ∞. So, by the continuity theorem, we have to check that for any m ∈ N and
θ1, . . . , θm ∈ R the convergence

E

exp

i

m∑
k=1

θk

N− 1
2(1+β)

N∑
j=1

(
X

(j)
k −

λ

1− α(j)

)


= E

exp

iN
− 1

2(1+β)

N∑
j=1

m∑
k=1

θk

(
X

(j)
k −

λ

1− α(j)

)

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=

[
E

(
exp

{
iN
− 1

2(1+β)

m∑
k=1

θk

(
Xk −

λ

1− α

)})]N
→ E

(
ei
∑m
k=1 θkV2(1+β)

)
= e−Kβ |

∑m
k=1 θk|2(1+β) as N →∞

holds. Note that it suffices to show

ΘN := N

[
1− E

(
exp

{
iN
− 1

2(1+β)

m∑
k=1

θk

(
Xk −

λ

1− α

)})]
→ Kβ

∣∣∣∣∣
m∑
k=1

θk

∣∣∣∣∣
2(1+β)

as N →∞, since it implies that (1−ΘN/N)N → e−Kβ |
∑m
k=1 θk|2(1+β) as N →∞. By

applying (2.21) to the left hand side, we get

ΘN = N E
[
1− F0,...,m−1

(
eiN

− 1
2(1+β) θ1 , . . . , eiN

− 1
2(1+β) θm

∣∣∣α)e−iN
− 1

2(1+β) λ
1−α

∑m
k=1 θk

]
= N E

[
1− e

λ
1−αAN (α)

]
= N

∫ 1

0

(
1− e

λ
1−aAN (a)

)
ψ(a)(1− a)β da,

where F0,...,m−1(z0, . . . , zm−1 |α) := E(zX0
0 zX1

1 · · · z
Xm−1

m−1 |α), z0, . . . , zm−1 ∈ D, and

AN (a) := − i(θ1 + · · ·+ θm)

N
1

2(1+β)

+
∑

16`6j6m

aj−`
(
eiN

− 1
2(1+β) θ` − 1

)
eiN

− 1
2(1+β) (θ`+1+···+θj−1)

(
eiN

− 1
2(1+β) θj − 1

)
for a ∈ [0, 1]. Let us show that for any ε ∈ (0, 1) we have supa∈(0,1−ε) |NAN (a)| → 0

as N →∞. Using (3.11), for any ε ∈ (0, 1) we get

sup
a∈(0,1−ε)

N |AN (a)| = sup
a∈(0,1−ε)

N

∣∣∣∣∣
m∑
k=1

(
eiN

− 1
2(1+β) θk − 1− iN

− 1
2(1+β) θk

)
+

∑
16`<j6m

aj−`
(

eiN
− 1

2(1+β) θ` − 1
)

eiN
− 1

2(1+β) (θ`+1+···+θj−1)
(

eiN
− 1

2(1+β) θj − 1
)∣∣∣∣∣

6 N

 m∑
k=1

N
− 1

1+β
θ2
k

2
+

∑
16`<j6m

N
− 1

1+β |θ`||θj |

 = N
β

1+β
(
∑m

k=1 |θk|)
2

2
→ 0

(3.18)

as N → ∞, since β/(1 + β) < 0. Therefore, by Lemma 3.21, substituting a =

1− z−1N
− 1

1+β , the statement of the theorem will follow from

lim sup
N→∞

N

∫ 1

1−ε

∣∣∣1− e
λ

1−aAN (a)
∣∣∣(1− a)β da

= lim sup
N→∞

∫ ∞
ε−1N

− 1
1+β

∣∣∣1− eλzN
1

1+β AN

(
1−z−1N

− 1
1+β
)∣∣∣z−(2+β) dz <∞

(3.19)

for all ε ∈ (0, 1) and

lim
ε↓0

lim sup
N→∞

∣∣∣∣N ∫ 1

1−ε

(
1− e

λ
1−aAN (a)

)
(1− a)β da− I

∣∣∣∣
= lim

ε↓0
lim sup
N→∞

∣∣∣∣∫ ∞
ε−1N

− 1
1+β

(
1− eλzN

1
1+β AN

(
1−z−1N

− 1
1+β
))
z−(2+β) dz − I

∣∣∣∣ = 0

(3.20)
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with

I :=

∫ ∞
0

(
1− e−

λz
2

(∑m
k=1 θk

)2)
z−(2+β) dz

=

λ
2

∣∣∣∣∣
m∑
k=1

θk

∣∣∣∣∣
2
1+β ∫ ∞

0
(1− e−z)z−(2+β) dz = ψ−1

1 Kβ

∣∣∣∣∣
m∑
k=1

θk

∣∣∣∣∣
2(1+β)

,

where the last equality is justified by Li [31, formula (1.28)]. Next we check (3.19) and
(3.20).

By Taylor expansion,

eiN
− 1

2(1+β) θ` − 1 = iN
− 1

2(1+β) θ` +N
− 1

1+β O(1) = N
− 1

2(1+β) O(1),

eiN
− 1

2(1+β) θ` − 1− iN
− 1

2(1+β) θ` = −N−
1

1+β
θ2
`

2
+N

− 3
2(1+β) O(1)

for all ` ∈ {1, . . . ,m}, resulting

λzN
1

1+βAN

(
1− 1

zN
1

1+β

)
= −

λz
(∑m

k=1 θk
)2

2
+

zO(1)

N
1

2(1+β)

+
O(1)

N
1

1+β

(3.21)

for z > N
− 1

1+β . Indeed, for z > N
− 1

1+β , we have

AN

(
1− 1

zN
1

1+β

)
=

m∑
k=1

(
eiN

− 1
2(1+β) θk − 1− iN

− 1
2(1+β) θk

)
+

∑
16`<j6m

(
1− 1

zN
1

1+β

)j−` (
eiN

− 1
2(1+β) θ` − 1

)
eiN

− 1
2(1+β) (θ`+1+···+θj−1)

×
(
eiN

− 1
2(1+β) θj − 1

)
=

m∑
k=1

(
−

θ2
k

2N
1

1+β

+
O(1)

N
3

2(1+β)

)
+

∑
16`<j6m

(
1 +

O(1)

zN
1

1+β

)(
iθ`

N
1

2(1+β)

+
O(1)

N
1

1+β

)(
1 +

O(1)

N
1

2(1+β)

)(
iθj

N
1

2(1+β)

+
O(1)

N
1

1+β

)

= −
∑m

k=1 θ
2
k

2N
1

1+β

+
O(1)

N
3

2(1+β)

−
∑

16`<j6m θ`θj

N
1

1+β

+
O(1)

N
3

2(1+β)

+
O(1)

zN
2

1+β

= −
(∑m

k=1 θk
)2

2N
1

1+β

+
O(1)

N
3

2(1+β)

+
O(1)

zN
2

1+β

,

since by Bernoulli’s inequality∣∣∣∣∣
(

1− 1

zN
1

1+β

)j−`
− 1

∣∣∣∣∣ 6 j − `

zN
1

1+β

6
m

zN
1

1+β

,

yielding that (
1− 1

zN
1

1+β

)j−`
= 1 +

O(1)

zN
1

1+β

.
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By (3.21), for z ∈ [1,∞) and for large enough N we have

λzN
1

1+β ReAN
(
1− z−1N

− 1
1+β
)

= −
λz(
∑m

k=1 θk)
2

2

(
1− Re O(1)

N
1

2(1+β)

)
+

Re O(1)

N
1

1+β

6 −
λz(
∑m

k=1 θk)
2

4
+
|O(1)|

N
1

1+β

6 0,

hence we obtain∫ ∞
1

∣∣∣∣1− eλzN
1

1+β AN (1−z−1N
− 1

1+β )

∣∣∣∣ z−(β+2) dz

6
∫ ∞

1

(
1 + eλzN

1
1+β ReAN (1−z−1N

− 1
1+β )

)
z−(β+2) dz 6 2

∫ ∞
1

z−(β+2) dz <∞.
(3.22)

Again by (3.21), for ε ∈ (0, 1), z ∈
(
ε−1N

− 1
1+β , 1

]
and for large enough N , we have∣∣∣λzN 1

1+βAN

(
1− z−1N

− 1
1+β

)∣∣∣ 6 λz(
∑m

k=1 θk)
2

2
+
z|O(1)|

N
1

2(1+β)

+
|O(1)|

N
1

1+β

6 z

(
λ(
∑m

k=1 θk)
2

2
+
|O(1)|

N
1

2(1+β)

+ ε|O(1)|
)

6 z|O(1)| 6 |O(1)|,

since N
− 1

1+β < zε. Hence, using (3.12), we obtain∫ 1

ε−1N
− 1

1+β

∣∣∣∣1− eλzN
1

1+β AN

(
1−z−1N

− 1
1+β
)∣∣∣∣ z−(2+β) dz

6
∫ 1

ε−1N
− 1

1+β

∣∣∣λzN 1
1+βAN

(
1− z−1N

− 1
1+β
)∣∣∣ e

∣∣∣∣λzN 1
1+β AN

(
1−z−1N

− 1
1+β
)∣∣∣∣
z−(2+β) dz

6 |O(1)|e|O(1)|
∫ 1

0
z−(1+β) dz <∞,

which, together with (3.22), imply (3.19).
Now we turn to prove (3.20). By (3.10), we have∣∣∣∣∣∣
∫ ε−1N

− 1
1+β

0

(
1− e−

λz
2

(
∑m
k=1 θk)2

)
z−(2+β) dz

∣∣∣∣∣∣ 6
∫ ε−1N

− 1
1+β

0

λz(
∑m

k=1 θk)
2

2
z−(2+β) dz

=
λ(
∑m

k=1 θk)
2

2

∫ ε−1N
− 1

1+β

0
z−(1+β) dz =

λ(
∑m

k=1 θk)
2

2(−β)

(
1

εN
1

1+β

)−β
→ 0

as N →∞, hence (3.20) reduces to check that limε↓0 lim supN→∞ IN,ε = 0, where

IN,ε :=

∫ ∞
ε−1N

− 1
1+β

[
eλzN

1
1+β AN (1−z−1N

− 1
1+β ) − e−

λz
2

(
∑m
k=1 θk)2

]
z−(2+β) dz.

Applying again (3.21), we obtain

|IN,ε| 6
∫ ∞
ε−1N

− 1
1+β

e−
λz
2

(
∑m
k=1 θk)2

∣∣∣ezN− 1
2(1+β) O(1)+N

− 1
1+β O(1) − 1

∣∣∣z−(2+β) dz.

Here, for ε ∈ (0, 1) and z ∈ (ε−1N
− 1

1+β ,∞), we have∣∣zN− 1
2(1+β) O(1) +N

− 1
1+β O(1)

∣∣ 6 z
(
N
− 1

2(1+β) + ε
)
|O(1)|,
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and hence, by (3.12), we get∣∣∣ezN− 1
2(1+β) O(1)+N

− 1
1+β O(1) − 1

∣∣∣
6
∣∣zN− 1

2(1+β) O(1) +N
− 1

1+β O(1)
∣∣ e∣∣zN− 1

2(1+β) O(1)+N
− 1

1+β O(1)
∣∣

6 z
(
N
− 1

2(1+β) + ε
)
|O(1)| ez

(
N
− 1

2(1+β) +ε
)
|O(1)|.

Consequently, for large enough N and small enough ε ∈ (0, 1),

|IN,ε| 6
(
N
− 1

2(1+β) + ε
)
|O(1)|

∫ ∞
ε−1N

− 1
1+β

e−
λz
2

(
∑m
k=1 θk)2+z

(
N
− 1

2(1+β) +ε
)
|O(1)|z−(1+β) dz

6
(
N
− 1

2(1+β) + ε
)
|O(1)|

∫ ∞
0

e−
λz
4

(
∑m
k=1 θk)2z−(1+β) dz,

that gets arbitrarily close to zero as N approaches infinity and ε tends to 0, since the
integral is finite due to the fact that

1

Γ(−β)

λ
4

(
m∑
k=1

θk

)2
−β e−λz(

∑m
k=1 θk)2/4 z−(1+β), z > 0,

is the density function of a Gamma distributed random variable with parameters −β and
λ(
∑m

k=1 θk)
2/4. This yields (3.20) completing the proof. 2

Proof of Theorem 3.9. Similarly as in the proof of Theorem 3.8, it suffices to show that
for any m ∈ N and θ1, . . . , θm ∈ R we have the convergence

N

[
1− E

(
exp

{
i√

N logN

m∑
k=1

θk

(
Xk −

λ

1− α

)})]
→ λψ1

2

(
m∑
k=1

θk

)2

as N →∞. By applying (2.21), the left hand side equals

N E
[
1− F0,...,m−1

(
e

iθ1√
N logN , . . . , e

iθm√
N logN

∣∣∣α) e
− iλ(θ1+···+θm)

(1−α)
√
N logN

]
= N E

[
1− e

λ
1−αBN (α)

]
= N

∫ 1

0

(
1− e

λ
1−aBN (a)

)
ψ(a) da

with

BN (a) :=
m∑
k=1

(
e

iθk√
N logN − 1− iθk√

N logN

)
+

∑
16`<j6m

aj−`
(
e

iθ`√
N logN − 1

)
e

i(θ`+1+···+θj−1)√
N logN

(
e

iθj√
N logN − 1

)
, a ∈ [0, 1].

Similarly as in (3.18), for any ε ∈ (0, 1) we have

sup
a∈(0,1−ε)

|NBN (a)| 6
(
∑m

k=1 θk)
2

2 logN
→ 0
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as N →∞. Therefore, by Lemma 3.21, substituting a = 1− z/N , the statement of the
theorem will follow from

lim sup
N→∞

N

∫ 1

1−ε

∣∣∣1− e
λ

1−aBN (a)
∣∣∣ da = lim sup

N→∞

∫ εN

0

∣∣∣1− e
λN
z
BN (1− z

N
)
∣∣∣ dz <∞, (3.23)

and

lim
N→∞

N

∫ 1

1−ε

(
1− e

λ
1−aBN (a)

)
da = lim

N→∞

∫ εN

0

(
1− e

λN
z
BN (1− z

N
)
)

dz =
λ

2

(
m∑
k=1

θk

)2

(3.24)

for all ε ∈ (0, 1). Next we check (3.23) and (3.24).
Using Taylor expansions, similarly as in the proof of Theorem 3.8, we get

λN

z
BN

(
1− z

N

)
= −

λ(
∑m

k=1 θk)
2

2z logN
+

O(1)

zN1/2(logN)3/2
+

O(1)

N logN
. (3.25)

Indeed, for z ∈ [0, N ] we have

BN

(
1− z

N

)
=

m∑
k=1

(
e

iθk√
N logN − 1− iθk√

N logN

)
+

∑
16`<j6m

(
1− z

N

)j−` (
e

iθ`√
N logN − 1

)
e

i(θ`+1+···+θj−1)√
N logN

(
e

iθj√
N logN − 1

)
=

m∑
k=1

(
−

θ2
k

2N logN
+

O(1)

(N logN)3/2

)
+

∑
16`<j6m

(
1 +

zO(1)

N

)(
iθ`√

N logN
+

O(1)

N logN

)

×
(

1 +
O(1)√
N logN

)(
iθj√

N logN
+

O(1)

N logN

)

= −
∑m

k=1 θ
2
k

2N logN
+

O(1)

(N logN)3/2
−
∑

16`<j6m θ`θj

N logN
+

O(1)

(N logN)3/2
+

zO(1)

N2 logN

= −
(
∑m

k=1 θk)
2

2N logN
+

O(1)

(N logN)3/2
+

zO(1)

N2 logN
,

since, by Bernoulli’s inequality,∣∣∣∣ (1− z

N

)j−`
− 1

∣∣∣∣ 6 (j − `) z
N

6 m
z

N
,

yielding that (
1− z

N

)j−`
= 1 +

z

N
O(1).

By (3.25), for z ∈
(
0, (logN)−1

)
and for large enough N we have

λN

z
ReBN

(
1− z

N

)
= −

λ(
∑m

k=1 θk)
2

2z logN

(
1− Re O(1)√

N logN

)
+

Re O(1)

N logN

6 −
λ(
∑m

k=1 θk)
2

4z logN
+
|O(1)|
N logN

6 −
λ(
∑m

k=1 θk)
2

4
+
|O(1)|
N logN

,
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hence we obtain∫ 1
logN

0

∣∣∣1− e
λN
z
BN (1− z

N
)
∣∣∣ dz 6 ∫ 1

logN

0

(
1 + e

λN
z

ReBN (1− z
N

)
)

dz

6
1

logN

(
1 + exp

{
−
λ (
∑m

k=1 θk)
2

4
+
|O(1)|
N logN

})
→ 0 as N →∞.

(3.26)

Note that for every ε ∈ (0, 1)

1

logN

∫ εN

1
logN

1

z
dz =

log ε+ logN + log logN

logN
→ 1 as N →∞, (3.27)

1

logN

∫ εN

1
logN

1

z2
dz =

εN logN − 1

εN logN
→ 1 as N →∞. (3.28)

By (3.25), for all z ∈
(
(logN)−1, εN

)
, we have∣∣∣∣λNz BN

(
1− z

N

)∣∣∣∣ 6 λ(
∑m

k=1 θk)
2

2z logN
+

|O(1)|
zN1/2(logN)3/2

+
|O(1)|
N logN

= |O(1)|.

Thus, by (3.12), (3.25) and (3.27), we get

lim sup
N→∞

∫ εN

1
logN

∣∣∣1− e
λN
z
BN (1− z

N
)
∣∣∣dz

6 lim sup
N→∞

∫ εN

1
logN

∣∣∣∣λNz BN (1− z

N
)

∣∣∣∣ e|λNz BN (1− z
N

)| dz

6 lim sup
N→∞

e|O(1)|
∫ εN

1
logN

[
λ(
∑m

k=1 θk)
2

2z logN
+

|O(1)|
zN1/2(logN)3/2

+
|O(1)|
N logN

]
dz <∞,

which, together with (3.26), imply (3.23).
Now we turn to prove (3.24). By (3.26), the convergence (3.24) reduces to prove that∣∣∣∣∣

∫ εN

1
logN

(
1− e

λN
z
BN (1− z

N
)
)

dz −
λ (
∑m

k=1 θk)
2

2

∣∣∣∣∣→ 0 as N →∞.

Using (3.27), it is enough to check that∣∣∣∣∣
∫ εN

1
logN

(
e
λN
z
BN (1− z

N
) − 1 +

λ (
∑m

k=1 θk)
2

2z logN

)
dz

∣∣∣∣∣→ 0 as N →∞.

By applying (3.13), (3.25) and (3.5), for large enough N we get∣∣∣∣∣
∫ εN

1
logN

[(
e
λN
z
BN (1− z

N
) − 1

)
+
λ (
∑m

k=1 θk)
2

2z logN

]
dz

∣∣∣∣∣
6
∫ εN

1
logN

[
1

2

∣∣∣∣λNz BN

(
1− z

N

)∣∣∣∣2 e|
λN
z
BN (1− z

N
)| +

∣∣∣∣∣λNz BN

(
1− z

N

)
+
λ (
∑m

k=1 θk)
2

2z logN

∣∣∣∣∣
]

dz

6
∫ εN

1
logN

[
1

2

(
λ (
∑m

k=1 θk)
2

2z logN
+

|O(1)|
zN1/2(logN)3/2

+
|O(1)|
N logN

)2

e|O(1)|

+
|O(1)|

zN1/2(logN)3/2
+
|O(1)|
N logN

]
dz
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6
∫ εN

1
logN

[
3

2

(
|O(1)|

z2(logN)2
+

|O(1)|
z2N(logN)3

+
|O(1)|

N2(logN)2

)

+
|O(1)|

zN1/2(logN)3/2
+
|O(1)|
N logN

]
dz,

which converges to 0 as N →∞ using (3.27) and (3.28). This yields (3.24) completing
the proof. 2

Proof of Theorem 3.10. By Remark 3.6, condition β ∈ (0, 1) implies E
(
(1− α)−1

)
<

∞. Hence, by Proposition 3.1 and the continuous mapping theorem, it suffices to show
that

Df - lim
n→∞

(
1

n1−β
2

bntc∑
k=1

Ỹk

)
t∈R+

=

√
2λψ1Γ(β)

(2− β)(1− β)
B

1−β
2
.

We are going to apply Theorem 4.3 in Beran et al. [7] with m = 1 for the strictly

stationary Gaussian process
(
Ỹk/

√
Var(Ỹ0)

)
k∈Z+

, where, by (3.5),

Var(Ỹ0) = λE
(

1

1− α

)
, Cov(Ỹ0, Ỹk) = λE

(
αk

1− α

)
, k ∈ Z+,

hence

Cov

 Ỹ0√
Var(Ỹ0)

,
Ỹk√

Var(Ỹ0)

 =
E
(
αk

1−α

)
E
(

1
1−α

) , k ∈ Z+.

In order to check the conditions of Theorem 4.3 in Beran et al. [7], first we show that

kβ E
(

αk

1− α

)
= kβ

∫ 1

0
ak(1− a)β−1ψ(a) da→ ψ1Γ(β) as k →∞, (3.29)

meaning that the covariance function of the process (Ỹk)k∈Z+ is regularly varying with
index −β. For the definition of a regularly varying sequence see Definition 3.5. First note
that, by Stirling’s formula,

lim
k→∞

kβ
∫ 1

0
ak(1− a)β−1ψ1 da = lim

k→∞
ψ1

kβΓ(k + 1)

Γ(k + β + 1)
Γ(β)

= ψ1Γ(β) lim
k→∞

√
k

k + β

(
k

k + β

)k+β

eβ = ψ1Γ(β).

Next, for arbitrary δ ∈ (0, ψ1), there exists ε ∈ (0, 1) such that |ψ(a)− ψ1| 6 δ for all
a ∈ [1− ε, 1), and hence

kβ
∫ 1

1−ε
ak(1− a)β−1|ψ(a)− ψ1|da 6 δ sup

k∈N
kβ
∫ 1

0
ak(1− a)β−1 da

can be arbitrary small. Further, observe

kβ
∫ 1−ε

0
ak(1− a)β−1ψ(a) da 6

kβ(1− ε)k

ε

∫ 1−ε

0
(1− a)βψ(a) da

6
kβ(1− ε)k

ε

∫ 1

0
(1− a)βψ(a) da =

kβ(1− ε)k

ε
→ 0 as k →∞.
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In a similar way, we have

kβ
∫ 1−ε

0
ak(1− a)β−1ψ1 da 6 ψ1k

β(1− ε)k
∫ 1−ε

0
(1− a)β−1 da

6 ψ1k
β(1− ε)k

∫ 1

0
(1− a)β−1 da = ψ1

kβ(1− ε)k

β
→ 0 as k →∞,

hence

kβ
∫ 1−ε

0
ak(1− a)β−1|ψ(a)− ψ1|da→ 0 as k →∞,

implying (3.29). Applying (3.29), we conclude

kβ Cov

 Ỹ0√
Var(Ỹ0)

,
Ỹk√

Var(Ỹ0)

 = kβ
E
(
αk

1−α

)
E
(

1
1−α

) → ψ1Γ(β)

E
(

1
1−α

)
as k →∞. Consequently, by Theorem 4.3 in Beran et al. [7], 1

n1−β
2L1(n)1/2

bntc∑
k=1

Ỹk√
λE
(

1
1−α

)

t∈R+

D−→ Z
1,1−β

2

D
= B

1−β
2
, as n→∞,

where Z
1,1−β

2
is the Hermite-Rosenblatt process defined in Definition 3.24 of Beran et

al. [7], and

L1(n) =
ψ1Γ(β)

E
(

1
1−α

) C1, n ∈ N, with C1 =
2

(1− β)(2− β)
.

The fact that the Hermite-Rosenblatt process Z
1,1−β

2
coincides in law with B

1−β
2

is
shown in Beran et al. [7], see Definition 3.23, the representation in formula (3.111), and
page 195 of [7] for details. Hence we obtain the statement. 2

Proof of Theorem 3.11. Since, by Remark 3.6, E((1 − α)−1) < ∞, the condition in
Proposition 3.1 is satisfied, meaning that

N−
1
2 S̃(N) Df−→ Ỹ as N →∞,

where (Ỹk)k∈Z+ is a stationary Gaussian process with zero mean and covariances

E(Ỹ0Ỹk) = Cov

(
X0 −

λ

1− α
,Xk −

λ

1− α

)
= λE

( αk

1− α

)
, k ∈ Z+. (3.30)

Therefore, it suffices to show that

Df - lim
n→∞

1√
n log n

bntc∑
k=1

Ỹk =
√

2λψ1B,

where B = (Bt)t∈R+ is a standard Wiener process. Since the two processes in question,(
(n log n)−1/2

∑bntc
k=1 Ỹk

)
t∈R+

, n ∈ N, and
√

2λψ1B are zero mean Gaussian processes,

it suffices to show that the covariance function of
(
(n log n)−1/2

∑bntc
k=1 Ỹk

)
t∈R+

converges
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pointwise to that of
√

2λψ1B as n → ∞. Therefore, it remains to show that for all
t1, t2 ∈ R+ we have

Cov

 1√
n log n

bnt1c∑
k=1

Ỹk,
1√

n log n

bnt2c∑
k=1

Ỹk

→ 2λψ1 min(t1, t2), (3.31)

as n→∞. By (3.30) we have

Cov

 1√
n log n

bnt1c∑
k=1

Ỹk,
1√

n log n

bnt2c∑
k=1

Ỹk

 =
λ

n log n
E

bnt1c∑
k=1

bnt2c∑
`=1

α|k−`|

1− α


=

λ

n log n

∫ 1

0

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`|

1− a
ψ(a)(1− a) da.

First we derive
1

n log n

∫ 1

0

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`| da→ 2 min(t1, t2), (3.32)

as n→∞. Suppose that 0 6 t1 < t2, then∫ 1

0

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`| da =

bnt1c∑
k=1

bnt2c∑
`=1

1

|k − `|+ 1

=

bnt1c∑
k=1

(
1

k
+

1

k − 1
+ · · ·+ 1

2
+

1

1
+

1

2
+ · · ·+ 1

bnt2c − bnt1c+ 1
+ · · ·+ 1

bnt2c − k + 1

)
= bnt1c

1

1
+ (bnt1c − 1)

1

2
+ · · ·+ (bnt1c − (bnt1c − 1))

1

bnt1c

+ bnt1c
(

1

2
+

1

3
+ · · ·+ 1

bnt2c − bnt1c+ 1

)
+ (bnt1c − 1)

1

bnt2c − (bnt1c − 1) + 1

+ · · ·+
(
bnt1c −

(
bnt1c − 1

)) 1

bnt2c − 1 + 1

= bnt1c+ bnt1c
(

1

2
+

1

3
+ · · ·+ 1

bnt1c

)
−
(

1

2
+

2

3
+ · · ·+ bnt1c − 1

bnt1c

)
+ bnt1c

(
1

2
+

1

3
+ · · ·+ 1

bnt2c

)
−
(

1

bnt2c − bnt1c+ 2
+

2

bnt2c − bnt1c+ 3
+ · · ·+ bnt1c − 1

bnt2c

)
.

Applying that for any ` ∈ N we have

`

bnt2c − bnt1c+ `+ 1
= 1− bnt2c − bnt1c+ 1

bnt2c − bnt1c+ `+ 1
,

we get that∫ 1

0

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`| da = bnt1c+ (bnt1c+ 1)

(
1

2
+

1

3
+ · · ·+ 1

bnt1c

)
− (bnt1c − 1)

+ bnt1c
(

1

2
+

1

3
+ · · ·+ 1

bnt2c

)
− (bnt1c − 1)

+
(
bnt2c − bnt1c+ 1

)( 1

bnt2c − bnt1c+ 2
+ · · ·+ 1

bnt2c

)
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= (bnt1c+ 1)(H̃(bnt1c)− 1) + 2− bnt1c+ bnt1c(H̃(bnt2c)− 1)

+
(
bnt2c − bnt1c+ 1

) (
H̃(bnt2c)− H̃(bnt2c − bnt1c+ 1)

)
= (bnt1c+ 1)(log(bnt1c) +O(1)) + 2− bnt1c+ bnt1c(logbnt2c+O(1))

+
(
bnt2c − bnt1c+ 1

)
(log(bnt2c)− log(bnt2c − bnt1c+ 1) +O(1)) ,

where
H̃(n) :=

1

1
+

1

2
+ · · ·+ 1

n

denotes the n -th harmonic number, and we use that H̃(n) = log n + O(1) for every
n ∈ N. Therefore, convergence (3.32) holds. Consequently, (3.31) will follow from

In :=
1

n log n

∫ 1

0

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`||ψ(a)− ψ1| da→ 0

as n → ∞. Note that for every ε > 0 there is a δε > 0 such that for every a ∈
(1 − δε, 1) it holds that |ψ(a) − ψ1| < ε. Since for every a ∈ (0, 1 − δε) it holds that∑bnt1c

k=1

∑bnt2c
`=1 a|k−`| 6 bnt1c

∑∞
`=−∞ a

|`| 6 2bnt1c(1− a)−1 6 2bnt1cδε−1, we get

n log n In 6
∫ 1−δε

0

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`|(ψ(a) + ψ1) da+

∫ 1

1−δε

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`||ψ(a)− ψ1| da

6
∫ 1−δε

0

2bnt1c
δε

(ψ(a) + ψ1) da+ ε

∫ 1

1−δε

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`| da.

Then since ψ is integrable on (0, 1), we have lim supn→∞ In 6 0 + ε4 min(t1, t2) for
every ε > 0 by (3.32), resulting that limn→∞ In = 0. This completes the proof. 2

Proof of Theorem 3.12. By Proposition 3.2, we have

Df - lim
n→∞

(
n−

1
2

bntc∑
k=1

(X
(1)
k − E(X

(1)
k |α

(1)))

)
t∈R+

=

√
λ(1 + α)

1− α
B,

where (Bt)t∈R+ is a standard Wiener process and α is a random variable having a density
function of the form (3.6) with β ∈ (−1, 1) and ψ1 ∈ (0,∞), and being independent of

B. Let Wt :=

√
λ(1+α)

1−α Bt, t ∈ R+, and (W(i)
t )t∈R+ , i ∈ N, be its independent copies.

It remains to prove that

Df - lim
N→∞

(
N
− 1

1+β

N∑
i=1

W(i)
t

)
t∈R+

= Y1+β.

Using the continuity theorem and the continuous mapping theorem, it is enough to prove
that for all m ∈ N, θ1, . . . , θm ∈ R and 0 =: t0 < t1 < t2 < · · · < tm,

E

(
exp

{
i
m∑
j=1

θj

(
N
− 1

1+β

N∑
i=1

(W(i)
tj
−W(i)

tj−1
)

)})

=

[
E

(
exp

{
iN
− 1

1+β

m∑
j=1

θj(Wtj −Wtj−1)

})]N
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→ E

(
exp

{
i

m∑
j=1

θj(Y1+β(tj)− Y1+β(tj−1))

})

= E

(
exp

{
i

m∑
j=1

θj

√
Y(1+β)/2(Btj −Btj−1)

})

= E

(
exp

{
−1

2
Y(1+β)/2

m∑
j=1

θ2
j (tj − tj−1)

})

= exp

{
−kβ

(
1

2

m∑
j=1

θ2
j (tj − tj−1)

) 1+β
2

}
= e−kβ ω

1+β
2

as N → ∞, where ω := 1
2

∑m
j=1 θ

2
j (tj − tj−1). Note that, using the independence of α

and B, it suffices to show

ΨN := N

[
1− E

(
exp

{
iN
− 1

1+β

m∑
j=1

θj(Wtj −Wtj−1)

})]

= N

[
1− E

(
exp

{
−1

2
N
− 2

1+β λ(1 + α)(1− α)−2
m∑
j=1

θ2
j (tj − tj−1)

})]

= N

∫ 1

0

(
1− e−ωN

− 2
1+β λ(1+a)(1−a)−2

)
ψ(a)(1− a)β da→ kβ ω

1+β
2

as N → ∞, since it implies that (1 − ΨN/N)N → e−kβ ω
1+β
2 as N → ∞. For all

ε ∈ (0, 1),

sup
a∈(0,1−ε)

∣∣−NωN− 2
1+β (1 + a)(1− a)−1

∣∣ = ωN
−1+β
1+β (2− ε)ε−1 → 0

as N →∞. Therefore, by Lemma 3.21, substituting a = 1−N−
1

1+β y, the statement of
the theorem will follow from

lim sup
N→∞

N

∫ 1

1−ε

∣∣∣1− e−ωN
− 2

1+β λ(1+a)(1−a)−2
∣∣∣(1− a)β da

= lim sup
N→∞

∫ εN
1

1+β

0

∣∣∣1− e−ωλ(2−N−
1

1+β y)y−2
∣∣∣yβ dy <∞,

(3.33)

and

lim
N→∞

N

∫ 1

1−ε

(
1− e−ωN

− 2
1+β λ(1+a)(1−a)−2

)
(1− a)β da

= lim
N→∞

∫ εN
1

1+β

0

(
1− e−ωλ(2−N−

1
1+β y)y−2

)
yβ dy = ψ−1

1 kβ ω
1+β
2

(3.34)

for all ε ∈ (0, 1). Next we prove (3.33) and (3.34).
For all N ∈ N and ε ∈ (0, 1), using (3.10), we have∫ εN

1
1+β

0

∣∣∣1− e−ωλ(2−N−
1

1+β y)y−2
∣∣∣yβ dy 6

∫ ∞
0

∣∣∣1− e−2ωλy−2
∣∣∣yβ dy

6
∫ 1

0
yβ dy + 2ωλ

∫ ∞
1

yβ−2 dy <∞,

56



hence we obtain (3.33).
Now we turn to prove (3.34). For all ε ∈ (0, 1), we have∣∣∣∣∫ ∞
εN

1
1+β

(
1− e−2ωλy−2

)
yβ dy

∣∣∣∣ 6 2ωλ

∫ ∞
εN

1
1+β

yβ−2 dy =
2ωλ

1− β
(εN

1
1+β )β−1 → 0 (3.35)

as N →∞. Further, using (3.12),∣∣∣∣∣∣
∫ εN

1
1+β

0

(
1− e−ωλ(2−N−

1
1+β y)y−2

)
yβ dy −

∫ εN
1

1+β

0

(
1− e−2ωλy−2

)
yβ dy

∣∣∣∣∣∣
6
∫ εN

1
1+β

0

∣∣e−ωλ(2−N−
1

1+β y)y−2 − e−2ωλy−2∣∣ yβ dy

=

∫ εN
1

1+β

0
e−2ωλy−2∣∣eωλN− 1

1+β
a
y−1 − 1

∣∣ yβ dy

6 ωλN
− 1

1+β

∫ εN
1

1+β

0
e−2ωλy−2

eωλN
− 1

1+β y−1
yβ−1 dy

6 ωλN
− 1

1+β

∫ εN
1

1+β

0
e−(2−ε)ωλy−2

yβ−1 dy 6 ωλN
− 1

1+β

∫ εN
1

1+β

0
yβ−1 dy

= ωλN
− 1

1+β
(εN

1
1+β )β

β
= ωλ

εβN
β−1
1+β

β
→ 0 as N →∞,

hence, using (3.35), we conclude

lim
N→∞

∫ εN
1

1+β

0

(
1− e−ωλ(2−N−

1
1+β y)y−2

)
yβ dy =

∫ ∞
0

(
1− e−2ωλy−2

)
yβ dy

=
1

2
(2ωλ)

1+β
2

∫ ∞
0

(1− e−u)u−
3+β
2 du = ψ−1

1 kβ ω
1+β
2 ,

where the last equality follows by Li [31, formula (1.28)], thus we obtain (3.34). By Theorem
3.12 of Janson [22], a distribution with the Laplace transform given in the theorem is
positive 1+β

2 -stable.
Now it remains to show that the process Y1+β has stationary increments and (1+β)-

stable one-dimensional distributions. Indeed, by the independence of Y 1+β
2

and B, for
every 0 6 s 6 t we have

Y1+β(t)− Y1+β(s) =
√
Y 1+β

2
(Bt −Bs)

D
=
√
Y 1+β

2
Bt−s = Y1+β(t− s).

Moreover, for every t > 0, we get

E(eiuY1+β(t)) = E
(
E
(

e
iu
√
Y 1+β

2
Bt ∣∣Y 1+β

2

))
= E

(
e
−u

2t
2
Y 1+β

2

)
= e
−kβ

(
u2t
2

) 1+β
2

= e−kβ(
t
2)

1+β
2 |u|1+β , u ∈ R,

therefore the one-dimensional distributions of Y1+β are (1 + β)-stable. 2
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Proof of Theorem 3.13. By Proposition 3.2, we have

Df - lim
n→∞

(
n−

1
2

bntc∑
k=1

(X
(1)
k − E(X

(1)
k |α

(1)))

)
t∈R+

=

√
λ(1 + α)

1− α
B,

where (Bt)t∈R+ is a standard Wiener process and α is a random variable having a
density function of the form (3.6) with β = 1 and ψ1 ∈ (0,∞), and being independent
of B. Hence it remains to prove that

Df - lim
N→∞

(T
(N)
t )t∈R+ =

(√
λψ1Bt

)
t∈R+

,

where

T
(N)
t :=

1√
N logN

N∑
j=1

√
λ(1 + α(j))

1− α(j)
B

(j)
t , t ∈ R+, N ∈ N,

and α(j), j ∈ N, and B(j), j ∈ N, are independent copies of α and B, respectively,
being independent of each other as well. By the continuous mapping theorem, it is enough
to show that for all m ∈ N and 0 =: t0 6 t1 < t2 < · · · < tm,(

T
(N)
t1
− T (N)

t0
, . . . , T

(N)
tm − T (N)

tm−1

)
D−→
(√

λψ1(Bt1 −Bt0), . . . ,
√
λψ1(Btm −Btm−1)

)
as N → ∞. By the portmanteau theorem, it is enough to check that for all m ∈ N,
0 = t0 6 t1 < t2 < · · · < tm, and for all bounded and continuous functions g : Rm → R,

E
(
g
(
T

(N)
t1
− T (N)

t0
, . . . , T

(N)
tm − T (N)

tm−1

))
→ E

(
g
(√

λψ1(Bt1 −Bt0), . . . ,
√
λψ1(Btm −Btm−1)

))
as N →∞. By the properties of standard Wiener processes and their variances

E
(
g
(
T

(N)
t1
− T (N)

t0
, . . . , T

(N)
tm − T (N)

tm−1

))
= E

[
E
[
g
(
T

(N)
t1
− T (N)

t0
, . . . , T

(N)
tm − T (N)

tm−1

) ∣∣∣α(j), j ∈ N
]]

= E

[
g

(√√√√(N logN)−1

N∑
j=1

λ(1 + α(j))

(1− α(j))2
(B̃t1 − B̃t0),

. . . ,

√√√√(N logN)−1

N∑
j=1

λ(1 + α(j))

(1− α(j))2
(B̃tm − B̃tm−1)

)]

= E

h
(N logN)−1

N∑
j=1

λ(1 + α(j))

(1− α(j))2
, B̃t1 , . . . , B̃tm

 ,
where (B̃t)t∈R+ is a standard Wiener process independent of α(j), j ∈ N, and h :

Rm+1 → R is an appropriate bounded and continuous function. Hence it suffices to show
that

1

N logN

N∑
j=1

λ(1 + α(j))

(1− α(j))2

D−→ λψ1, N →∞.
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Let us apply a well-known theorem about weak convergence of partial sum processes for a
triangular array towards a Lévy process due to Resnick [46, Theorem 7.1] with

XN,j :=
1

N

λ(1 + α(j))

(1− α(j))2
.

Then

N P(XN,1 > x) = N P
(
λ(1 + α)

(1− α)2
> Nx

)
= N

∫ 1

max {0,1−h̃(λ,Nx)}
ψ(a)(1− a)da,

where h̃(λ, x) = (1/4 +
√

1/16 + x/(2λ))−1. Indeed, by solving the quadratic equation
λ(1 + α)(1− α)−2 = x for α, one gets two roots, with exactly one of them being smaller
than one: 1+λ/(2x)−

√
λ2/(4x2) + 2λ/x. After a simple rationalisation, we get that this

root equals 1 − h̃(λ, x). In the rest of the proof all statements are understood for large
enough N values, which lets us write 1− h̃(λ,Nx) instead of max {0, 1− h̃(λ,Nx)} in
the integral above. Note that for every ε > 0 there is a δε ∈ (0, 1) such that for every
a ∈ (1− δε, 1) it holds that |ψ(a)− ψ1| < ε and ψ(a) 6 2ψ1. Then,

N

∫ 1

1−h̃(λ,Nx)
|ψ(a)− ψ1|(1− a)da 6 Nε

(h̃(λ,Nx))2

2
6
ελ

x

for every x > 0 and large enough N , meaning that the limit is 0. Therefore, for every
x > 0 we have

lim
N→∞

N P(XN,1 > x) = lim
N→∞

N

∫ 1

1−h̃(λ,Nx)
ψ1(1− a)da

= lim
N→∞

Nψ1
(h̃(λ,Nx))2

2
= lim

N→∞

ψ1

2

N(
1
4 +

√
1
16 + Nx

2λ

)2 =
ψ1λ

x
=: ν([x,∞)),

where, since ν(dx) = x−21(0,∞)(x)dx holds (thus min{1, x2} is ν-integrable), ν is
obviously a Lévy measure. We note that instead of the vague convergence required in
formula (7.5) of Resnick [46], we verified convergence in distribution, which is a stronger
condition. Furthermore, by the decomposition that holds for large enough N ,

N E
(
X2
N,11{|XN,1|6ε}

)
= N

∫ 1−h̃(λ,Nε)

0

(
λ(1 + a)

N(1− a)2

)2

ψ(a)(1− a)da = I
(1)
N + I

(2)
N ,

where

I
(1)
N := N

∫ 1−δε

0

(
λ(1 + a)

N(1− a)2

)2

ψ(a)(1− a)da 6
1

N
λ2 22

δ4
ε

1→ 0

as N →∞, and

I
(2)
N := N

∫ 1−h̃(λ,Nε)

1−δε

(
λ(1 + a)

N(1− a)2

)2

ψ(a)(1− a)da

6
8ψ1λ

2

N

∫ 1−h̃(λ,Nε)

1−δε

da

(1− a)3
=

4ψ1λ
2

N

[
h̃(λ,Nε)−2 − δ−2

ε

]
=

4ψ1λ
2

N

(1

4
+

√
1

16
+
Nε

2λ

)2

− δ−2
ε

 6 2ψ1λε+ 4ψ1λ
2

(
1

8N
+

1

2N

√
1

16
+
Nε

2λ

)
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for large enough N values, so it follows that

lim
ε→0

lim sup
N→∞

N E
(
X2
N,11{|XN,1|6ε}

)
= 0.

Therefore, by applying Theorem 7.1 of Resnick [46], for t = 1 we get that

N∑
j=1

[
λ(1 + α(j))

N(1− α(j))2
− E

(
λ(1 + α)

N(1− α)2
1{ λ(1+α)

N(1−α)2
61
})] D−→ X0,

where by (5.37) of Resnick [46]

E(eiθX0) = exp

{∫ ∞
1

(eiθx − 1)
ψ1λdx

x2
+

∫ 1

0
(eiθx − 1− iθx)

ψ1λdx

x2

}
, θ ∈ R.

Let us consider the following decomposition:

N∑
j=1

[
λ(1 + α(j))

N(1− α(j))2
− E

(
λ(1 + α)

N(1− α)2
1{ λ(1+α)

N(1−α)2
61
})] =:

λ

N

N∑
j=1

J
(0)
j,N +λJ

(1)
N +λJ

(2)
N +λJ

(3)
N ,

where

J
(0)
j,N :=

(1 + α(j))

(1− α(j))2
− ψ1

∫ 1−
√

2λ
N

0

2

(1− a)2
(1− a)da,

J
(1)
N := ψ1

∫ 1−
√

2λ
N

0

2

(1− a)2
(1− a)da− ψ1

∫ 1−h̃(λ,N)

0

2

(1− a)2
(1− a)da,

J
(2)
N := ψ1

∫ 1−h̃(λ,N)

0

2

(1− a)2
(1− a)da− ψ1

∫ 1−h̃(λ,N)

0

1 + a

(1− a)2
(1− a)da,

J
(3)
N := ψ1

∫ 1−h̃(λ,N)

0

1 + a

(1− a)2
(1− a)da−

∫ 1−h̃(λ,N)

0

1 + a

(1− a)2
ψ(a)(1− a)da.

We show that
|J (1)
N |+ |J

(2)
N |+ |J

(3)
N |

logN
→ 0, N →∞,

resulting

1

logN

N∑
j=1

λ(1 + α(j))

N(1− α(j))2
=

1

logN

N∑
j=1

 λ(1 + α(j))

N(1− α(j))2
− λψ1

N

∫ 1−
√

2λ
N

0

2

1− a
da


+

2λψ1

logN

(
− log

(√
2λ

N

))
D−→ 0 ·X0 + λψ1 = λψ1, N →∞.

Indeed,

J
(1)
N

logN
= − ψ1

logN

∫ 1−h̃(λ,N)

1−
√

2λ
N

2

1− a
da = − 2ψ1

logN
log

(√
2λ

N

(
1

4
+

√
1

16
+
N

2λ

))
converges to 0 as N →∞. Moreover,

J
(2)
N

logN
=

ψ1

logN

∫ 1−h̃(λ,N)

0

1− a
(1− a)2

(1− a)da =
ψ1

logN

1− 1

1
4 +

√
1
16 + N

2λ


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converges to 0 as N →∞. Finally,∣∣∣∣∣ J
(3)
N

logN

∣∣∣∣∣ =

∣∣∣∣∣ 1

logN

∫ 1−h̃(λ,N)

0

1 + a

1− a
(ψ1 − ψ(a))da

∣∣∣∣∣
6

1

logN

∫ 1−δε

0

2

δε
(ψ1 + ψ(a))da+

1

logN

∫ 1−h̃(λ,N)

1−δε

2

1− a
εda

6
1

logN

2

δε

(
ψ1 +

∫ 1

0
ψ(a)da

)
+

2ε

logN

[
log δε + log

(
1

4
+

√
1

16
+
N

2λ

)]
.

One can easily see that, since ψ is integrable on (0, 1), then for all ε > 0, we get
lim supN→∞ |J

(3)
N /logN | 6 0 + ε. This means that limN→∞ J

(3)
N /logN = 0, which com-

pletes the proof. 2

Proof of Theorem 3.14. Let us start with the proof of the first convergence of Theorem
3.14. Since E

(
(1− α)−1

)
<∞, by Proposition 3.1, we have

1√
N
S̃(N) Df−→ Ỹ as N →∞,

where the strictly stationary Gaussian process (Ỹk)k∈Z+ is given in Proposition 3.1.
Consequently, by the continuous mapping theorem, for all n ∈ N, we get

Df - lim
N→∞

(nN)−
1
2 S̃(N,n) =

(
n−

1
2

bntc∑
k=1

Ỹk
)
t∈R+

,

hence it remains to prove that(
n−

1
2

bntc∑
k=1

Ỹk
)
t∈R+

Df−→ σB as n→∞.

Since the processes
(
n−1/2

∑bntc
k=1 Ỹk

)
t∈R+

, n ∈ N, and σB are zero mean Gaussian pro-

cesses, it suffices to show that the covariance function of
(
n−1/2

∑bntc
k=1 Ỹk

)
t∈R+

converges
pointwise to that of σB as n→∞. For all 0 6 t1 6 t2,

Cov

(
n−

1
2

bnt1c∑
k=1

Ỹk, n−
1
2

bnt2c∑
k=1

Ỹk
)

=
λ

n
E

(bnt1c∑
k=1

bnt2c∑
`=1

α|k−`|

1− α

)

→ λE
(

1 + α

(1− α)2

)
min(t1, t2) = Cov(σBt1 , σBt2) as n→∞,

since by simple calculations

bnt1c∑
k=1

bnt2c∑
`=1

α|k−`|

1− α
=

(1− α2)bnt1c − α
(
1− αbnt2c − αbnt1c + αbnt2c−bnt1c

)
(1− α)3

=
α(αbnt2c − 1) + bnt2c(1− α2)/2

(1− α)3
+
α(αbnt1c − 1) + bnt1c(1− α2)/2

(1− α)3

− α(αbnt2c−bnt1c − 1) + (bnt2c − bnt1c)(1− α2)/2

(1− α)3
,
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and

1

n
E
(
α(αbnt2c−bnt1c − 1) + (bnt2c − bnt1c)(1− α2)/2

(1− α)3

)
→ (t2 − t1)E

(
1 + α

2(1− α)2

)
as n→∞. Indeed, by the dominated convergence theorem,

1

n
E
(
α(αbnt2c−bnt1c − 1)

(1− α)3

)
→ 0 as n→∞,

where the pointwise convergence follows by∣∣∣∣∣α(αbnt2c−bnt1c − 1)

(1− α)3

∣∣∣∣∣ 6 1

(1− α)3
,

and (t2− t1 + 1) α
(1−α)2

serves as an integrable dominating function, since, by Remark 3.6,

E
(

α
(1−α)2

)
<∞, and

1

n

∣∣∣∣∣α(αbnt2c−bnt1c − 1)

(1− α)3

∣∣∣∣∣ =
α(1 + α+ α2 + · · ·+ αbnt2c−bnt1c−1)

n(1− α)2

6
α(bnt2c − bnt1c)

n(1− α)2
6 (t2 − t1 + 1)

α

(1− α)2
.

For the second convergence, first note that, by Proposition 3.2, we have

Df - lim
n→∞

(
1√
n

bntc∑
k=1

(X
(1)
k − E(X

(1)
k |α

(1)))

)
t∈R+

=

√
λ(1 + α)

1− α
B,

where (Bt)t∈R+ is a standard Wiener process and α is a random variable having a density
function of the form (3.6) with β ∈ (1,∞) and ψ1 ∈ (0,∞), and being independent of
B. Hence it remains to prove that

Df - lim
N→∞

1√
N

N∑
j=1

√
λ(1 + α(j))

1− α(j)
B(j) = σB,

where α(j), j ∈ N, and B(j), j ∈ N, are independent copies of α and B, respectively,
being independent of each other as well. Similarly to the proof of Theorem 3.13, it is enough
to show that

1

N

N∑
j=1

λ(1 + α(j))

(1− α(j))2

D−→ σ2 as N →∞.

This readily follows by the strong law of large numbers, since E
(λ(1+α)

(1−α)2

)
< ∞ due to

Remark 3.6. 2

Proof of Theorem 3.16. We introduce the decomposition

S
(N,n)
t = R

(N,n)
t + S̃

(N,n)
t , t ∈ R+, (3.36)
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with

R
(N,n)
t :=

N∑
j=1

bntc∑
k=1

(E(X
(j)
k |α

(j))− E(X
(j)
k )) = bntc

N∑
j=1

(
λ

1− α(j)
− E

(
λ

1− α(j)

))

for t ∈ R+. Since E
(
(1− α)−1

)
<∞ for β ∈ (0, 1) by Remark 3.6, by Proposition 3.1,

for each n ∈ N, Df -limN→∞ N−
1
2 S̃(N,n) exists, hence

Df - lim
N→∞

N
− 1

1+β S̃(N,n) = Df - lim
N→∞

N
β−1

2(1+β)N−
1
2 S̃(N,n) = 0. (3.37)

The distribution of the random variable λ(1−α)−1−E(λ(1−α)−1) belongs to the domain
of attraction of an (1 + β)-stable distribution. Indeed, we have

lim
x→∞

x1+β P
(

λ

1− α
− E

(
λ

1− α

)
> x

)
= lim

x→∞
x1+β P

(
α > 1− 1

λ−1x+ E((1− α)−1)

)
= lim

x→∞

1

x−(1+β)

∫ 1

1−(λ−1x+E((1−α)−1))−1

ψ(a)(1− a)β da

= lim
x→∞

−ψ(1− (λ−1x+ E((1− α)−1))−1)(λ−1x+ E((1− α)−1))−β−2λ−1

−(1 + β)x−(1+β)−1

=
ψ1λ

1+β

1 + β

(3.38)

by L’Hôpital’s rule. Further, using that P(λ(1− α)−1 > 0) = 1,

lim
x→−∞

|x|1+β P
(

λ

1− α
− E

(
λ

1− α

)
6 x

)
= lim

x→−∞
|x|1+β · 0 = 0. (3.39)

Consequently, for each n ∈ N,

Df - lim
N→∞

N
− 1

1+βR(N,n) =
(
bntcZ1+β

)
t∈R+

,

see, e.g., Puplinskaitė and Surgailis [42, Remark 2.1]. Indeed, the characteristic function of
the random variable Z1+β takes the form

E(eiθZ1+β )

= exp

{
−|θ|1+β Γ(2− (1 + β))

1− (1 + β)

ψ1λ
1+β

1 + β

(
cos

(
π(1 + β)

2

)
− i sign(θ) sin

(
π(1 + β)

2

))}
= exp

{
− |θ|1+β Γ(1− β)

−β
ψ1λ

1+β

1 + β
e−i sign(θ)

π(1+β)
2

}
= exp

{
− |θ|1+βωβ(θ)

}
, θ ∈ R.

Together with (3.37), we obtain the first convergence.
By Proposition 3.2, for each N ∈ N, Df -limn→∞ n−

1
2 S̃(N,n) exists and hence

Df - lim
n→∞

n−1S̃(N,n) = Df - lim
n→∞

n−
1
2n−

1
2 S̃(N,n) = 0,
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and

Df - lim
n→∞

n−1R(N,n) =

t N∑
j=1

(
λ

1− α(j)
− E

(
λ

1− α(j)

))
t∈R+

.

Based on the above considerations, using the decomposition (3.36) as well, we obtain the
second convergence. 2

Proof of Theorem 3.17. We commence with the proof of the first convergence. Using
the decomposition in (3.36), it will suffice to show that there exists a sequence (aN )N∈N,

satisfying
√
N/aN = o(1) such that

Df - lim
N→∞

a−1
N

N∑
j=1

(
λ

1− α(j)
− E

(
λ

1− α(j)

))
= (W t)t∈R+ , (3.40)

where W is a standard normally distributed random variable. Indeed, by Remark 3.6,
E
(
(1− α)−1

)
< ∞ for β = 1. Then for each n ∈ N, Df -limN→∞ N−

1
2 S̃(N,n) exists by

Proposition 3.1, hence for such a sequence (aN )N∈N we have

Df - lim
N→∞

a−1
N S̃(N,n) = Df - lim

N→∞

(√
N/aN

)
N−

1
2 S̃(N,n) = 0.

First we prove that (3.40) holds with some sequence (aN )N∈N, then we confirm that this
sequence satisfies

√
N/aN = o(1).

To show (3.40) we are applying Theorem 1 in Bradley [10] to the sequence λ(1 −
α(j))−1 − E(λ(1 − α)−1), j ∈ N, consisting of i.i.d. random variables with zero mean.
Note that since these variables are independent, all the correlations are zero (i.e., ρ = 0

with the notation of Bradley [10]). Thus, in order to prove that the random variable
λ(1−α)−1 −E(λ(1−α)−1) belongs to the domain of attraction of a normal distribution,
we have to show that

lim
x→∞

x2 P
(∣∣∣ λ

1−α − E
(

λ
1−α

)∣∣∣ > x
)

E
(

(λ(1− α)−1 − E(λ(1− α)−1))2 1{|λ(1−α)−1−E(λ(1−α)−1)|6x}

) = 0.

Note that the calculations in (3.38) and (3.39) are valid for β = 1 as well, meaning that
the numerator of the fraction converges to ψ1λ

2/2. Furthermore, since by Remark 3.6
the second moment of the random variable λ(1− α)−1 is infinite, then by the monotone
convergence theorem the denominator of the fraction converges to infinity as x → ∞.
Therefore, the limit of the fraction is indeed 0. Consequently, by Theorem 1 in Bradley [10],
for each n ∈ N,

Df - lim
N→∞

a−1
N R(N,n) =

(
bntcW

)
t∈R+

with some sequence (aN )N∈N that converges to infinity as N →∞. Now the convergence
3.40 that we aimed to prove easily follows after a division with n and taking the limit as
n→∞.

It remains to show that
√
N/aN = o(1) as N →∞, which we do by applying formula

(5.23) on page 579 of Feller [14]. It states that the sequence (aN )N∈N satisfies

lim
N→∞

N E
((

λ
1−α − E

(
λ

1−α

))2
1{| λ

1−α−E( λ
1−α)|<aN}

)
a2
N

= C
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with some constant C ∈ (0,∞). However, since the second moment of (1 − α)−1 is

infinite, E
((

λ
1−α − E

(
λ

1−α

))2
1{| λ

1−α−E( λ
1−α)|<aN}

)
→ ∞ as N → ∞, meaning that

N/a2
N must converge to zero as N →∞.
Next we prove the second convergence. By Proposition 3.2, for each N ∈ N, the limit

Df -limn→∞ n−
1
2 S̃(N,n) exists and hence

Df - lim
n→∞

n−1S̃(N,n) = Df - lim
n→∞

n−
1
2n−

1
2 S̃(N,n) = 0,

and

Df - lim
n→∞

n−1R(N,n) =

t N∑
j=1

(
λ

1− α(j)
− E

(
λ

1− α(j)

))
t∈R+

.

Based on the above considerations, using the decomposition (3.36) as well, we obtain the
second convergence with the same sequence (aN )N∈N. 2

Proof of Theorem 3.18. First note that, since β > 1, by Remark 3.6, Var((1−α)−1) <

∞. Hence, by the central limit theorem, for each n ∈ N,

Df - lim
N→∞

N−
1
2R(N,n) =

(
bntcWλ2 Var((1−α)−1)

)
t∈R+

.

Consequently,

Df - lim
n→∞

Df - lim
N→∞

n−1N−
1
2R(N,n) = (Wλ2 Var((1−α)−1)t)t∈R+ .

By Theorem 3.14, Df -limn→∞ Df -limN→∞ (nN)−
1
2 S̃(N,n) exists, hence

Df - lim
n→∞

Df - lim
N→∞

n−1N−
1
2 S̃(N,n) = Df - lim

n→∞
Df - lim

N→∞
n−

1
2 (nN)−

1
2 S̃(N,n) = 0.

Using the decomposition (3.36), we have the first convergence.
Similarly, for each N ∈ N,

Df - lim
n→∞

n−1R(N,n) =

 N∑
j=1

(
λ

1− α(j)
− E

(
λ

1− α(j)

))
t


t∈R+

,

and, by the central limit theorem,

Df - lim
N→∞

Df - lim
n→∞

n−1N−
1
2R(N,n) = (Wλ2 Var((1−α)−1)t)t∈R+ .

By Theorem 3.14, we also have

Df - lim
N→∞

Df - lim
n→∞

n−1N−
1
2 S̃(N,n) = 0,

which yields the second convergence using the decomposition (3.36) as well. 2

Proof of Lemma 3.20. For any z ∈ C we have

|ez − 1| =
∣∣∣∣z +

z2

2!
+
z3

3!
+ . . .

∣∣∣∣ 6 |z|(1 +
|z|
2!

+
|z|2

3!
+ . . .

)
6 |z|

(
1 +
|z|
1!

+
|z|2

2!
+ . . .

)
= |z|e|z|,
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|ez − 1− z| =
∣∣∣∣z2

2!
+
z3

3!
+ . . .

∣∣∣∣ 6 |z|22

(
1 +
|z|
3

+
|z|2

3 · 4
+ . . .

)
6
|z|2

2

(
1 +
|z|
1!

+
|z|2

2!
+ . . .

)
=
|z|2

2
e|z|,

since 3 · 4 · · · (n+ 2) > n! for any n ∈ N. 2

Proof of Lemma 3.21 Using the dominated convergence theorem, first we check that

lim
N→∞

N

∫ 1−ε

0

(
1− e

λ
1−a zN (a)

)
ψ(a)(1− a)β da = 0 (3.41)

for all ε ∈ (0, 1). By applying (3.12) and using (3.14), for any ε ∈ (0, 1) and a ∈ (0, 1−ε),
we get ∣∣∣N (1− e

λ
1−a zN (a)

)∣∣∣ 6 N
∣∣∣ λ

1− a
zN (a)

∣∣∣e| λ1−a zN (a)| → 0 (3.42)

as N →∞. Further, if ε ∈ (0, 1) and a ∈ (0, 1− ε), then∣∣∣N (1− e
λ

1−a zN (a)
)∣∣∣ 6 λ

ε
sup
N∈N

sup
a∈(0,1−ε)

|NzN (a)| e
λ
ε

supN∈N supa∈(0,1−ε) |zN (a)| =: Cε,

where Cε ∈ R+. Since
∫ 1

0 ψ(a)(1− a)β da = 1, we have∣∣∣∣N ∫ 1−ε

0

(
1− e

λ
1−a zN (a)

)
ψ(a)(1− a)β da

∣∣∣∣ 6 ∫ 1−ε

0
Cεψ(a)(1− a)β da <∞.

Therefore, (0, 1 − ε) 3 a 7→ Cεψ(a)(1 − a)β serves as a dominating integrable function.
Thus the pointwise convergence in (3.42) results (3.41). Moreover, for all ε ∈ (0, 1), we
have ∣∣∣∣N ∫ 1

0

(
1− e

λ
1−a zN (a)

)
ψ(a)(1− a)β da− ψ1I

∣∣∣∣
6

∣∣∣∣N ∫ 1−ε

0

(
1− e

λ
1−a zN (a)

)
ψ(a)(1− a)β da

∣∣∣∣
+

∣∣∣∣N ∫ 1

1−ε

(
1− e

λ
1−a zN (a)

)
(ψ(a)− ψ1)(1− a)β da

∣∣∣∣
+ ψ1

∣∣∣∣N ∫ 1

1−ε

(
1− e

λ
1−a zN (a)

)
(1− a)β da− I

∣∣∣∣ ,
where ∣∣∣∣N ∫ 1

1−ε

(
1− e

λ
1−a zN (a)

)
(ψ(a)− ψ1)(1− a)β da

∣∣∣∣
6 N sup

a∈[1−ε,1)
|ψ(a)− ψ1|

∫ 1

1−ε

∣∣∣1− e
λ

1−a zN (a)
∣∣∣ (1− a)β da,

with supa∈[1−ε,1) |ψ(a)−ψ1| → 0 as ε ↓ 0, by the assumption. First taking lim supN→∞
and then ε ↓ 0, using (3.41), we obtain the statement. 2

66



Chapter 4

Simultaneous limit theorems for the
aggregation of randomized INAR(1)
processes with Poisson innovations

This chapter is about the simultaneous limit theorems for the aggregation of randomized
INAR(1) processes with Poisson innovations. The proofs of this chapter are based on the
paper Barczy et al. [4].

We continue to investigate the temporal and contemporaneous aggregates of the ran-
domized INAR(1) processes with Poisson innovations with the mixing distribution given
in (3.6). In Section 4.1 two simultaneous limit theorems are given, meaning that the time
scale n and number of independent copies N tend to infinity together, at some given
rate. To represent the connection between the two parameters, throughout this chapter,
we will use a sequence Nn, n ∈ N, instead of the parameter N , and the theorems
will be given as n tends to infinity, which will always imply that Nn, n ∈ N, tends
to infinity as well. The two limit theorems in question cover the cases when β ∈ (−1, 0)

with N
−β
1+β
n n−1 → ∞, and when β = 0 with (logNn)2n−1 → ∞. This section also

contains a technical result that is needed for the proofs of these theorems, which are given
in Section 4.2. For the proofs, a new tool, namely Lemma 4.5 had to be developed, that
is the counterpart of Lemma 3.21, which was applied to prove some of the iterated limit
theorems in Chapter 3.

We note that the rest of the cases (β > 0, and β ∈ (−1, 0] with a different rate of n

and N than those in the previous paragraph) remain for future work. The proof technique
that we applied could not be used for these cases. To be more precise, in the rest of the cases
we could not find an εn, n ∈ N, sequence to satisfy all three conditions of Lemma 4.5.
However, very recently, for randomized autoregressive processes of order 1, Pilipauskaitė
et al. [37] have found a somewhat new approach for studying simultaneous limits. Namely,
they used an infinite series representation of the stationary distribution of their model for
calculating the characteristic function of the finite dimensional distributions in question.
In our case, i.e., in case of randomized INAR(1) processes, we also derived such a formula
given in Barczy et al. [4, Formula (1.4)], and it is much more complicated. As a future work,
using it, we plan to handle the remaining cases, which are left open: β ∈ (0,∞), and
β ∈ (−1, 0] with different proportions of the time scale n and the number of independent
copies N .
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4.1 Simultaneous limit theorems

Theorem 4.1. If β ∈ (−1, 0), then

n−1N
− 1

2(1+β)
n S̃(Nn,n) Df−→ (V2(1+β)t)t∈R+ as n→∞ and N

−β
1+β
n n−1 →∞,

where V2(1+β) is a symmetric 2(1+β)-stable random variable (not depending on t) with
characteristic function

E(eiθV2(1+β)) = e−Kβ |θ|
2(1+β)

, θ ∈ R,

where Kβ = ψ1(λ2 )1+β Γ(−β)
1+β .

We note that Theorem 4.1 can be considered as a counterpart of Theorem 3.8. The
scaling factors and the limit processes coincide in these two theorems.

Theorem 4.2. If β = 0, then

n−1(Nn logNn)−
1
2 S̃(Nn,n) Df−→ (Wλψ1t)t∈R+ as n→∞ and (logNn)2n−1 →∞,

where Wλψ1 has a normal distribution with mean 0 and variance λψ1.

We note that Theorem 4.2 can be considered as a counterpart of Theorem 3.9. The
scaling factors and the limit processes coincide in these two theorems. Let us note that the
theorems of this section are summarized in a table in Appendix A.

In the next remark we compare our assumptions in Theorems 4.1 and 4.2 with the
corresponding assumptions in Pilipauskaitė and Surgailis [38] for analogous results about
simultaneous aggregation of random coefficient AR(1) processes.

Remark 4.3. In Theorem 4.1 (where β ∈ (−1, 0)), the condition N
−β
1+β
n n−1 → ∞ as

n→∞ yields that Nn →∞ as n→∞ and

N
1

1+β
n n−1 = NnN

−β
1+β
n n−1 →∞ as n→∞,

which is the form of the condition in Pilipauskaitė and Surgailis [38] for their convergence
(2.12) for simultaneous aggregation of random coefficient AR(1) with the same mixing

distribution given in (3.6). However, in case of β ∈ (−1, 0), the condition N
1

1+β
n n−1 →∞

as n→∞ does not imply that N
−β
1+β
n n−1 →∞ as n→∞ in general. Indeed, for example,

if Nn := bnγ lnnc with some γ ∈ (1+β,−1− 1
β ), then N

1
1+β
n n−1 ∼ n−1+ γ

1+β (lnn)
1

1+β →

∞ as n→∞, since −1+ γ
1+β > 0, but N

−β
1+β
n n−1 ∼ n

−1−β−γβ
1+β (lnn)

−β
1+β → 0 as n→∞,

since −1−β−γβ
1+β < 0. We note that the condition N

−β
1+β
n n−1 →∞ as n→∞ in Theorem

4.1 might be replaced by N
1

1+β
n n−1 as n → ∞. However, a new proof technique would

be needed, since our present one uses effectively that N
−β
1+β
n n−1 → ∞ as n → ∞, for

example, in the proof of Theorem 4.1 we argue that for large enough n and for any

z ∈ (N−1
n , 1], we have z−1nN

−1
1+β
n |O(1)| 6 |O(1)| (see (4.8)).
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In Theorem 4.2 (where β = 0), the condition (logNn)2n−1 →∞ as n→∞ yields
that Nn → ∞ as n → ∞ and Nnn

−1 = n−1(logNn)2 Nn
(logNn)2

→ ∞ · ∞ = ∞ as
n → ∞, which is the form of the condition (1.6) in Pilipauskaitė and Surgailis [38] for
their convergence (2.13). However, the condition Nnn

−1 →∞ as n→∞ does not imply
that (logNn)2n−1 →∞ as n→∞ in general. Indeed, for example, if Nn := n2, then
Nnn

−1 = n→∞ as n→∞, but (logNn)2n−1 = 4n−1(lnn)2 → 0 as n→∞. Further,
one can check that

lim
n→∞

n−1(Nn logNn)−
1
2

n−1(Nn log(Nn/n))−
1
2

= 1,

where n−1(Nn log(Nn/n))−
1
2 is the scaling factor in (2.13) in Pilipauskaitė and Surgailis

[38]. Indeed,

lim
n→∞

n−1(Nn logNn)−
1
2

n−1(Nn log(Nn/n))−
1
2

= lim
n→∞

(
Nn logNn

Nn logNn −Nn log n

)− 1
2

= lim
n→∞

(
1

1− log n/ logNn

)− 1
2

= 1,

since (log n/ logNn)2 = [(logNn)−2n]n−1(log n)2 → 0 · 0 = 0 as n → ∞ under the
condition (logNn)2n−1 → ∞ as n → ∞. We note that the condition (logNn)2n−1 →
∞ as n → ∞ in Theorem 4.2 might be replaced by Nnn

−1 as n → ∞. How-
ever, a new proof technique would be needed, since our present one uses effectively that
(logNn)2n−1 →∞ as n→∞. For example, in the proof of Theorem 4.2 we argue that

n
Nn logNn

∫ Nn(logNn)−1

(logNn)−1 1 dz = n
(logNn)2

(
1− 1

Nn

)
→ 0 as n→∞ (see (4.15)). 2

Remark 4.4. The proofs of Theorems 4.1 and 4.2 are based on the explicit formula of the
joint generator function of (X1, . . . , Xk) given in (2.21), where k ∈ N, and an auxiliary
Lemma 4.5, which gives a set of sufficient conditions for the convergence of the integral
Nn

∫ 1
0

(
1− e

λ
1−a zn(a)

)
ψ(a)(1 − a)β da as n → ∞, where (zn(a))n∈N is a sequence of

complex numbers. We were not able to use this proof technique for the cases β ∈ (0,∞),
and β ∈ (−1, 0] with different proportions of the time scale n and the number of
independent copies N . However, as it was explained in the beginning of this chapter, as
future work, using a different technique, we plan to handle these cases as well. 2

The next lemma is a variant of Lemma 3.21, and we use it in the proofs of Theorems
4.1 and 4.2.

Lemma 4.5. Suppose that (0, 1) 3 x 7→ ψ(x)(1 − x)β is a probability density, where ψ

is a function on (0, 1) having a limit limx↑1 ψ(x) = ψ1 ∈ (0,∞) (and then necessarily
β ∈ (−1,∞)). For all a ∈ (0, 1), let (zn(a))n∈N be a sequence of complex numbers, let
n0 ∈ N, (εn)n>n0 be a sequence in (0, 1) with limn→∞ εn = 0, and let (Nn)n∈N be a
sequence of positive integers such that

sup
n>n0

ε−1
n Nn sup

a∈(0,1−εn)
|zn(a)| <∞, (4.1)

lim sup
n→∞

Nn

∫ 1

1−εn

∣∣∣1− e
λ

1−a zn(a)
∣∣∣ (1− a)β da <∞,

lim
n→∞

∣∣∣∣Nn

∫ 1

1−εn

(
1− e

λ
1−a zn(a)

)
(1− a)β da− I

∣∣∣∣ = 0
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with some I ∈ C. Then

lim
n→∞

Nn

∫ 1

0

(
1− e

λ
1−a zn(a)

)
ψ(a)(1− a)β da = ψ1I.

4.2 Proofs

In the following two proofs, the notations O(1) and |O(1)| stand for a possibly
complex and respectively real sequence (ak)k∈N that is bounded and can only depend on
the parameters λ, ψ1, β, and on some fixed m ∈ N and θ1, . . . , θm ∈ R. Further, we
call the attention that several O(1)-s (respectively |O(1)|-s) in the same formula do not
necessarily mean the same bounded sequence.
Proof of Theorem 4.1. To prove this limit theorem we have to show that for any sequence

(Nn)n∈N of positive integers with N
−β
1+β
n n−1 →∞, we have

n−1N
− 1

2(1+β)
n S̃(Nn,n) Df−→ (V2(1+β)t)t∈R+ as n→∞.

For this, by continuous mapping theorem, it is enough to verify that for any m ∈ N and
t0, t1, . . . , tm ∈ R+ with 0 =: t0 < t1 < . . . < tm, we have

n−1N
− 1

2(1+β)
n

Nn∑
j=1

( bnt1c∑
k=1

(
X

(j)
k −

λ

1− α(j)

)
,

bnt2c∑
k=bnt1c+1

(
X

(j)
k −

λ

1− α(j)

)
,

. . . ,

bntmc∑
k=bntm−1c+1

(
X

(j)
k −

λ

1− α(j)

))
D−→ V2(1+β)(t1, t2 − t1, . . . , tm − tm−1) as n→∞.

So, by continuity theorem, we have to check that for any m ∈ N, t0, t1, . . . , tm ∈ R+ with
0 = t0 < t1 < . . . < tm and θ1, . . . , θm ∈ R the convergence

E

(
exp

{
i

m∑
`=1

θ`n
−1N

− 1
2(1+β)

n

Nn∑
j=1

bnt`c∑
k=bnt`−1c+1

(
X

(j)
k −

λ

1− α(j)

)})

= E

(
exp

{
in−1N

− 1
2(1+β)

n

Nn∑
j=1

m∑
`=1

θ`

bnt`c∑
k=bnt`−1c+1

(
X

(j)
k −

λ

1− α(j)

)})

=

[
E

(
exp

{
in−1N

− 1
2(1+β)

n

m∑
`=1

θ`

bnt`c∑
k=bnt`−1c+1

(
Xk −

λ

1− α

)})]Nn

→ E

(
ei
∑m
`=1 θ`(t`−t`−1)V2(1+β)

)
= e−Kβ |

∑m
`=1 θ`(t`−t`−1)|2(1+β) as n→∞

holds. Note that it suffices to show

Θn := Nn

[
1− E

(
exp

{
in−1N

− 1
2(1+β)

n

m∑
`=1

θ`

bnt`c∑
k=bnt`−1c+1

(
Xk −

λ

1− α

)})]

→ Kβ

∣∣∣∣∣
m∑
`=1

θ`(t` − t`−1)

∣∣∣∣∣
2(1+β)

as n→∞,
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since it implies that for every k ∈ N (1 − Θn/Nn)Nn → e−Kβ |
∑m
`=1 θ`(t`−t`−1)|2(1+β) as

n → ∞, as desired. Let us recall that, as it was introduced before the proof of Theorem
3.8, the joint conditional generator function of X0, X1, . . . , Xk given α is denoted by
F0,...,k(z0, . . . , zk |α), z0, . . . , zk ∈ D = {z ∈ C : |z| 6 1}. Then, by applying (2.21) to the
left hand side, we get

Θn = Nn E

[
1− e−in−1N

− 1
2(1+β)

n
λ

1−α
∑m
`=1 θ`(bnt`c−bnt`−1c)

× F0,...,bntmc−1

(
ein−1N

− 1
2(1+β)

n θ1 , . . . , ein−1N
− 1

2(1+β)
n θ1︸ ︷︷ ︸

bnt1c items

,

. . . , ein−1N
− 1

2(1+β)
n θm , . . . , ein−1N

− 1
2(1+β)

n θm︸ ︷︷ ︸
bntmc−bntm−1c items

∣∣∣α)]

= Nn E
[
1− e

λ
1−αAn(α)

]
= Nn

∫ 1

0

(
1− e

λ
1−aAn(a)

)
ψ(a)(1− a)β da

with

An(a) :=
m∑
`=1

(
ein−1N

− 1
2(1+β)

n θ` − 1− in−1N
− 1

2(1+β)
n θ`

)
(bnt`c − bnt`−1c)

+
∑

16`1<`26m

bnt`1c∑
k1=bnt`1−1c+1

bnt`2c∑
k2=bnt`2−1c+1

ak2−k1
(
ein−1N

− 1
2(1+β)

n θ`1 − 1
)(

ein−1N
− 1

2(1+β)
n θ`2 − 1

)
× e

in−1N
− 1

2(1+β)
n

(
(bnt`1c−k1)θ`1+

∑`2−1
`=`1+1 θ`(bnt`c−bnt`−1c)+(k2−1−bnt`2−1c)θ`2

)

+

m∑
`=1

∑
bnt`−1c+16k1<k26bnt`c

ak2−k1
(
ein−1N

− 1
2(1+β)

n θ` − 1
)2

ein−1N
− 1

2(1+β)
n (k2−k1−1)θ`

for a ∈ [0, 1]. The aim of the following discussion is to apply Lemma 4.5 with zn(a) :=

An(a), n ∈ N, a ∈ (0, 1), εn := N
β

1+β
n , n ∈ N, and

I := ψ−1
1 Kβ

∣∣∣∣∣
m∑
`=1

θ`(t` − t`−1)

∣∣∣∣∣
2(1+β)

.

Since β ∈ (−1, 0), we have εn ∈ (0, 1) for n > n0, where n0 is sufficiently large, and
limn→∞ εn = 0. First we check (4.1). Using (3.11), for any a ∈ (0, 1) we get

|An(a)| 6
m∑
`=1

n−2N
− 1

1+β
n

θ2
`

2
(bnt`c − bnt`−1c)

+
∑

16`1<`26m

n−2N
− 1

1+β
n |θ`1 ||θ`2 |(bnt`1c − bnt`1−1c)(bnt`2c − bnt`2−1c)

+

m∑
`=1

n−2N
− 1

1+β
n

θ2
`

2
(bnt`c − bnt`−1c)(bnt`c − bnt`−1c − 1)

=
1

2
n−2N

− 1
1+β

n

( m∑
`=1

|θ`|(bnt`c − bnt`−1c)
)2

6
1

2
N
− 1

1+β
n

( m∑
`=1

|θ`|(t` − t`−1 + 1)

)2

,
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since 1
n(bnt`c−bnt`−1c) 6 1

n(nt`−nt`−1 +1) = t`−t`−1 + 1
n 6 t`−t`−1 +1. Consequently,

since ε−1
n Nn = N

1
1+β
n , we have

sup
n>n0

ε−1
n Nn sup

a∈(0,1−εn)
|An(a)| 6 1

2

( m∑
`=1

|θ`|(t` − t`−1 + 1)

)2

<∞,

i.e., (4.1) is satisfied. Therefore, by Lemma 4.5, substituting a = 1 − z−1N
− 1

1+β
n with

z > 0, the statement of the theorem will follow from

lim sup
n→∞

Nn

∫ 1

1−N
β

1+β
n

∣∣∣1− e
λ

1−aAn(a)
∣∣∣(1− a)β da

= lim sup
n→∞

∫ ∞
N−1
n

∣∣∣1− eλzN
1

1+β
n An

(
1−z−1N

− 1
1+β

n

)∣∣∣z−(2+β) dz <∞
(4.2)

and

lim
n→∞

∣∣∣∣Nn

∫ 1

1−N
β

1+β
n

(
1− e

λ
1−aAn(a)

)
(1− a)β da− I

∣∣∣∣
= lim

n→∞

∣∣∣∣∣
∫ ∞
N−1
n

(
1− eλzN

1
1+β
n An

(
1−z−1N

− 1
1+β

n

))
z−(2+β) dz − I

∣∣∣∣∣ = 0

(4.3)

with

I = ψ−1
1 Kβ

∣∣∣∣∣
m∑
`=1

θ`(t` − t`−1)

∣∣∣∣∣
2(1+β)

=

λ
2

∣∣∣∣∣
m∑
`=1

θ`(t` − t`−1)

∣∣∣∣∣
2
1+β∫ ∞

0
(1− e−z)z−(2+β) dz

=

∫ ∞
0

(
1− e−

λz
2

(∑m
`=1 θ`(t`−t`−1)

)2)
z−(2+β) dz,

where the first equality is justified by Li [31, formula (1.28)].
Next we check (4.2) and (4.3). By Taylor expansion,

ein−1N
− 1

2(1+β)
n θ` − 1 = in−1N

− 1
2(1+β)

n θ` + n−2N
− 1

1+β
n O(1) = n−1N

− 1
2(1+β)

n O(1),

ein−1N
− 1

2(1+β)
n θ` − 1− in−1N

− 1
2(1+β)

n θ` = −n−2N
− 1

1+β
n

θ2
`

2
+ n−3N

− 3
2(1+β)

n O(1)

= n−2N
− 1

1+β
n O(1)

for all ` ∈ {1, . . . ,m}, resulting

λzN
1

1+β
n An

(
1− z−1N

− 1
1+β

n

)
= −

λz
(∑m

`=1 θ`(bnt`c − bnt`−1c)
)2

2n2
+

zO(1)

N
1

2(1+β)
n

+
nO(1)

N
1

1+β
n

= −
λz
(∑m

`=1 θ`(t` − t`−1)
)2

2
+ z o(1) +

zO(1)

N
1

2(1+β)
n

+
nO(1)

N
1

1+β
n

(4.4)

for z > N−1
n . (We recall that for a sequence (an)n∈N the notation an = o(1) means

that an → 0 as n → ∞. ) Indeed, for z > N−1
n , we also have z > N

− 1
1+β

n , yielding
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that 1− z−1N
− 1

1+β
n ∈ (0, 1), and

An

(
1− z−1N

− 1
1+β

n

)
=

m∑
`=1

(
ein−1N

− 1
2(1+β)

n θ` − 1− in−1N
− 1

2(1+β)
n θ`

)
(bnt`c − bnt`−1c)

+
∑

16`1<`26m

bnt`1c∑
k1=bnt`1−1c+1

bnt`2c∑
k2=bnt`2−1c+1

(
1− z−1N

− 1
1+β

n

)k2−k1 (
ein−1N

− 1
2(1+β)

n θ`1 − 1
)

× e
in−1N

− 1
2(1+β)

n

(
(bnt`1c−k1)θ`1+

∑`2−1
`=`1+1 θ`(bnt`c−bnt`−1c)+(k2−1−bnt`2−1c)θ`2

)
×
(
ein−1N

− 1
2(1+β)

n θ`2 − 1
)

+
m∑
`=1

∑
bnt`−1c+16k1<k26bnt`c

(
1− z−1N

− 1
1+β

n

)k2−k1 (
ein−1N

− 1
2(1+β)

n θ` − 1
)2

× ein−1N
− 1

2(1+β)
n (k2−k1−1)θ`

=

m∑
`=1

(
−

θ2
`

2n2N
1

1+β
n

+
O(1)

n3N
3

2(1+β)
n

)
(bnt`c − bnt`−1c)

+
∑

16`1<`26m

(
1 +

nO(1)

zN
1

1+β
n

)(
iθ`1

nN
1

2(1+β)
n

+
O(1)

n2N
1

1+β
n

)(
1 +

O(1)

N
1

2(1+β)
n

)

×
(

iθ`2

nN
1

2(1+β)
n

+
O(1)

n2N
1

1+β
n

)
(bnt`1c − bnt`1−1c)(bnt`2c − bnt`2−1c)

+
1

2

m∑
`=1

(
1 +

nO(1)

zN
1

1+β
n

)(
iθ`

nN
1

2(1+β)
n

+
O(1)

n2N
1

1+β
n

)2(
1 +

O(1)

N
1

2(1+β)
n

)

× (bnt`c − bnt`−1c)(bnt`c − bnt`−1 − 1c)

= −
∑m

`=1 θ
2
` (bnt`c − bnt`−1c)

2n2N
1

1+β
n

+
O(1)

n2N
3

2(1+β)
n

−
∑

16`1<`26m θ`1θ`2(bnt`1c − bnt`1−1c)(bnt`2c − bnt`2−1c)

n2N
1

1+β
n

+
O(1)

N
3

2(1+β)
n

+
nO(1)

zN
2

1+β
n

−
∑m

`=1 θ
2
` (bnt`c − bnt`−1c)(bnt`c − bnt`−1 − 1c)

2n2N
1

1+β
n

+
O(1)

N
3

2(1+β)
n

+
nO(1)

zN
2

1+β
n

= −
(∑m

`=1 θ`(bnt`c − bnt`−1c)
)2

2n2N
1

1+β
n

+
O(1)

N
3

2(1+β)
n

+
nO(1)

zN
2

1+β
n

,

where we used the following facts:
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•

e
in−1N

− 1
2(1+β)

n

(
(bnt`1c−k1)θ`1+

∑`2−1
`=`1+1 θ`(bnt`c−bnt`−1c)+(k2−1−bnt`2−1c)θ`2

)
= eiN

− 1
2(1+β)

n O(1) = 1 +N
− 1

2(1+β)
n O(1)

(4.5)

•

ein−1N
− 1

2(1+β)
n (k2−k1+1)θ` = eiN

− 1
2(1+β)

n O(1) = 1 +N
− 1

2(1+β)
n O(1), (4.6)

due to bnt`−1c+ 1 6 k1 < k2 6 bnt`c,

• (
1− z−1N

− 1
1+β

n

)k2−k1
= 1 +

nO(1)

zN
1

1+β
n

,

following from an application of Bernoulli’s inequality:∣∣∣∣∣
(

1− z−1N
− 1

1+β
n

)k2−k1
− 1

∣∣∣∣∣ 6 k2 − k1

zN
1

1+β
n

6
bntmc

zN
1

1+β
n

.

By (4.4), for large enough n and for any z ∈ [1,∞), we have

λzN
1

1+β
n ReAn

(
1− z−1N

− 1
1+β

n

)
= −

λz(
∑m

`=1 θ`(bnt`c − bnt`−1c))2

2n2

1− Re O(1)

N
1

2(1+β)
n

+
nRe O(1)

N
1

1+β
n

6 −
λz(
∑m

`=1 θ`(t` − t`−1))2

4
+
n|O(1)|

N
1

1+β
n

6 −
λ(
∑m

`=1 θ`(t` − t`−1))2

4
+
n|O(1)|

N
1

1+β
n

6 0,

since N
1

2(1+β)
n → ∞ as n → ∞, and nN

− 1
1+β

n 6 nN
β

1+β
n → 0 as n → ∞, hence we

obtain for large enough n,∫ ∞
1

∣∣∣∣∣1− eλzN
1

1+β
n An(1−z−1N

− 1
1+β

n )

∣∣∣∣∣ z−(β+2) dz

6
∫ ∞

1

(
1 + eλzN

1
1+β
n ReAn(1−z−1N

− 1
1+β

n )

)
z−(β+2) dz 6 2

∫ ∞
1

z−(β+2) dz <∞.
(4.7)

Again by (4.4), for large enough n and for any z ∈
(
N−1
n , 1

]
, we have∣∣∣λzN 1

1+β
n An

(
1− z−1N

− 1
1+β

n

)∣∣∣ 6 λz(
∑m

`=1 θ`(bnt`c − bnt`−1c))2

2n2
+
z|O(1)|

N
1

2(1+β)
n

+
n|O(1)|

N
1

1+β
n

6 z

(
λ(
∑m

`=1 |θ`|(t` − t`−1 + 1))2

2
+
|O(1)|

N
1

2(1+β)
n

+ |O(1)|
)

6 z|O(1)| 6 |O(1)|,

where we used that z ∈
(
N−1
n , 1

]
and nN

β
1+β
n → 0 as n→∞ imply that

1

z

n|O(1)|

N
1

1+β
n

6 Nn
n|O(1)|

N
1

1+β
n

=
n|O(1)|

N
− β

1+β
n

= |O(1)|. (4.8)
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Hence, using (3.12), we obtain for large enough n∫ 1

N−1
n

∣∣∣∣∣1− eλzN
1

1+β
n An

(
1−z−1N

− 1
1+β

n

)∣∣∣∣∣ z−(2+β) dz

6
∫ 1

N−1
n

∣∣∣∣λzN 1
1+β
n An

(
1− z−1N

− 1
1+β

n

)∣∣∣∣ e
∣∣∣∣∣λzN 1

1+β
n An

(
1−z−1N

− 1
1+β

n

)∣∣∣∣∣
z−(2+β) dz

6 |O(1)|e|O(1)|
∫ 1

0
z−(1+β) dz <∞,

which, together with (4.7), imply (4.2).
Now we turn to prove (4.3). By (3.10), we have∣∣∣∣∣
∫ N−1

n

0

(
1− e−

λz
2

(
∑m
`=1 θ`(t`−t`−1))2

)
z−(2+β) dz

∣∣∣∣∣
6
∫ N−1

n

0

λz(
∑m

`=1 θ`(t` − t`−1))2

2
z−(2+β) dz

=
λ(
∑m

`=1 θ`(t` − t`−1))2

2

∫ N−1
n

0
z−(1+β) dz =

λ(
∑m

`=1 θ`(t` − t`−1))2

2

Nβ
n

(−β)
→ 0

as n→∞, hence (4.3) reduces to checking that limn→∞ In = 0, where

In :=

∫ ∞
N−1
n

[
eλzN

1
1+β
n An(1−z−1N

− 1
1+β

n ) − e−
λz
2

(
∑m
`=1 θ`(t`−t`−1))2

]
z−(2+β) dz.

Applying again (4.4), we obtain

|In| 6
∫ ∞
N−1
n

e−
λz
2

(
∑m
`=1 θ`(t`−t`−1))2

∣∣∣ez o(1)+zN
− 1

2(1+β)
n O(1)+nN

− 1
1+β

n O(1) − 1
∣∣∣z−(2+β) dz.

Here, for z ∈ (N−1
n ,∞), we have∣∣z o(1) + zN
− 1

2(1+β)
n O(1) + nN

− 1
1+β

n O(1)
∣∣ 6 z

(
o(1) +N

− 1
2(1+β)

n + nN
β

1+β
n

)
|O(1)|,

and hence, by (3.12), we get∣∣∣ez o(1)+zN
− 1

2(1+β)
n O(1)+nN

− 1
1+β

n O(1) − 1
∣∣∣

6
∣∣z o(1) + zN

− 1
2(1+β)

n O(1) + nN
− 1

1+β
n O(1)

∣∣ e∣∣z o(1)+zN
− 1

2(1+β)
n O(1)+nN

− 1
1+β

n O(1)
∣∣

6 z
(
o(1) +N

− 1
2(1+β)

n + nN
β

1+β
n

)
|O(1)| ez

(
o(1)+N

− 1
2(1+β)

n +nN

β
1+β
n

)
|O(1)|.

Consequently, for large enough n,

|In| 6
(
o(1) +N

− 1
2(1+β)

n + nN
β

1+β
n

)
|O(1)|

×
∫ ∞
N−1
n

e−
λz
2

(
∑m
`=1 θ`(t`−t`−1))2+z

(
o(1)+N

− 1
2(1+β)

n +nN

β
1+β
n

)
|O(1)|z−(1+β) dz

6
(
o(1) +N

− 1
2(1+β)

n + nN
β

1+β
n

)
|O(1)|

∫ ∞
0

e−
λz
4

(
∑m
`=1 θ`(t`−t`−1))2z−(1+β) dz,

75



that gets arbitrarily close to zero as n approaches infinity, since the integral is finite due
to the fact that

1

Γ(−β)

λ
4

(
m∑
`=1

θ`(t` − t`−1)

)2
−β e−

λz
4

(
∑m
`=1 θ`(t`−t`−1))2 z−(1+β), z > 0,

is the density function of a Gamma distributed random variable with parameters −β and
λ(
∑m

`=1 θ`(t` − t`−1))2/4. This yields (4.3) completing the proof. 2

Proof of Theorem 4.2. To prove this limit theorem we have to show that for any sequence
(Nn)n∈N of positive integers with (logNn)2n−1 →∞ we have

n−1(Nn logNn)−
1
2 S̃(Nn,n) Df−→ (Wλψ1t)t∈R+ as n→∞.

For this, by continuous mapping theorem, it is enough to verify that for any m ∈ N and
t0, t1, . . . , tm ∈ R+ with 0 =: t0 < t1 < . . . < tm, we have

n−1(Nn logNn)−
1
2

Nn∑
j=1

(bnt1c∑
k=1

(
X

(j)
k −

λ

1− α(j)

)
,

bnt2c∑
k=bnt1c+1

(
X

(j)
k −

λ

1− α(j)

)
, . . .

. . . ,

bntmc∑
k=bntm−1c+1

(
X

(j)
k −

λ

1− α(j)

))
D−→Wλψ1(t1, t2 − t1, . . . , tm − tm−1) as n→∞.

So, by continuity theorem, we have to check that for any m ∈ N, t0, t1, . . . , tm ∈ R+ with
0 = t0 < t1 < . . . < tm and θ1, . . . , θm ∈ R the convergence

E

(
exp

{
i
m∑
`=1

θ`n
−1(Nn logNn)−

1
2

Nn∑
j=1

bnt`c∑
k=bnt`−1c+1

(
X

(j)
k −

λ

1− α(j)

)})

= E

(
exp

{
in−1(Nn logNn)−

1
2

Nn∑
j=1

m∑
`=1

θ`

bnt`c∑
k=bnt`−1c+1

(
X

(j)
k −

λ

1− α(j)

)})

=

[
E

(
exp

{
in−1(Nn logNn)−

1
2

m∑
`=1

θ`

bnt`c∑
k=bnt`−1c+1

(
Xk −

λ

1− α

)})]Nn

→ E

(
ei
∑m
`=1 θ`(t`−t`−1)Wλψ1

)
= e−

λψ1(
∑m
`=1 θ`(t`−t`−1))

2

2 as n→∞

holds. Note that it suffices to show

Θn := Nn

[
1− E

(
exp

{
in−1(Nn logNn)−

1
2

m∑
`=1

θ`

bnt`c∑
k=bnt`−1c+1

(
Xk −

λ

1− α

)})]

→
λψ1(

∑m
`=1 θ`(t` − t`−1))2

2
as n→∞,

since it implies that (1 − Θn/Nn)Nn → e−
λψ1(

∑m
`=1 θ`(t`−t`−1))

2

2 as n → ∞, as desired.
Let us recall that, as it was introduced before the proof of Theorem 3.8, the joint condi-
tional generator function of X0, X1, . . . , Xk given α is denoted by F0,...,k(z0, . . . , zk |α),
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z0, . . . , zk ∈ D = {z ∈ C : |z| 6 1}. Then, by applying (2.21) to the left hand side, we get

Θn = Nn E

[
1− e−in−1(Nn logNn)−

1
2 λ

1−α
∑m
`=1 θ`(bnt`c−bnt`−1c)

× F0,...,bntmc−1

(
ein−1(Nn logNn)−

1
2 θ1 , . . . , ein−1(Nn logNn)−

1
2 θ1︸ ︷︷ ︸

bnt1c items

, . . .

. . . , ein−1(Nn logNn)−
1
2 θm , . . . , ein−1(Nn logNn)−

1
2 θm︸ ︷︷ ︸

bntmc−bntm−1c items

∣∣∣α)]

= Nn E
[
1− e

λ
1−αBn(α)

]
= Nn

∫ 1

0

(
1− e

λ
1−aBn(a)

)
ψ(a) da

with

Bn(a) :=
m∑
`=1

(
ein−1(Nn logNn)−

1
2 θ` − 1− in−1(Nn logNn)−

1
2 θ`

)
(bnt`c − bnt`−1c)

+
∑

16`1<`26m

bnt`1c∑
k1=bnt`1−1c+1

bnt`2c∑
k2=bnt`2−1c+1

ak2−k1
(
ein−1(Nn logNn)−

1
2 θ`1 − 1

)

×
(
ein−1(Nn logNn)−

1
2 θ`2 − 1

)

× e
in−1(Nn logNn)−

1
2

(
(bnt`1c−k1)θ`1+

∑`2−1
`=`1+1 θ`(bnt`c−bnt`−1c)+(k2−1−bnt`2−1c)θ`2

)

+
m∑
`=1

∑
bnt`−1c+16k1<k26bnt`c

ak2−k1
(
ein−1(Nn logNn)−

1
2 θ` − 1

)2
ein−1(Nn logNn)−

1
2 (k2−k1−1)θ`

for a ∈ [0, 1]. The aim of the following discussion is to apply Lemma 4.5 with zn(a) :=

Bn(a), n ∈ N, a ∈ (0, 1), εn := (logNn)−1, n ∈ N, and I := λ
2 (
∑m

`=1 θ`(t` − t`−1))2.
Note that εn ∈ (0, 1) for n > n0, where n0 is sufficiently large, and limn→∞ εn = 0.
First we check (4.1). Using (3.11), for any a ∈ (0, 1) we get

|Bn(a)| 6
m∑
`=1

n−2(Nn logNn)−1 θ
2
`

2
(bnt`c − bnt`−1c)

+
∑

16`1<`26m

n−2(Nn logNn)−1|θ`1 ||θ`2 |(bnt`1c − bnt`1−1c)(bnt`2c − bnt`2−1c)

+
m∑
`=1

n−2(Nn logNn)−1 θ
2
`

2
(bnt`c − bnt`−1c)(bnt`c − bnt`−1c − 1)

=
1

2
n−2(Nn logNn)−1

( m∑
`=1

|θ`|(bnt`c − bnt`−1c)
)2

6
1

2
(Nn logNn)−1

( m∑
`=1

|θ`|(t` − t`−1 + 1)

)2

,
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since 1
n(bnt`c−bnt`−1c) 6 1

n(nt`−nt`−1 +1) = t`−t`−1 + 1
n 6 t`−t`−1 +1. Consequently,

since εn = (logNn)−1, we have

sup
n>n0

ε−1
n Nn sup

a∈(0,1−εn)
|Bn(a)| 6 1

2

( m∑
`=1

|θ`|(t` − t`−1 + 1)

)2

<∞,

i.e., (4.1) is satisfied. Therefore, by Lemma 4.5, substituting a = 1− zN−1
n with z > 0,

the statement of the theorem will follow from

lim sup
n→∞

Nn

∫ 1

1−(logNn)−1

∣∣∣1− e
λ

1−aBn(a)
∣∣∣ da

= lim sup
n→∞

∫ Nn
logNn

0

∣∣∣1− eλ
Nn
z
Bn
(

1−zNn−1
)∣∣∣dz <∞ (4.9)

and

lim
n→∞

∣∣∣∣∣Nn

∫ 1

1−(logNn)−1

(
1− e

λ
1−aBn(a)

)
da− I

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣
∫ Nn

logNn

0

(
1− eλ

Nn
z
Bn
(

1−zNn−1
))

dz − I

∣∣∣∣∣ = 0

(4.10)

with I = λ
2 (
∑m

`=1 θ`(t` − t`−1))2.
Next we check (4.9) and (4.10). We get

λ
Nn

z
Bn

(
1− zNn

−1

)
= −

λ
(∑m

`=1 θ`(bnt`c − bnt`−1c)
)2

2zn2 logNn
+

O(1)

zN
1
2
n (logNn)

3
2

+
nO(1)

Nn logNn

(4.11)
for z < Nn. Indeed, z < Nn yields that 1− zNn

−1 ∈ (0, 1), and

Bn
(
1− zNn

−1
)

=
m∑
`=1

(
ein−1(Nn logNn)−

1
2 θ` − 1− in−1(Nn logNn)−

1
2 θ`
)
(bnt`c − bnt`−1c)

+
∑

16`1<`26m

bnt`1c∑
k1=bnt`1−1c+1

bnt`2c∑
k2=bnt`2−1c+1

(
1− zNn

−1
)k2−k1 (ein−1(Nn logNn)−

1
2 θ`1 − 1

)
× e

in−1(Nn logNn)−
1
2

(
(bnt`1c−k1)θ`1+

∑`2−1
`=`1+1 θ`(bnt`c−bnt`−1c)+(k2−1−bnt`2−1c)θ`2

)
×
(
ein−1(Nn logNn)−

1
2 θ`2 − 1

)
+

m∑
`=1

∑
bnt`−1c+16k1<k26bnt`c

(
1− zNn

−1
)k2−k1 (ein−1(Nn logNn)−

1
2 θ` − 1

)2
× ein−1(Nn logNn)−

1
2 (k2−k1−1)θ`
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=
m∑
`=1

(
−

θ2
`

2n2Nn logNn
+

O(1)

n3(Nn logNn)
3
2

)
(bnt`c − bnt`−1c)

+
∑

16`1<`26m

(
1 +

n zO(1)

Nn

)(
iθ`1

n(Nn logNn)
1
2

+
O(1)

n2Nn logNn

)(
1 +

O(1)

(Nn logNn)
1
2

)
×
(

iθ`2

n(Nn logNn)
1
2

+
O(1)

n2Nn logNn

)
(bnt`1c − bnt`1−1c)(bnt`2c − bnt`2−1c)

+
1

2

m∑
`=1

(
1 +

n zO(1)

Nn

)(
iθ`

n(Nn logNn)
1
2

+
O(1)

n2Nn logNn

)2(
1 +

O(1)

(Nn logNn)
1
2

)

× (bnt`c − bnt`−1c)(bnt`c − bnt`−1 − 1c)

= −
∑m

`=1 θ
2
` (bnt`c − bnt`−1c)

2n2Nn logNn
+

O(1)

n2(Nn logNn)
3
2

−
∑

16`1<`26m θ`1θ`2(bnt`1c − bnt`1−1c)(bnt`2c − bnt`2−1c)
n2Nn logNn

+
O(1)

(Nn logNn)
3
2

+
n zO(1)

N2
n logNn

−
∑m

`=1 θ
2
` (bnt`c − bnt`−1c)(bnt`c − bnt`−1 − 1c)

2n2Nn logNn

+
O(1)

(Nn logNn)
3
2

+
n zO(1)

N2
n logNn

= −
(∑m

`=1 θ`(bnt`c − bnt`−1c)
)2

2n2Nn logNn
+

O(1)

(Nn logNn)
3
2

+
n zO(1)

N2
n logNn

,

where we used the corresponding versions of (4.5) and (4.6) after replacing N
− 1

2(1+β)
n by

(Nn logNn)−
1
2 , the Taylor expansions

ein−1(Nn logNn)−
1
2 θ` − 1 = in−1(Nn logNn)−

1
2 θ` + n−2(Nn logNn)−1 O(1)

= n−1(Nn logNn)−
1
2 O(1),

and

ein−1(Nn logNn)−
1
2 θ` − 1− in−1(Nn logNn)−

1
2 θ`

= −n−2(Nn logNn)−1 θ
2
`

2
+ n−3(Nn logNn)−

3
2 O(1) = n−2(Nn logNn)−1 O(1)

for all ` ∈ {1, . . . ,m}, and that(
1− zNn

−1
)k2−k1 = 1 +

n zO(1)

Nn

following from Bernoulli’s inequality. By (4.11), for large enough n and for any z ∈ (0, Nn),
we have

λ
Nn

z
ReBn

(
1− zNn

−1
)

= −
λ
(∑m

`=1 θ`(bnt`c − bnt`−1c)
)2

2zn2 logNn

(
1− Re O(1)

(Nn logNn)
1
2

)
+
nRe O(1)

Nn logNn

6 −
λ
(∑m

`=1 θ`(bnt`c − bnt`−1c)
)2

4zn2 logNn
+

n|O(1)|
Nn logNn

,
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hence we obtain that∫ (logNn)−1

0

∣∣∣1− eλ
Nn
z
Bn(1−zNn−1)

∣∣∣ dz 6
∫ (logNn)−1

0

(
1 + eλ

Nn
z

ReBn(1−zNn−1)
)

dz

6 (logNn)−1

(
1 + exp

{
−
λ
(∑m

`=1 θ`(bnt`c − bnt`−1c)
)2

4zn2 logNn
+

n|O(1)|
Nn logNn

})
→ 0

(4.12)

as n→∞, since

lim
n→∞

(∑m
`=1 θ`(bnt`c − bnt`−1c)

)2
n2 logNn

= 0,

and, due to the assumption (logNn)2n−1 →∞ as n→∞, we have

n

Nn logNn
=

n

(logNn)2

logNn

Nn
→ 0 as n→∞.

Note that for every z ∈ ((logNn)−1, Nn(logNn)−1) we have∣∣∣∣λNn

z
Bn
(
1− zNn

−1
)∣∣∣∣ 6 λ

(∑m
`=1 |θ`|(t` − t`−1 + 1)

)2
2z logNn

+
|O(1)|
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1
2
n (logNn)

3
2

+
n |O(1)|
Nn logNn

6
λ
(∑m

`=1 |θ`|(t` − t`−1 + 1)
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2
+

|O(1)|

N
1
2
n (logNn)

1
2

+
n |O(1)|
Nn logNn

= |O(1)|,

(4.13)

since n(Nn logNn)−1 → 0 as n→∞, as we have seen before.
Hence, using (3.12), we obtain for large enough n∫ Nn(logNn)−1

(logNn)−1

∣∣∣1− eλ
Nn
z
Bn(1−zNn−1)

∣∣∣ dz

6
∫ Nn(logNn)−1

(logNn)−1

∣∣∣∣λNn

z
Bn
(
1− zNn

−1
)∣∣∣∣ e|λNnz Bn(1−zNn−1)| dz

6 e|O(1)|
∫ Nn(logNn)−1

(logNn)−1

λ(∑m
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)2
2z logNn

+
|O(1)|

zN
1
2
n (logNn)

3
2

+
n |O(1)|
Nn logNn

 dz

<∞,

since for every Nn ∈ N, we have

1

logNn

∫ Nn(logNn)−1

(logNn)−1

1

z
dz = 1, (4.14)

and

n

Nn logNn

∫ Nn(logNn)−1

(logNn)−1

1 dz =
n(Nn − 1)

Nn(logNn)2
=

n

(logNn)2

(
1− 1

Nn

)
→ 0 (4.15)

as n→∞ due to the assumption n−1(logNn)2 →∞ as n→∞. Together with (4.12),
this implies (4.9).
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Now we turn to prove (4.10). By (4.12), the convergence (4.10) reduces to showing that∣∣∣∣∣
∫ Nn(logNn)−1

(logNn)−1

(
1− eλ
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+

∣∣∣∣∣∣∣−
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=
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Moreover, (4.14) yields that
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This together with (4.15) yields (4.10), completing the proof. 2

Proof of Lemma 4.5 For all a ∈ (0, 1) and for sufficiently large n ∈ N, we have
1− εn > a, hence, by (4.1),

Nn|zn(a)| 6 εnε
−1
n Nn sup

b∈(0,1−εn)
|zn(b)| → 0 as n→∞, (4.16)

thus we conclude limn→∞Nn|zn(a)| = 0. By applying (3.12) and using (4.16), for any
n ∈ N and a ∈ (0, 1), we get∣∣∣Nn

(
1− e

λ
1−a zn(a)

)∣∣∣ 6 Nn

∣∣∣ λ

1− a
zn(a)

∣∣∣e| λ1−a zn(a)| → 0 as n→∞. (4.17)

If n > n0 and a ∈ (0, 1− εn), then 1
1−a < ε−1

n and∣∣∣Nn

(
1− e

λ
1−a zn(a)

)∣∣∣ 6 λ sup
n>n0

ε−1
n Nn sup

a∈(0,1−εn)
|zn(a)| eλ supn>n0 ε

−1
n supa∈(0,1−εn) |zn(a)| =: C,

where C ∈ R+ (due to (4.1)). Since
∫ 1

0 ψ(a)(1− a)β da = 1, we have∣∣∣∣Nn

∫ 1−εn

0

(
1− e

λ
1−a zn(a)

)
ψ(a)(1− a)β da

∣∣∣∣
=

∣∣∣∣∫ 1

0
Nn

(
1− e

λ
1−a zn(a)

)
1(0,1−εn)(a)ψ(a)(1− a)β da

∣∣∣∣
6
∫ 1

0
Cψ(a)(1− a)β da <∞

for n > n0. Therefore, (0, 1) 3 a 7→ Cψ(a)(1 − a)β serves as a dominating integrable
function. Thus, by the dominated convergence theorem, the pointwise convergence in (4.17)
results

lim
n→∞

Nn

∫ 1−εn

0

(
1− e

λ
1−a zn(a)

)
ψ(a)(1− a)β da = 0. (4.18)

Moreover, for all n > n0, we have∣∣∣∣Nn

∫ 1

0

(
1− e

λ
1−a zn(a)

)
ψ(a)(1− a)β da− ψ1I

∣∣∣∣
6

∣∣∣∣Nn

∫ 1−εn

0

(
1− e

λ
1−a zn(a)

)
ψ(a)(1− a)β da

∣∣∣∣
+

∣∣∣∣Nn

∫ 1

1−εn

(
1− e

λ
1−a zn(a)

)
(ψ(a)− ψ1)(1− a)β da

∣∣∣∣
+ ψ1

∣∣∣∣Nn

∫ 1

1−εn

(
1− e

λ
1−a zn(a)

)
(1− a)β da− I

∣∣∣∣ ,
(4.19)

where ∣∣∣∣Nn

∫ 1

1−εn

(
1− e

λ
1−a zn(a)

)
(ψ(a)− ψ1)(1− a)β da

∣∣∣∣
6

(
sup

a∈[1−εn,1)
|ψ(a)− ψ1|

)
Nn

∫ 1

1−εn

∣∣∣1− e
λ

1−a zn(a)
∣∣∣ (1− a)β da,

with supa∈[1−εn,1) |ψ(a) − ψ1| → 0 as n → ∞, by the assumption limx↑1 ψ(x) = ψ1.
Taking lim supn→∞ of both sides of (4.19), by (4.18) and the assumptions of the lemma,
we obtain the statement. 2
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Appendix A

Abridged results of Chapters 3 and 4

Here we summarize some of the results of Chapters 3 and 4 related to the aggregates
of the randomized INAR(1) processes (defined in Chapter 3) with the specific mixing
distribution introduced in (3.6). We summarize so one can compare the results of the
many theorems presented in the thesis. The tables contain the scaling factors of the limit
theorems, the limit processes, and the numbers of the corresponding theorems. Note that
in some cases the limit processes are simplified in the sense that some constants are only
represented with a general c ∈ R notation. For the definitions of the limit processes, see
the referred theorems.

Limit theorems for S̃(N,n), centered by the conditional expectations.

The following three tables contain the limit theorems concerning the aggregates cen-
tered with the conditional expectations: S̃(N,n), defined in (3.7).

Table of results when first n→∞, then N →∞:

β (−1, 1) 1 (1,∞)

Scaling N
1

1+β n
1
2 (nN logN)

1
2 (nN)

1
2

Limit
√
Y(1+β)/2B

√
λψ1B σB

Theorem 3.12 3.13 3.14

Let us point out that here and in the forthcoming tables the scaling becomes heavier as
the parameter β decreases. This is related to the fact that by Remark 3.6 the finiteness
of the first and second moments of the stationary distribution depends on this parameter.

Table of results when first N →∞, then n→∞:

β (−1, 0) 0 (0, 1) 1 (1,∞)

Scaling nN
1

2(1+β) n(N logN)
1
2 n1−β

2N
1
2 (n(log n)N)

1
2 (nN)

1
2

Limit (V2(1+β)t)t∈R+ (Wλψ1t)t∈R+ cB
1−β

2

√
2λψ1B σB

Theorem 3.8 3.9 3.10 3.11 3.14
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Table of results when n and N increase to infinity simultaneously:

β (−1, 0) 0 (0,∞)

Rate N
−β
1+β
n n−1 →∞ (logNn)2n−1 →∞ Future plan

Scaling nN
1

2(1+β)
n n(Nn logNn)

1
2 Future plan

Limit (V2(1+β)t)t∈R+ (Wλψ1t)t∈R+ Future plan

Theorem 4.1 4.2

Limit theorems for S(N,n), centered by the expectations.

The following table contains the limit theorems concerning the aggregates centered
with the expectations: S(N,n), defined in (2.10). Note that such results exist only when
the expectation is finite, which, by Remark 3.6, occurs when β > 0. As we have no
simultaneous limit theorems yet for β > 0, we only summarize the iterated limit theorems
for these aggregates.

Table of results when first n→∞, then N →∞, or vice versa:

β (0, 1) 1 (1,∞)

Scaling nN
1

1+β naN , where
√
N/aN = o(1) nN

1
2

Limit
(
Z1+β t

)
t∈R+

(W t)t∈R+ (Wλ2 Var((1−α)−1) t)t∈R+

Theorem 3.16 3.17 3.18
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Appendix B

Notations

Notation Formula, theo-
rem, proposition.

Page number

Y , ξ, ε (2.1) 9

mε, Mξ 9

v (2.2) 9

V (2.5) 10

S(N) (2.7) 12

Y Proposition 2.6 12

B Proposition 2.7 12

S(N,n) (2.10) 13

Z (2.14) 14

Fk(·), G(·), H(·), D (2.16) 16

F̃ (·) (2.18) 17

F0,...,k(·) (2.21) 18

S̃(N) (2.23), (3.4) 18, 35

Ỹ Proposition 3.1 35

Y Proposition 3.3 36

ψ(·), ψ1 (3.6) 37

S̃(N,n) (3.7) 37

B
1−β

2
(3.8) 38

V2(1+β) Theorem 3.8 38

Y1+β , Y(1+β)/2 Theorem 3.12 39

Z1+β Theorem 3.16 40

o(1) Theorem 3.17 40

Ŝ(N,n) (2.26), (3.9) 20, 41

O(1), |O(1)| 45

F0(· |α) (3.17) 45

Table B.1: Notations
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Appendix C

Summary

This thesis is about the limit behavior of the temporal and contemporaneous aggregates
of certain branching processes. Aggregates, also known as partial sums, are well-known
to be very important in stochastics. All of the chapters of this current work deal with
this question, either for different processes, different manners regarding the convergence
(iterated, simultaneous), or different centralizations.

Chapter 1 contains an introduction where we explain the goal of the thesis, the historical
background of the studied topic, along with an overview of this work. In the following
paragraph we specify the scheme of aggregation that we use.

The aggregation problem is concerned with the relationship between individual (micro)
and aggregate (macro) behavior. In general, we consider independent copies of a stationary
branching process, we denote these by (X

(j)
k )k∈N, j ∈ N, where N := {1, 2, . . . }. We

are interested in the limit behavior of the aggregate process
(∑N

j=1

∑bntc
k=1 X

(j)
k

)
t∈[0,∞)

,

as both n, the time parameter, and N , the number of copies tend to infinity in some
manner. If we take the limits in an iterated manner, i.e., first n tends to infinity and then
N tends to infinity, or vice versa, then the resulting limit theorem is called an iterated one.
If both converge to infinity at the same time, then it is called a simultaneous limit theorem.
To achieve such limit theorems, we also consider the simple aggregates,

∑n
k=1X

(j)
k , which

is called temporal (or time-aggregated), and
∑N

j=1X
(j)
k , which is called contemporaneous

(or space-aggregated).
Let us recall the most important antecedents of the work presented in this thesis. The

scheme of contemporaneous aggregation of random coefficient autoregressive processes of
order 1 (AR(1)) was firstly proposed by the Nobel prize winner Clive W. J. Granger [18]
in order to obtain the long memory phenomena in aggregated time series. In a series of
papers, Donatas Surgailis and his co-authors studied the aggregation of random coefficient
AR(1) processes, where (X

(j)
k )k∈Z+:={0,1,... }, j ∈ N, are independent copies of a stationary

random coefficient AR(1) process

Xk = aXk−1 + εk, k ∈ N,

with standardized independent and identically distributed (i.i.d.) innovations (εk)k∈N and
a random coefficient a with values in (0, 1), being independent of (εk)k∈N and admitting
a probability density function of the form

ψ(x)(1− x)β, x ∈ (0, 1),
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where β ∈ (−1,∞) and ψ is an integrable function on (0, 1) with limx↑1 ψ(x) :=

ψ1 ∈ (0,∞). In the paper Pilipauskaitė and Surgailis [38], both iterated and simultane-
ous limit theorems were presented concerning the limit behavior of the aggregate process(∑N

j=1

∑bntc
k=1 X

(j)
k

)
t∈[0,∞)

.

Our aim is to provide such results when branching processes take the place of the
random coefficient AR(1) model explained before. These processes are widely applica-
ble as they can model integer-valued phenomena, such as migration and the spreading
of contagious diseases like COVID-19. These possible applications are more thoroughly
detailed in Chapter 2, which is devoted to the investigation of the aggregates of mul-
titype Galton–Watson processes with immigration. The p-dimensional process (Y k =

[Yk,1, . . . , Yk,p]
>)k∈Z+ , where p ∈ N, is a p-type Galton–Watson branching process with

immigration if

Y k =

Yk−1,1∑
`=1


ξ

(1,1)
k,`
...

ξ
(1,p)
k,`

+ · · ·+
Yk−1,p∑
`=1


ξ

(p,1)
k,`
...

ξ
(p,p)
k,`

+


ε

(1)
k
...

ε
(p)
k

 =

p∑
i=1

Yk−1,i∑
`=1

ξ
(i)
k,` + εk

for every k ∈ N, where we define
∑0

`=1 := 0, and
{
Y 0, ξ

(i)
k,`, εk : k, ` ∈ N, i ∈ {1, . . . , p}

}
are independent Zp+-valued random vectors. Moreover, for all i ∈ {1, . . . , p}, {ξ(i)

k,` : k, ` ∈
N} and {εk : k ∈ N} consist of identically distributed random vectors, respectively. By
choosing Y 0 as the unique stationary distribution, which is shown to exist under some
general conditions, the considered process is strictly stationary. Then we take independent
copies, (Y

(j)
k )k∈Z+ , j ∈ N, of this process. For each N,n ∈ N, we consider the stochastic

process S(N,n) = (S
(N,n)
t )t∈R+ given by

S
(N,n)
t :=

N∑
j=1

bntc∑
k=1

(Y
(j)
k − E(Y

(j)
k )), t ∈ [0,∞).

We show that the finite dimensional distributions of the aggregate process scaled by the
usual scaling sequence

√
nN converge to those of a zero mean p-dimensional (non-

standard, with a given covariance structure) Brownian motion if

• all entries of the vectors ξ(i), i ∈ {1, . . . , p}, and ε have finite second moments
and first N , then n converges to infinity;

• all entries of the vectors ξ(i), i ∈ {1, . . . , p}, and ε have finite third moments and
first n, then N converges to infinity, or they converge to infinity together at any
rate.

The proofs of these theorems rely on the multidimensional central limit theorem and the
functional martingale central limit theorem.

Among others, we also discuss these results in the special case of integer-valued au-
toregressive processes of order 1 (INAR(1)) with Poisson innovations. These are one-
dimensional Galton–Watson processes with immigration where the offsprings have Bernoul-
li distribution with parameter α ∈ (0, 1) and the immigrations have Poisson distribution.
The proofs of Chapter 2 are based on the paper Barczy et al. [3].
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In Chapters 3 and 4 we consider a certain randomized INAR(1) process (Xk)k∈Z+

with randomized thinning parameter α, given formally by the recursive equation

Xk =

Xk−1∑
`=1

ξk,` + εk = α ◦Xk−1 + εk, k ∈ N,

where ◦ is the so-called Steutel and van Harn thinning operator, α is a random variable
with values in (0, 1), and X0 is some appropriate random variable. This means that,
conditionally on α, the process (Xk)k∈Z+ is an INAR(1) process with thinning param-
eter α, i.e., conditionally on α, the offsprings, (ξk,`)k,`∈N, have Bernoulli distribution
with parameter α. Conditionally on α, the i.i.d. innovations (εk)k∈N have a Poisson
distribution with parameter λ ∈ (0,∞), and the conditional distribution of the initial
value X0 given α is the unique stationary distribution, namely, a Poisson distribution
with parameter λ/(1 − α). In Chapter 3 we provide a rigorous construction of this pro-
cess. For the desired iterated and simultaneous limit theorems we assume that the random
parameter α admits a mixing distribution having a probability density of the form

ψ(x)(1− x)β, x ∈ (0, 1),

where ψ is a function on (0, 1) having a limit limx↑1 ψ(x) = ψ1 ∈ (0,∞). Note
that necessarily β ∈ (−1,∞) (otherwise

∫ 1
0 ψ(x)(1 − x)β dx = ∞), and the function

(0, 1) 3 x 7→ ψ(x) is integrable on (0, 1). The Beta distribution is a special case of
this form. Certain ◦ operators, where the summands are random parameter Bernoulli
distributions with a parameter having Beta distribution, appear in catastrophe models.
Moreover, Clive W. J. Granger used the square root of a Beta distribution as a mixing
distribution for random coefficient AR(1) processes.

Chapter 3 contains an exhaustive list of iterated limit theorems related to the aggregates
in multiple manners. For every N,n ∈ N, we consider three different aggregate processes
regarding the centralization: N∑

j=1

bntc∑
k=1

(X
(j)
k − E(X

(j)
k |α

(j)))


t∈[0,∞)

,

where we center with the conditional expectation with respect to the random parameter
belonging to the corresponding process, N∑

j=1

bntc∑
k=1

(X
(j)
k − E(X

(j)
k ))


t∈[0,∞)

,

where we center with the expectation (note that this only exists for β > 0), and N∑
j=1

bntc∑
k=1

(
X

(j)
k −

∑n
`=1X

(j)
`

n

)
t∈[0,∞)

,

where we center with the empirical mean of the first n observations for the corresponding
process in order to provide a well-applicable, observable alternative. As there are two
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different approaches to iterated limit theorems (n → ∞ and then N → ∞ or vice
versa), and we have different limit theorems for different ranges of the parameter β, this
chapter contains many limit theorems. The proofs rely heavily on the multidimensional
central limit theorem and a lemma that was developed for this research, which helps us
prove the convergence of characteristic functions. We also use that in case of zero mean
Gaussian processes, to show their convergence in distribution, the convergence of their
covariance functions has to be shown. Furthermore, both Theorem 4.3 of Beran et al. [7],
which is about convergence of partial sums of a Hermite function of a stationary sequence
of standard normal random variables, and Theorem 7.1 of Resnick [46], which is about
weak convergence of partial sum processes for a triangular array towards a Lévy process,
are used once. The limit theorems corresponding to the process centered by the empirical
mean follow from those of the process centered by the conditional expectation by Slutsky’s
lemma. In these cases, by the nature of this process, we get bridge-type limit processes.
Let us point out that the the scaling of the processes becomes heavier as the parameter β

decreases, since the finiteness of the first and second moments of the stationary distribution
of the randomized INAR(1) process depends on this parameter. Also, it is interesting that
in most of the cases the two different orders of iteration result in significantly different
limit theorems as the scaling factors and limit processes differ. In Chapter 3 the proofs are
based on the papers Nedényi and Pap [35] and Barczy et al. [6].

In Chapter 4 two simultaneous limit theorems are presented. Contrary to the iterated
limit theorems, the list of the simultaneous ones is not complete, some cases remain for
future work. The proofs of the achieved limit theorems are based on our lemma developed
for this research, which is a counterpart of the one applied for the iterated limit theorems.
We plan to handle the remaining cases as future work which will require a different proof
technique. The proofs of Chapter 4 are based on the paper Barczy et al. [4] that has been
submitted to a journal.
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Appendix D

Összefoglaló

Ebben a dolgozatban bizonyos elágazó folyamatok (centrált és skálázott) térbeli és
időbeli aggregáltjainak határeloszlásaival foglalkozunk. Jól ismert, hogy az aggregáltaknak,
más néven részletösszegeknek különösen fontos szerepe van a sztochasztikában. A dolgozat
mindegyik fejezete ezzel a kérdéssel foglalkozik, különböző folyamatok, konvergencia-típus
(iterált, vagy szimultán), illetve centrálás esetében.

Az első fejezet (Chapter 1) az értekezés bevezetője, ahol felvázoljuk a dolgozat célját,
a kutatott téma előzményeit, valamint a disszertáció felépítését. A következő bekezdésben
részletesebben bemutatjuk az általunk alkalmazott aggregációt.

Az aggregáció célja, hogy kapcsolatot teremtsen az egyéni (mikro) és az összesített
(makro) viselkedés között. Mi minden esetben egy stacionárius elágazó folyamat függet-
len kópiáiból fogunk kiindulni, jelölje ezeket (X

(j)
k )k∈N, j ∈ N, ahol N := {1, 2, . . . }.

Azt vizsgáljuk, hogyan viselkedik a
(∑N

j=1

∑bntc
k=1 X

(j)
k

)
t∈[0,∞)

aggregált folyamat, amint

n, az idő paramétere, valamint N , a kópiák száma valamilyen módon végtelenhez tart.
Amennyiben iterált módon tekintjük a határérték-képzést, azaz először n tart végte-
lenhez, majd N , vagy fordítva, akkor a kapott határeloszlás-tételt iteráltnak nevezzük.
Amennyiben a két paraméter egyszerre konvergál végtelenhez, akkor a tételt szimultán-
nak nevezzük. Ahhoz, hogy ilyen határeloszlás-tételeket lássunk be, vizsgáljuk a következő
egyszeres aggregáltakat is:

∑n
k=1X

(j)
k , melyet időbeli, illetve

∑N
j=1X

(j)
k , melyet térbeli

aggregáltnak nevezünk.
A továbbiakban felelevenítjük az értekezés legfontosabb előzményeit. Az elsőrendű au-

toregressziós (AR(1)) folyamatok térbeli aggregációját először a Nobel-díjas Clive W. J.
Granger [18] vizsgálta azzal a céllal, hogy hosszú memóriát váltson ki aggregált idősorok
esetében. Donatas Surgailis és szerzőtársai cikksorozatukban véletlen együtthatójú AR(1)
folyamatok aggregációját tanulmányozták, ahol (X

(j)
k )k∈Z+:={0,1,... }, j ∈ N, a következő

stacionárius véletlen együtthatójú AR(1) folyamat független kópiái:

Xk = aXk−1 + εk, k ∈ N,

standardizált, független és azonos eloszlású (εk)k∈N bevándorlással, ahol a (0, 1) érték-
készletű a véletlen együttható független az (εk)k∈N sorozattól, és

ψ(x)(1− x)β, x ∈ (0, 1),

a sűrűségfüggvénye, ahol β ∈ (−1,∞) és ψ olyan integrálható függvény a (0, 1) inter-
vallumon, melyre limx↑1 ψ(x) := ψ1 ∈ (0,∞). Pilipauskaitė és Surgailis [38] cikkükben a
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(∑N
j=1

∑bntc
k=1 X

(j)
k

)
t∈[0,∞)

aggregált folyamathoz tartozó iterált és szimultán határeloszlás-

tételeket adtak meg.
Célunk, hogy hasonló eredményeket írjunk le abban az esetben, amikor a véletlen

együtthatójú AR(1) modellek helyét elágazó folyamatok veszik át. Ezen folyamatok szé-
les körben alkalmazhatóak egészértékű jelenségek, mint a migráció, vagy fertőző beteg-
ségek (például COVID-19) modellezése. Részletesebben leírjuk ezt a két lehetséges alkal-
mazást a dolgozat második fejezetében (Chapter 2), melyben többtípusos bevándorlásos
Galton–Watson folyamatok aggregáltjaival foglalkozunk. A p-dimenziós ( p ∈ N ) folyamat,
(Y k = [Yk,1, . . . , Yk,p]

>)k∈Z+ bevándorlásos p-típusos Galton–Watson elágazó folyamat,
amennyiben

Y k =

Yk−1,1∑
`=1


ξ

(1,1)
k,`
...

ξ
(1,p)
k,`

+ · · ·+
Yk−1,p∑
`=1


ξ

(p,1)
k,`
...

ξ
(p,p)
k,`

+


ε

(1)
k
...

ε
(p)
k

 =

p∑
i=1

Yk−1,i∑
`=1

ξ
(i)
k,` + εk

minden k ∈ N esetén, ahol
∑0

`=1 := 0, és
{
Y 0, ξ

(i)
k,`, εk : k, ` ∈ N, i ∈ {1, . . . , p}

}
független Zp+-értékű véletlen vektorok. Továbbá minden i ∈ {1, . . . , p} esetén mind
{ξ(i)

k,` : k, ` ∈ N}, mind {εk : k ∈ N} azonos eloszlású vektorokból áll. Amennyiben Y 0-
t úgy választjuk meg, hogy eloszlása az egyértelmű stacionárius eloszlás legyen (melyről
megmutatjuk, hogy általános feltételek mellett létezik), akkor a tekintett folyamat erősen
stacionárius. Ezen folyamat (Y

(j)
k )k∈Z+ , j ∈ N, független kópiáit tekintjük. Minden

N,n ∈ N, esetén legyen S(N,n) = (S
(N,n)
t )t∈R+ , ahol

S
(N,n)
t :=

N∑
j=1

bntc∑
k=1

(Y
(j)
k − E(Y

(j)
k )), t ∈ [0,∞).

Megmutatjuk, hogy az előbbi aggregált folyamat véges dimenziós eloszlásai a szokásos√
nN sorozattal skálázva konvergálnak egy 0 várható értékű p-dimenziós (nem stan-

dard, adott kovariancia-struktúrájú) Brown-mozgás megfelelő véges dimenziós eloszlása-
ihoz, amennyiben

• a ξ(i), i ∈ {1, . . . , p}, és ε vektorok második momentuma véges és először N ,
majd n konvergál végtelenhez;

• a ξ(i), i ∈ {1, . . . , p}, és ε vektorok harmadik momentuma véges és először n,
majd N konvergál végtelenhez, vagy együtt tartanak végtelenhez, bármilyen rátával.

Ezen tételek bizonyításának alapja a többdimenziós centrális határeloszlás-tétel és a funk-
cionális martingál centrális határeloszlás-tétel.

Több speciális esetben is tárgyaljuk az eredményeket, köztük Poisson bevándorlású,
elsőrendű egészértékű autoregressziós (INAR(1)) folyamatokra. Ezek olyan bevándorlásos
egydimenziós Galton–Watson folyamatok, melyek esetében az utódeloszlások Bernoulli el-
oszlásúak α ∈ (0, 1) paraméterrel, a bevándorlások pedig Poisson eloszlásúak. A második
fejezet (Chapter 2) bizonyításainak alapja a Barczy et al. [3] cikk.
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A harmadik és negyedik fejezetben (Chapter 3 és 4) az (Xk)k∈Z+ véletlenített, α

ritkítási paraméterrel rendelkező, véletlenített INAR(1) folyamatokat vizsgáljuk, melyekre

Xk =

Xk−1∑
`=1

ξk,` + εk = α ◦Xk−1 + εk, k ∈ N,

ahol ◦ az úgynevezett Steutel and van Harn ritkítási operátor, α egy valószínűségi változó
(0, 1)-beli értékekkel, X0 pedig egy megfelelő valószínűségi változó. Ez azt jelenti, hogy
az α változóra feltételesen az (Xk)k∈Z+ folyamat egy α ritkítási paraméterű INAR(1)
folyamat, azaz α-ra feltételesen a (ξk,`)k,`∈N, utódeloszlások Bernoulli eloszlásúak α para-
méterrel. Szintén α-ra feltételesen a független (εk)k∈N bevándorlások Poisson eloszlásúak
λ ∈ (0,∞) paraméterrel, az X0 kezdeti érték feltételes eloszlása pedig az egyértelmű
stacionárius eloszlás, mely egy Poisson eloszlás λ/(1−α) paraméterrel. A harmadik feje-
zetben (Chapter 3) precízen belátjuk, hogy ilyen folyamat létezik. A célként kitűzött iterált
és szimultán határeloszlás-tételekhez feltesszük, hogy az α véletlen együttható abszolút
folytonos

ψ(x)(1− x)β, x ∈ (0, 1),

sűrűségfüggvénnyel, ahol ψ olyan függvény a (0, 1) intervallumon, melyre limx↑1 ψ(x) =

ψ1 ∈ (0,∞). Jegyezzük meg, hogy β ∈ (−1,∞) (másképp
∫ 1

0 ψ(x)(1 − x)β dx = ∞),
és a (0, 1) 3 x 7→ ψ(x) függvény (0, 1)-en integrálható. A Béta-eloszlás speciális esete
ennek az alaknak. Katasztrófa modellek esetén megjelennek azok a ◦ operátorok, ahol
az összeadandók véletlen együtthatójú Bernoulli eloszlású véletlen változók Béta-eloszlású
paraméterrel. Továbbá Clive W. J. Granger Béta-eloszlás négyzetgyökét alkalmazta vélet-
lenített AR(1) folyamatok paraméterének véletlenítésére.

A harmadik fejezetben (Chapter 3) az aggregáltakhoz tartozó, többféle módon tekintett
iterált határeloszlástételeket prezentálunk. Minden N,n ∈ N esetén három, a centrálás
tekintetében különböző aggregált folyamatot tekintünk: N∑

j=1

bntc∑
k=1

(X
(j)
k − E(X

(j)
k |α

(j)))


t∈[0,∞)

,

ahol az adott folyamathoz tartozó véletlenített paraméterre vett feltételes várható értékkel
centrálunk,  N∑

j=1

bntc∑
k=1

(X
(j)
k − E(X

(j)
k ))


t∈[0,∞)

,

ahol a várható értékkel centrálunk (mely csak β > 0 esetén létezik), valamint N∑
j=1

bntc∑
k=1

(
X

(j)
k −

∑n
`=1X

(j)
`

n

)
t∈[0,∞)

,

ahol az első n megfigyelés átlagával centrálunk, hogy egy jól alkalmazható, megfigyelhe-
tő alternatívát kapjunk. Mivel az iterált határeloszlás-tételeknek két típusa van (n → ∞,
majd N → ∞, vagy fordítva), és különböző határeloszlás-tételeket kapunk β külön-
böző értékeire, így számos tétel szerepel a fejezetben. Ezek listája teljes. A bizonyítások
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alapja a többdimenziós centrális határeloszlás-tétel és egy általunk kidolgozott lemma,
mely a karakterisztikus függvények konvergenciájának ellenőrzésében nyújt segítséget. Azt
is alkalmazzuk, hogy 0 várható értékű Gauss-folyamatok eloszlásbeli konvergenciájának
ellenőrzésekor elegendő a kovariancia-függvények konvergenciáját belátni. Továbbá egy-
egy tétel bizonyítása során felhasználjuk Beran et al. [7] 4.3. Tételét, mely standard nor-
mális eloszlású véletlen változók stacionárius sorozatának Hermite-függvényének részlet-
összeg-sorozatának konvergenciájáról szól, valamint Resnick [46] 7.1. Tételét háromszög-
rendszerek részletösszeg-sorozatának Lévy-folyamatokhoz való gyenge konvergenciájáról.
A mintaátlaggal centrált aggregált folyamathoz tartozó tételek Slutsky lemmájának segít-
ségével vezethetőek le a feltételes várható értékkel centrált folyamathoz tartozó tételekből.
Ezek esetében az aggregált folyamat szerkezete miatt híd típusú folyamatokat kapunk
határeloszlásként. Megjegyezzük, hogy annál inkább súlyozni kell a folyamatokat, minél
kisebb a β paraméter. Ennek oka, hogy a véletlenített INAR(1) folyamat stacionárius el-
oszlásának első és második momentumának létezése ezen paraméter értékétől függ. További
érdekesség, hogy a különböző sorrendű iterálás során igen különbözőek a kapott tételek is:
sok esetben mind a skálázás, mind a határfolyamat más. A harmadik fejezet (Chapter 3)
bizonyításainak alapja a Nedényi és Pap [35], valamint a Barczy et al. [6] cikk.

A negyedik fejezetben (Chapter 4) két szimultán határeloszlás-tétel szerepel. Az ite-
rált határeloszlás-tételekkel szemben ezek listája nem teljes, a kimaradt eseteket jövőbeli
kutatásunk során szeretnénk kezelni. A két belátott tétel bizonyításának alapja az a lem-
ma, melyet az iterált tételeknél felhasznált lemma mintájára dolgoztunk ki. A jövőben
más bizonyítási technikával szeretnénk kezelni a fennmaradó eseteket. A negyedik fejezet
(Chapter 4) bizonyításainak alapja a Barczy et al. [4] cikk, mely benyújtásra került egy
folyóirathoz.
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