# Projective embeddings of 3- and 4-nets in perspective position

#### Norbert Bogya

Bolyai Institute, University of Szeged

#### 24 June 2014

\*Joint work with Gábor Nagy (University of Szeged) and Gábor Korchmáros (Università degli Studi della Basilicata)

#### *k*-net

#### *k*-net



#### *k*-net



#### *k*-net



#### *k*-net



▶ Derived 
$$(k-1)$$
-net.

Dual k-net



Dual k-net



Dual k-net



Dual k-net



Dual k-net



Dual k-net



Dual k-net

A finite dual k-net of order n is an incidence structure consisting of  $k \ge 3$  pairwise disjoint classes of points, each of size n, such that every line meet two points from distinct classes meet exactly one point from each of the k classes.



▶ Derived dual (k - 1)-net.

#### Dual 3-net in perspective position

•  $(\Lambda_1, \Lambda_2, \Lambda_3)$  classes of points (components) •  $|\Lambda_i| = n$ 

#### Dual 3-net in perspective position

Perspective dual 3-net with a center C

A  $(\Lambda_1, \Lambda_2, \Lambda_3)$  dual 3-net is in perspective position with a center C, if  $C \notin \bigcup \Lambda_i$  and if every line through C meeting a component meets each component in exactly one point.

#### Dual 3-net in perspective position

Perspective dual 3-net with a center C

A  $(\Lambda_1, \Lambda_2, \Lambda_3)$  dual 3-net is in perspective position with a center C, if  $C \notin \bigcup \Lambda_i$  and if every line through C meeting a component meets each component in exactly one point.



Classes of lines:  $\mathcal{A}, \mathcal{B}, \mathcal{C}$ .

Classes of lines:  $\mathcal{A}, \mathcal{B}, \mathcal{C}$ . Group:  $\mathcal{G} = (\mathcal{G}, \cdot)$ .

Classes of lines:  $\mathcal{A}, \mathcal{B}, \mathcal{C}$ . Group:  $\mathcal{G} = (\mathcal{G}, \cdot)$ . Bijective maps:  $\alpha : \mathcal{G} \to \mathcal{A}, \ \beta : \mathcal{G} \to \mathcal{B}, \ \gamma : \mathcal{G} \to \mathcal{C}$ .

Classes of lines:  $\mathcal{A}, \mathcal{B}, \mathcal{C}$ . Group:  $G = (G, \cdot)$ . Bijective maps:  $\alpha \colon G \to \mathcal{A}, \beta \colon G \to \mathcal{B}, \gamma \colon G \to \mathcal{C}$ . A 3-net realizes the group G, if for all  $a, b, c \in G$  we have

 $a \cdot b = c \iff \alpha(a), \beta(b), \gamma(c)$  meet in one point.

Classes of lines:  $\mathcal{A}, \mathcal{B}, \mathcal{C}$ . Group:  $G = (G, \cdot)$ . Bijective maps:  $\alpha : G \to \mathcal{A}, \beta : G \to \mathcal{B}, \gamma : G \to \mathcal{C}$ . A 3-net realizes the group G, if for all  $a, b, c \in G$  we have

 $a \cdot b = c \iff \alpha(a), \beta(b), \gamma(c)$  meet in one point.



Classes of points:  $\mathcal{A}, \mathcal{B}, \mathcal{C}$ . Group:  $G = (G, \cdot)$ . Bijective maps:  $\alpha \colon G \to \mathcal{A}, \ \beta \colon G \to \mathcal{B}, \ \gamma \colon G \to \mathcal{B}$ . A dual 3-net realizes a group G, if for all  $a, b, c \in G$  we have

 $a \cdot b = c \iff \alpha(a), \beta(b), \gamma(c)$  are collinear points.















Latin square  $\leftrightarrow (Q, *)$  quasigroup.

#### Theorem (Korchmáros, Nagy, Pace, 2013) A 4-net in $PG(2, \mathbb{K})$ has a constant cross-ratio.

#### Theorem (Korchmáros, Nagy, Pace, 2013) A 4-net in $PG(2, \mathbb{K})$ has a constant cross-ratio.



#### Theorem (Korchmáros, Nagy, Pace, 2013)

A dual 4-net in  $PG(2, \mathbb{K})$  has a constant cross ratio, that is, for any line intersecting the components, the cross-ratio of the four intersection points is constant.

Transversal line

The  $\ell$  line is a transversal of a  $(\lambda_1, \lambda_2, \lambda_3)$  3-net, if  $\ell$  intersect all the lines of the 3-net in the total *n* points.

10 / 21

#### Transversal line

The  $\ell$  line is a transversal of a  $(\lambda_1, \lambda_2, \lambda_3)$  3-net, if  $\ell$  intersect all the lines of the 3-net in the total *n* points.

Theorem (B., Korchmáros, Nagy, 2014) Let  $\lambda = (\lambda_1, \lambda_2, \lambda_3)$  be a 3-net of order *n* in PG(2, K). Assume that  $\ell$  is a transversal. Then there is a scalar  $\kappa$  such that for all  $P \in \ell \cap \lambda$  ( $P = m_1 \cap m_2 \cap m_3$ ,  $m_1 \in \lambda_1$ ,  $m_2 \in \lambda_2$ ,  $m_3 \in \lambda_3$ ), the cross-ratio of the lines  $\ell$ ,  $m_1$ ,  $m_2$ ,  $m_3$  is  $\kappa$ .

#### Transversal line

The  $\ell$  line is a transversal of a  $(\lambda_1, \lambda_2, \lambda_3)$  3-net, if  $\ell$  intersect all the lines of the 3-net in the total *n* points.

Theorem (B., Korchmáros, Nagy, 2014)

Let  $\lambda = (\lambda_1, \lambda_2, \lambda_3)$  be a 3-net of order n in PG(2, K). Assume that  $\ell$  is a transversal. Then there is a scalar  $\kappa$  such that for all  $P \in \ell \cap \lambda$  ( $P = m_1 \cap m_2 \cap m_3$ ,  $m_1 \in \lambda_1$ ,  $m_2 \in \lambda_2$ ,  $m_3 \in \lambda_3$ ), the cross-ratio of the lines  $\ell$ ,  $m_1$ ,  $m_2$ ,  $m_3$  is  $\kappa$ .

#### Theorem (B., Korchmáros, Nagy, 2014)

Let  $\Lambda = (\Lambda_1, \Lambda_2, \Lambda_3)$  a dual 3-net of order *n* in PG(2, K). Assume that  $\Lambda$  is in perspective position with respect to point *T*. Then there is a scalar  $\kappa$  such that for all lines  $\ell$  through *T*, the cross-ration of the points  $T, \ell \cap \Lambda_1, \ell \cap \Lambda_2, \ell \cap \Lambda_3$  is  $\kappa$ .

► Algebraic: its points are on a cubic curve.

11 / 21

- ► Algebraic: its points are on a cubic curve.
  - ► Proper algebraic

- ► Algebraic: its points are on a cubic curve.
  - ► Proper algebraic
  - ► Conic-line type



- ► Algebraic: its points are on a cubic curve.
  - ► Proper algebraic
  - ► Conic-line type
  - ► Regular
- ► **Regular**: its components lie on three lines.

- ► Algebraic: its points are on a cubic curve.
  - ► Proper algebraic
  - ► Conic-line type
  - ► Regular
- ► **Regular**: its components lie on three lines.
  - ► Triangular: the three lines form a triangle.

- ► Algebraic: its points are on a cubic curve.
  - ► Proper algebraic
  - ► Conic-line type
  - ► Regular
- ► **Regular**: its components lie on three lines.
  - ► Triangular: the three lines form a triangle.
  - ▶ Pencil type: the three lines are concurrent.

- ► Algebraic: its points are on a cubic curve.
  - ► Proper algebraic
  - ► Conic-line type
  - ► Regular



- **Regular**: its components lie on three lines.
  - ► Triangular: the three lines form a triangle.
  - ▶ Pencil type: the three lines are concurrent.
- ► **Tetrahedron type**: its components lie on the sides of a non-degenerate quadrangle (sides and diagonals).

#### Regular and tetrahedron type dual 3-nets

Theorem (B., Korchmáros, Nagy, 2014) Any regular dual 3-net in perspective position is of pencil type.



Pencil type dual 3-net doesn't exist in zero characteristic.

In positive characteristic they only exist when the order of the dual 3-net is divisible by the characteristic.

#### Theorem (B., Korchmáros, Nagy, 2014)

No regular dual 3-net in perspective position exists in zero characteristic. This holds for dual 3-nets in positive characteristic whenever the order of the 3-net is smaller than the characteristic.

#### Theorem (B., Korchmáros, Nagy, 2014)

No tetrahedron type dual 3-net in perspective position exists in zero characteristic. This holds for dual 3-nets in positive characteristic whenever the order of the 3-net is smaller than the characteristic.

#### Theorem (B., Korchmáros, Nagy, 2014)

No tetrahedron type dual 3-net in perspective position exists in zero characteristic. This holds for dual 3-nets in positive characteristic whenever the order of the 3-net is smaller than the characteristic.

Proposition (B., Korchmáros, Nagy, 2014)

Let  $\mathbb{K}$  be an algebraically closed field whose characteristic is zero or greater than *n*. Then no dual 4-net of order *n* embedded in  $PG(2, \mathbb{K})$  has a derived dual 3-net which is either triangular or of tetrahedron type.

### Conic-line type dual 3-nets



#### Conic-line type dual 3-nets

Proj. coord. system: T = (0, 0, 1),  $\ell$ : Z = 0, C:  $XY = Z^2$ . It can be shown, the  $\Lambda$  has a parametrization with  $n^{th}$  root of unity:

$$\Lambda_2 = \{(c, c^{-1}), (c\xi, c^{-1}\xi^{-1}), \dots, (c\xi^{n-1}, c^{-1}\xi^{-n+1})\},\$$

where  $c \in \mathbb{K}^*$  and  $\xi$  is a  $n^{th}$  root of unity in  $\mathbb{K}$ . The  $u: (x, y) \mapsto (-x, -y)$  perspectivity takes  $\Lambda_2$  to  $\Lambda_3$ :

$$\Lambda_3 = \{(-c, -c^{-1}), (-c\xi, -c^{-1}\xi^{-1}), \dots, (-c\xi^{n-1}, -c^{-1}\xi^{-n+1})\}.$$

If *n* is even, then  $\xi^{n/2} = -1$ . If *n* is odd then

$$\Lambda_1 = \{ (c^{-2}), (c^{-2}\xi), \dots, (c^{-2}\xi^{n-1}) \}.$$

#### Conic-line type dual 3-nets

Proj. coord. system: T = (0, 0, 1),  $\ell$ : Z = 0, C:  $XY = Z^2$ . It can be shown, the  $\Lambda$  has a parametrization with  $n^{th}$  root of unity:

$$\Lambda_2 = \{(c,c^{-1}), (c\xi,c^{-1}\xi^{-1}), \dots, (c\xi^{n-1},c^{-1}\xi^{-n+1})\},\$$

where  $c \in \mathbb{K}^*$  and  $\xi$  is a  $n^{th}$  root of unity in  $\mathbb{K}$ . The  $u: (x, y) \mapsto (-x, -y)$  perspectivity takes  $\Lambda_2$  to  $\Lambda_3$ :

$$\Lambda_3 = \{(-c, -c^{-1}), (-c\xi, -c^{-1}\xi^{-1}), \dots, (-c\xi^{n-1}, -c^{-1}\xi^{-n+1})\}.$$

If *n* is even, then  $\xi^{n/2} = -1$ . If *n* is odd then

$$\Lambda_1 = \{ (c^{-2}), (c^{-2}\xi), \dots, (c^{-2}\xi^{n-1}) \}.$$

#### Lemma

For *n* odd, the above  $(\Lambda_1, \Lambda_2, \Lambda_3)$  conic-line type dual 3-net is in perspective position with center *T*.

#### Theorem (B., Korchmáros, Nagy, 2014)

Let  $\mathbb{K}$  be an algeraically closed field of characteristic zero or greater than *n*. Then every conic-line type dual 3-net of order *n* in PG(2,  $\mathbb{K}$ ) in perspective position is projectively equivalent to the example given on the previous slide.

#### Theorem (B., Korchmáros, Nagy, 2014)

Let  $\mathbb{K}$  be an algeraically closed field of characteristic zero or greater than *n*. Then every conic-line type dual 3-net of order *n* in PG(2,  $\mathbb{K}$ ) in perspective position is projectively equivalent to the example given on the previous slide.

Proposition (B., Korchmáros, Nagy, 2014)

Let  $\mathbb{K}$  be an algeraically closed field of characteristic zero or greater than *n*. Then no dual 4-net of order *n* in PG(2,  $\mathbb{K}$ ) has a derived dual 3-net of conic-line type.

$$\begin{split} \Lambda &= (\Lambda_1,\Lambda_2,\Lambda_3) \text{ lies on } \Gamma \text{ irreducible cubic curve.} \\ \text{Suppose: char}(\mathbb{K}) \notin \{2,3\}. \end{split}$$

| shape of <b>F</b> | # of infl. points | canonical form      |
|-------------------|-------------------|---------------------|
| nonsingular       | 9                 | $Y^2 = X(X-1)(X-c)$ |
| node              | 3                 | $Y^2 = X^3$         |
| cusp              | 1                 | $Y^2 = X^3 + X^2$   |

The *j*-invariant classifies elliptic curves up to isomorphism.

*j*-invariant If a cubic curve  $\Gamma$  can be trasformed into the form

$$Y^2 = X(X-1)(X-c)$$

then the j-invariant of the curve is

$$j(\Gamma) = 2^8 \frac{(c^2 - c + 1)^3}{c^2(c - 1)^2}.$$

#### Theorem (B., Korchmáros, Nagy, 2014)

Let  $\mathbb{K}$  be an algebraically closed field of characteristic different from 2 and 3. Let  $\Lambda = (\Lambda_1, \Lambda_2\Lambda_3)$  be a dual 3-net of order  $n \ge 7$  in PG(2,  $\mathbb{K}$ ) which lies on an irreducible cubic curve  $\Gamma$ . If  $\Gamma$  is singular or is nonsingular with  $j(\Gamma) \ne 0$  then  $\Lambda$  is not in perspective position. If  $j(\Gamma) = 0$  then there are at most three point  $T_1, T_2, T_3$  such that  $\Lambda$  is in perspective position with center  $T_i$ .

20 / 21

#### Theorem (B., Korchmáros, Nagy, 2014)

Let  $\mathbb{K}$  be an algebraically closed field of characteristic different from 2 and 3. Let  $\Lambda = (\Lambda_1, \Lambda_2\Lambda_3)$  be a dual 3-net of order  $n \ge 7$  in PG(2,  $\mathbb{K}$ ) which lies on an irreducible cubic curve  $\Gamma$ . If  $\Gamma$  is singular or is nonsingular with  $j(\Gamma) \ne 0$  then  $\Lambda$  is not in perspective position. If  $j(\Gamma) = 0$  then there are at most three point  $T_1, T_2, T_3$  such that  $\Lambda$  is in perspective position with center  $T_i$ .

Proposition (B., Korchmáros, Nagy, 2014)

Let  $\mathbb{K}$  be an algebraically closed field, such that char( $\mathbb{K}$ )  $\notin \{2,3\}$ . Then no dual 4-net of order  $n \ge 7$  in PG(2,  $\mathbb{K}$ ) has a derived dual 3-net lying on a plane cubic.

# Summary

#### Theorem (B., Korchmáros, Nagy, 2014)

Let  $\Gamma$  be a dual 3-net of order *n* coordinatized by a group. Assume that  $\Lambda$  is embedded in a projective plane  $PG(2, \mathbb{K})$  over an algebraically closed field witk  $char(\mathbb{K}) = 0$  or  $char(\mathbb{K}) > n$ . If  $\Lambda$  is in perspective position and  $n \neq 8$  then one of the following two cases occur:

- (i) A component of  $\Lambda$  lies on a line while the other two lie on a nonsingular conic.
- (ii)  $\Lambda$  is contained in a nonsingular cubic curve C with zero j(C)-invariant, and  $\Lambda$  is in perspective position with at most three center.

# Summary

#### Theorem (B., Korchmáros, Nagy, 2014)

Let  $\Gamma$  be a dual 3-net of order *n* coordinatized by a group. Assume that  $\Lambda$  is embedded in a projective plane  $PG(2, \mathbb{K})$  over an algebraically closed field witk  $char(\mathbb{K}) = 0$  or  $char(\mathbb{K}) > n$ . If  $\Lambda$  is in perspective position and  $n \neq 8$  then one of the following two cases occur:

- (i) A component of  $\Lambda$  lies on a line while the other two lie on a nonsingular conic.
- (ii)  $\Lambda$  is contained in a nonsingular cubic curve C with zero j(C)-invariant, and  $\Lambda$  is in perspective position with at most three center.

# Thank you for your attention!

# Cubic curve

#### Addition on cubic curve

Let  $\Gamma$  be a cubic curve and let  $\Gamma^*$  be the set of its smooth points. Let  $O \in \Gamma^*$  be a fixed point. In this case we can define the sum of  $A, B \in \Gamma^*$  points:



# Cubic curve

#### Addition on cubic curve

Let  $\Gamma$  be a cubic curve and let  $\Gamma^*$  be the set of its smooth points. Let  $O \in \Gamma^*$  be a fixed point. In this case we can define the sum of  $A, B \in \Gamma^*$  points:



# Cubic curve

#### Addition on cubic curve

Let  $\Gamma$  be a cubic curve and let  $\Gamma^*$  be the set of its smooth points. Let  $O \in \Gamma^*$  be a fixed point. In this case we can define the sum of  $A, B \in \Gamma^*$  points:



#### Theorem

Let  $\Gamma$  be a cubic curve and let  $\Gamma^*$  be the set of its smooth points. Let  $O \in \Gamma^*$  be a fixed point. Then  $(\Gamma^*, +, O)$  is an abelian group.

#### Theorem

(1) If 
$$\Gamma: Y = X^3$$
, then  $(\Gamma^*, +) \cong (K, +)$ .

② If 
$$\Gamma: Y^2 = X^3$$
, then  $(\Gamma^*, +) \cong (K, +)$ .

3 If 
$$\Gamma: Y^2 = X^3 + X^2$$
, then  $(\Gamma^*, +) \cong (K^*, \cdot)$ .

# Classification theorem

#### Theorem

In PG(2,  $\mathbb{K}$ ) defined over an algebraically closed field  $\mathbb{K}$  of characteristic  $p \ge 0$ , let  $\Lambda = (\Lambda_1, \Lambda_2, \Lambda_3)$  be a dual 3-net of order  $n \ge 4$  which realizes a group G. If either p = 0 or p > n then one of the following holds.

- (i) G is cyclic or direct product of two cyclic groups and  $\Lambda$  is algebraic.
- (ii) G is dihedral and  $\Lambda$  is of tetrahedron type.
- (iii) G is the quaternion group of order 8.
- (iv) G has order 12 and is isomorphic to  $A_4$ .
- (v) G has order 24 and is isomorphic to  $S_4$ .
- (vi) G has order 60 and is isomorphic to  $A_5$ .