Lane Modelling Algorithm for Video-Based Driver Assistance System

Norbert Bogya ¹ Róbert Fazekas ^{1,2} Judit Nagy-György ¹ Zsolt Vizi ^{1,2}

¹Bolyai Institute, University of Szeged, Hungary

²Robert Bosch Kft., Budapest, Hungary

18 January 2019

University of Szeged Where knowledge and challenge meet

Norbert Bogya

Judit Nagy-György

Róbert Fazekas

Zsolt Vizi

Our goal

... was to construct an algorithm to build a lane model using data of a stereo camera (only) when the environment is quite chaotic.

● Highway model (*easy*) ↔ Road construction (*hard*)

Fusion models ↔ Stereo camera

N. Bogya, J. Nagy-György, R. Fazekas, Zs. Vizi Lane Modelling Algorithm for ...

Result

Concept

- Clustering of the line segments defines different road markings
- What to use for clustering?
 - Similarity function \rightarrow Edge-weighted graph ($W_{i,j}$ weight matrix)
 - Partition of vertices \rightarrow Clusters

Algorithms

- Naive algorithm with threshold
- Spectral clustering

Algo #1 — Naive threshold algorithm

Thresholded adjacency matrix

$$A_{i,j} := \begin{cases} 1, & \text{if } W_{i,j} \ge \varepsilon \\ 0, & \text{otherwise} \end{cases} \qquad \qquad \mathbf{\mathcal{E}} = \mu + \mathbf{\sigma} - \mathbf{h} \\ u = \frac{1}{N} \sum_{i=1}^{n} \sum_{j=1}^{n} W_{i,j} \qquad \sigma^2 = \frac{1}{N} \sum_{i=1}^{n} \sum_{j=1}^{n} (\mu - W_{i,j})^2 \qquad h = -\frac{1}{N} \sum_{i=1}^{n} \sum_{j=1}^{n} W_{i,j} \log_2 W_{i,j} \end{cases}$$

Algo #2 — Spectral clustering

- Embedding a graph "nicely" into ℝ^k ⇒ clustering of vertices with *k*-means method
- Laplacian matrix, Courant–Fisher theorem, numeric eigenvalue and eigenvector computations, minimization problem arisen from normalised cut, ...

Table: Run time of algorithms.

	Drive #1	Drive #2	Drive #3	Drive #4
Algo #1	0.0179	0.0306	0.0379	0.0400
Algo #2 for 5 cl.	0.0273	0.0373	0.0440	0.0472
Algo #2 for 8 cl.	0.0285	0.0374	0.0476	0.0461
	Drive #5	Drive #6	Drive #7	Drive #8
Algo #1	0.0440	0.0643	0.0666	0.0654
Algo #2 for 5 cl.	0.0509	0.0711	0.0717	0.0729
Algo #2 for 8 cl.	0.0559	0.0723	0.0761	0.0744

Table: Comparison of algorithms.

Algo #1 won	Tie	Algo #2 won
27%	40%	33%

Master thesis:

Róbert Fazekas: Forgalmi sávok modellezése videó alapú vezetést támogató rendszerekben thesis defence: 30 May 2018 (grade: excellent)

Conference talk:

Róbert Fazekas: Lane modelling algorithm for video-based driver assistance system CSM - The 5th Conference of PhD Students in Mathematics Szeged, Hungary, June 25 - June 27, 2018

Poster:

The 20th European Conference on Mathematics for Industry 18-22 June 2018, Budapest, Hungary

Scientific paper:

Clustering algorithm exploring road geometry in a video-based driver assistant system; submitted to *Mathematics in Industry*

ADDAcon 2019:

Róbert Fazekas got into a Bosch conference poster-session (after thoughtful selection).

Feedback from Bosch

- Bosch is satisfied with the work of our team.
- Algorithm was benchmarked in a concept phase of a series project and it will likely be used.

- Róbert is a full-time Algorithm Developer of Bosch (he was applied without interview due to the **quality** of his work).
- Recently, this work is a base of **further cooperation** projects.

Norbert Bogya nbogya@math.u-szeged.hu

Róbert Fazekas Robert.Fazekas@hu.bosch.com Judit Nagy-György ngyj@math.u-szeged.hu

Zsolt Vizi zsvizi@math.u-szeged.hu

This research is a cooperation between the Bolyai Institute of University of Szeged and Robert Bosch Kft. and supported by the EU funded Hungarian grant project Nr. EFOP-3.6.2-16-2017-00015.

Thank you for your attention!