Projective embeddings of 3- and 4-nets in perspective position

Norbert Bogya

Bolyai Institute, University of Szeged

24 June 2014

*Joint work with Gábor Nagy (University of Szeged) and Gábor Korchmáros (Università degli Studi della Basilicata)
k-net

A finite k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of lines, each of size n, such that every point incident with two lines from distinct classes is incident with exactly one line from each of the k classes.
Definitions

\(k\)-net

A finite \(k\)-net of order \(n\) is an incidence structure consisting of \(k \geq 3\) pairwise disjoint classes of lines, each of size \(n\), such that every point incident with two lines from distinct classes is incident with exactly one line from each of the \(k\) classes.
Definitions

k-net

A finite k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of lines, each of size n, such that every point incident with two lines from distinct classes is incident with exactly one line from each of the k classes.
A finite k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of lines, each of size n, such that every point incident with two lines from distinct classes is incident with exactly one line from each of the k classes.
k-net

A finite k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of lines, each of size n, such that every point incident with two lines from distinct classes is incident with exactly one line from each of the k classes.

▶ Derived $(k - 1)$-net.
Definitions

Dual k-net

A finite dual k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of points, each of size n, such that every line meet two points from distinct classes meet exactly one point from each of the k classes.
Dual k-net

A finite dual k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of points, each of size n, such that every line meet two points from distinct classes meet exactly one point from each of the k classes.
Definitions

Dual k-net

A finite dual k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of points, each of size n, such that every line meet two points from distinct classes meet exactly one point from each of the k classes.
Dual k-net

A finite dual k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of points, each of size n, such that every line meet two points from distinct classes meet exactly one point from each of the k classes.
Definitions

Dual k-net

A finite dual k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of points, each of size n, such that every line meet two points from distinct classes meet exactly one point from each of the k classes.
Dual k-net

A finite dual k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of points, each of size n, such that every line meet two points from distinct classes meet exactly one point from each of the k classes.
Dual k-net

A finite dual k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of points, each of size n, such that every line meet two points from distinct classes meet exactly one point from each of the k classes.

Derived dual $(k - 1)$-net.
Dual 3-net in perspective position

- $(\Lambda_1, \Lambda_2, \Lambda_3)$ classes of points (components)
- $|\Lambda_i| = n$
Dual 3-net in perspective position

- $(\Lambda_1, \Lambda_2, \Lambda_3)$ classes of points (components)
- $|\Lambda_i| = n$

Perspective dual 3-net with a center C

A $(\Lambda_1, \Lambda_2, \Lambda_3)$ dual 3-net is in perspective position with a center C, if $C \notin \bigcup \Lambda_i$ and if every line through C meeting a component meets each component in exactly one point.
Dual 3-net in perspective position

- $(\Lambda_1, \Lambda_2, \Lambda_3)$ classes of points (components)
- $|\Lambda_i| = n$

Perspective dual 3-net with a center C

A $(\Lambda_1, \Lambda_2, \Lambda_3)$ dual 3-net is in perspective position with a center C, if $C \notin \bigcup \Lambda_i$ and if every line through C meeting a component meets each component in exactly one point.
3-nets in $\text{PG}(2, K)$ coordinatized by a group

Classes of lines: A, B, C.
3-nets in $\text{PG}(2, \mathbb{K})$ coordinatized by a group

Classes of lines: A, B, C.
Group: $G = (G, \cdot)$.
Classes of lines: $\mathcal{A}, \mathcal{B}, \mathcal{C}$.
Group: $G = (G, \cdot)$.
Bijective maps: $\alpha: G \to \mathcal{A}$, $\beta: G \to \mathcal{B}$, $\gamma: G \to \mathcal{C}$.
3-nets in $\text{PG}(2, \mathbb{K})$ coordinatized by a group

Classes of lines: $\mathcal{A}, \mathcal{B}, \mathcal{C}$.

Group: $G = (G, \cdot)$.

Bijective maps: $\alpha: G \to \mathcal{A}$, $\beta: G \to \mathcal{B}$, $\gamma: G \to \mathcal{C}$.

A 3-net realizes the group G, if for all $a, b, c \in G$ we have

$$a \cdot b = c \iff \alpha(a), \beta(b), \gamma(c) \text{ meet in one point.}$$
3-nets in $\text{PG}(2, \mathbb{K})$ coordinatized by a group

Classes of lines: $\mathcal{A}, \mathcal{B}, \mathcal{C}$.
Group: $G = (G, \cdot)$.
Bijective maps: $\alpha : G \rightarrow \mathcal{A}$, $\beta : G \rightarrow \mathcal{B}$, $\gamma : G \rightarrow \mathcal{C}$.
A 3-net realizes the group G, if for all $a, b, c \in G$ we have

$$a \cdot b = c \iff \alpha(a), \beta(b), \gamma(c) \text{ meet in one point.}$$
Classes of points: A, B, C.
Group: $G = (G, \cdot)$.
Bijective maps: $\alpha: G \to A$, $\beta: G \to B$, $\gamma: G \to B$.
A dual 3-net realizes a group G, if for all $a, b, c \in G$ we have

$$a \cdot b = c \iff \alpha(a), \beta(b), \gamma(c) \text{ are collinear points.}$$
$Q = \{1, 2, 3, 4, 5\}$
$Q = \{1, 2, 3, 4, 5\}$
$Q = \{1, 2, 3, 4, 5\}$

Latin square

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Norbert Bogya (Bolyai Institute) 3- and 4-nets in perspective position CSM 2014 7 / 21
$Q = \{1, 2, 3, 4, 5\}$

Latin square $\leftrightarrow (Q, \ast)$ quasigroup.
Theorem (Korchmáros, Nagy, Pace, 2013)
A 4-net in PG(2, \(\mathbb{K}\)) has a constant cross-ratio.
Theorem (Korchmáros, Nagy, Pace, 2013)

A 4-net in $\text{PG}(2, \mathbb{K})$ has a constant cross-ratio.
Cross-ratio

Theorem (Korchmáros, Nagy, Pace, 2013)
A dual 4-net in $\text{PG}(2, \mathbb{K})$ has a constant cross ratio, that is, for any line intersecting the components, the cross-ratio of the four intersection points is constant.
Transversal line

The ℓ line is a transversal of a $(\lambda_1, \lambda_2, \lambda_3)$ 3-net, if ℓ intersect all the lines of the 3-net in the total n points.
Transversal line

The \(\ell \) line is a transversal of a \((\lambda_1, \lambda_2, \lambda_3)\) 3-net, if \(\ell \) intersect all the lines of the 3-net in the total \(n \) points.

Theorem (B., Korchmáros, Nagy, 2014)

Let \(\lambda = (\lambda_1, \lambda_2, \lambda_3) \) be a 3-net of order \(n \) in \(\text{PG}(2, K) \). Assume that \(\ell \) is a transversal. Then there is a scalar \(\kappa \) such that for all \(P \in \ell \cap \lambda \) \((P = m_1 \cap m_2 \cap m_3, m_1 \in \lambda_1, m_2 \in \lambda_2, m_3 \in \lambda_3)\), the cross-ratio of the lines \(\ell, m_1, m_2, m_3 \) is \(\kappa \).
Transversal line

The line ℓ is a transversal of a $(\lambda_1, \lambda_2, \lambda_3)$ 3-net, if ℓ intersect all the lines of the 3-net in the total n points.

Theorem (B., Korchmáros, Nagy, 2014)

Let $\lambda = (\lambda_1, \lambda_2, \lambda_3)$ be a 3-net of order n in $\text{PG}(2, \mathbb{K})$. Assume that ℓ is a transversal. Then there is a scalar κ such that for all $P \in \ell \cap \lambda$ ($P = m_1 \cap m_2 \cap m_3$, $m_1 \in \lambda_1$, $m_2 \in \lambda_2$, $m_3 \in \lambda_3$), the cross-ratio of the lines ℓ, m_1, m_2, m_3 is κ.

Theorem (B., Korchmáros, Nagy, 2014)

Let $\Lambda = (\Lambda_1, \Lambda_2, \Lambda_3)$ a dual 3-net of order n in $\text{PG}(2, \mathbb{K})$. Assume that Λ is in perspective position with respect to point T. Then there is a scalar κ such that for all lines ℓ through T, the cross-ration of the points $T, \ell \cap \Lambda_1, \ell \cap \Lambda_2, \ell \cap \Lambda_3$ is κ.
Classification of dual 3-nets

- **Algebraic**: its points are on a cubic curve.
- **Proper algebraic**
- **Conic-line type**
- **Regular**: its components lie on three lines.
- **Triangular**: the three lines form a triangle.
- **Pencil type**: the three lines are concurrent.
- **Tetrahedron type**: its components lie on the sides of a non-degenerate quadrangle (sides and diagonals).
Classification of dual 3-nets

- **Algebraic**: its points are on a cubic curve.

- **Proper algebraic**
- **Conic-line type**
- **Regular**: its components lie on three lines.
- **Triangular**: the three lines form a triangle.
- **Pencil type**: the three lines are concurrent.
- **Tetrahedron type**: its components lie on the sides of a non-degenerate quadrangle (sides and diagonals).
Classification of dual 3-nets

- **Algebraic**: its points are on a cubic curve.
 - **Proper algebraic**
Classification of dual 3-nets

- **Algebraic**: its points are on a cubic curve.
 - Proper algebraic
 - Conic-line type
 - Regular: its components lie on three lines.
 - Triangular: the three lines form a triangle.
 - Pencil type: the three lines are concurrent.
 - Tetrahedron type: its components lie on the sides of a non-degenerate quadrangle (sides and diagonals).
Classification of dual 3-nets

- **Algebraic**: its points are on a cubic curve.
 - Proper algebraic
 - Conic-line type
 - Regular
- **Regular**: its components lie on three lines.
Classification of dual 3-nets

- **Algebraic**: its points are on a cubic curve.
 - Proper algebraic
 - Conic-line type
 - Regular
- **Regular**: its components lie on three lines.
 - Triangular: the three lines form a triangle.
Classification of dual 3-nets

- **Algebraic**: its points are on a cubic curve.
 - **Proper algebraic**
 - **Conic-line type**
 - **Regular**

- **Regular**: its components lie on three lines.
 - **Triangular**: the three lines form a triangle.
 - **Pencil type**: the three lines are concurrent.
Classification of dual 3-nets

- **Algebraic**: its points are on a cubic curve.
 - Proper algebraic
 - Conic-line type
 - Regular

- **Regular**: its components lie on three lines.
 - **Triangular**: the three lines form a triangle.
 - **Pencil type**: the three lines are concurrent.

- **Tetrahedron type**: its components lie on the sides of a non-degenerate quadrangle (sides and diagonals).
Theorem (B., Korchmáros, Nagy, 2014)
Any regular dual 3-net in perspective position is of pencil type.
Pencil type dual 3-net doesn’t exist in zero characteristic.

In positive characteristic they only exist when the order of the dual 3-net is divisible by the characteristic.

Theorem (B., Korchmáros, Nagy, 2014)

No regular dual 3-net in perspective position exists in zero characteristic. This holds for dual 3-nets in positive characteristic whenever the order of the 3-net is smaller than the characteristic.
Theorem (B., Korchmáros, Nagy, 2014)

No tetrahedron type dual 3-net in perspective position exists in zero characteristic. This holds for dual 3-nets in positive characteristic whenever the order of the 3-net is smaller than the characteristic.
Theorem (B., Korchmáros, Nagy, 2014)
No tetrahedron type dual 3-net in perspective position exists in zero characteristic. This holds for dual 3-nets in positive characteristic whenever the order of the 3-net is smaller than the characteristic.

Proposition (B., Korchmáros, Nagy, 2014)
Let \mathbb{K} be an algebraically closed field whose characteristic is zero or greater than n. Then no dual 4-net of order n embedded in $\text{PG}(2, \mathbb{K})$ has a derived dual 3-net which is either triangular or of tetrahedron type.
Conic-line type dual 3-nets

\[\Lambda_3 \]

\[\Lambda_2 \]

\[\Lambda_1 \]

C

\[\ell \]

T

Norbert Bogya (Bolyai Institute) 3- and 4-nets in perspective position CSM 2014 15 / 21
Conic-line type dual 3-nets

Proj. coord. system: $T = (0, 0, 1)$, $\ell: Z = 0$, $C: XY = Z^2$.

It can be shown, the Λ has a parametrization with n^{th} root of unity:

$$\Lambda_2 = \{(c, c^{-1}), (c\xi, c^{-1}\xi^{-1}), \ldots, (c\xi^{n-1}, c^{-1}\xi^{-n+1})\},$$

where $c \in \mathbb{K}^*$ and ξ is a n^{th} root of unity in \mathbb{K}.

The $u: (x, y) \mapsto (-x, -y)$ perspectivity takes Λ_2 to Λ_3:

$$\Lambda_3 = \{(-c, -c^{-1}), (-c\xi, -c^{-1}\xi^{-1}), \ldots, (-c\xi^{n-1}, -c^{-1}\xi^{-n+1})\}.$$

If n is even, then $\xi^{n/2} = -1$. If n is odd then

$$\Lambda_1 = \{(c^{-2}), (c^{-2}\xi), \ldots, (c^{-2}\xi^{n-1})\}.$$
Conic-line type dual 3-nets

Proj. coord. system: \(T = (0, 0, 1), \ell: Z = 0, C: XY = Z^2. \)
It can be shown, the \(\Lambda \) has a parametrization with \(n^{th} \) root of unity:

\[
\Lambda_2 = \{(c, c^{-1}), (c\xi, c^{-1}\xi^{-1}), \ldots, (c\xi^{n-1}, c^{-1}\xi^{-n+1})\},
\]
where \(c \in K^* \) and \(\xi \) is a \(n^{th} \) root of unity in \(K \).
The \(u: (x, y) \mapsto (-x, -y) \) perspectivity takes \(\Lambda_2 \) to \(\Lambda_3 \):

\[
\Lambda_3 = \{(-c, -c^{-1}), (-c\xi, -c^{-1}\xi^{-1}), \ldots, (-c\xi^{n-1}, -c^{-1}\xi^{-n+1})\}.
\]
If \(n \) is even, then \(\xi^{n/2} = -1 \). If \(n \) is odd then

\[
\Lambda_1 = \{(c^{-2}), (c^{-2}\xi), \ldots, (c^{-2}\xi^{n-1})\}.
\]

Lemma

For \(n \) odd, the above \((\Lambda_1, \Lambda_2, \Lambda_3) \) conic-line type dual 3-net is in perspective position with center \(T \).
Theorem (B., Korchmáros, Nagy, 2014)

Let \mathbb{K} be an algebraically closed field of characteristic zero or greater than n. Then every conic-line type dual 3-net of order n in $\mathrm{PG}(2, \mathbb{K})$ in perspective position is projectively equivalent to the example given on the previous slide.
Theorem (B., Korchmáros, Nagy, 2014)

Let \mathbb{K} be an algebraically closed field of characteristic zero or greater than n. Then every conic-line type dual 3-net of order n in $\text{PG}(2, \mathbb{K})$ in perspective position is projectively equivalent to the example given on the previous slide.

Proposition (B., Korchmáros, Nagy, 2014)

Let \mathbb{K} be an algebraically closed field of characteristic zero or greater than n. Then no dual 4-net of order n in $\text{PG}(2, \mathbb{K})$ has a derived dual 3-net of conic-line type.
\[\Lambda = (\Lambda_1, \Lambda_2, \Lambda_3) \text{ lies on } \Gamma \text{ irreducible cubic curve.} \]

Suppose: \(\text{char}(\mathbb{K}) \notin \{2, 3\} \).

<table>
<thead>
<tr>
<th>shape of (\Gamma)</th>
<th># of infl. points</th>
<th>canonical form</th>
</tr>
</thead>
<tbody>
<tr>
<td>nonsingular</td>
<td>9</td>
<td>(Y^2 = X(X - 1)(X - c))</td>
</tr>
<tr>
<td>node</td>
<td>3</td>
<td>(Y^2 = X^3)</td>
</tr>
<tr>
<td>cusp</td>
<td>1</td>
<td>(Y^2 = X^3 + X^2)</td>
</tr>
</tbody>
</table>
The j-invariant classifies elliptic curves up to isomorphism.

j-invariant

If a cubic curve Γ can be transformed into the form

$$Y^2 = X(X - 1)(X - c)$$

then the j-invariant of the curve is

$$j(\Gamma) = 2^8 \frac{(c^2 - c + 1)^3}{c^2(c - 1)^2}.$$
Theorem (B., Korchmáros, Nagy, 2014)

Let \mathbb{K} be an algebraically closed field of characteristic different from 2 and 3. Let $\Lambda = (\Lambda_1, \Lambda_2, \Lambda_3)$ be a dual 3-net of order $n \geq 7$ in $\text{PG}(2, \mathbb{K})$ which lies on an irreducible cubic curve Γ. If Γ is singular or is nonsingular with $j(\Gamma) \neq 0$ then Λ is not in perspective position. If $j(\Gamma) = 0$ then there are at most three point T_1, T_2, T_3 such that Λ is in perspective position with center T_i.
Theorem (B., Korchmáros, Nagy, 2014)

Let \mathbb{K} be an algebraically closed field of characteristic different from 2 and 3. Let $\Lambda = (\Lambda_1, \Lambda_2, \Lambda_3)$ be a dual 3-net of order $n \geq 7$ in $\text{PG}(2, \mathbb{K})$ which lies on an irreducible cubic curve Γ. If Γ is singular or is nonsingular with $j(\Gamma) \neq 0$ then Λ is not in perspective position. If $j(\Gamma) = 0$ then there are at most three points T_1, T_2, T_3 such that Λ is in perspective position with center T_i.

Proposition (B., Korchmáros, Nagy, 2014)

Let \mathbb{K} be an algebraically closed field, such that $\text{char}(\mathbb{K}) \notin \{2, 3\}$. Then no dual 4-net of order $n \geq 7$ in $\text{PG}(2, \mathbb{K})$ has a derived dual 3-net lying on a plane cubic.
Theorem (B., Korchmáros, Nagy, 2014)

Let Γ be a dual 3-net of order n coordinatized by a group. Assume that Λ is embedded in a projective plane $\text{PG}(2, K)$ over an algebraically closed field with $\text{char}(K) = 0$ or $\text{char}(K) > n$. If Λ is in perspective position and $n \neq 8$ then one of the following two cases occur:

(i) A component of Λ lies on a line while the other two lie on a nonsingular conic.

(ii) Λ is contained in a nonsingular cubic curve C with zero $j(C)$-invariant, and Λ is in perspective position with at most three center.
Theorem (B., Korchmáros, Nagy, 2014)

Let Γ be a dual 3-net of order n coordinatized by a group. Assume that Λ is embedded in a projective plane $\text{PG}(2, \mathbb{K})$ over an algebraically closed field with $\text{char}(\mathbb{K}) = 0$ or $\text{char}(\mathbb{K}) > n$. If Λ is in perspective position and $n \neq 8$ then one of the following two cases occur:

(i) A component of Λ lies on a line while the other two lie on a nonsingular conic.

(ii) Λ is contained in a nonsingular cubic curve C with zero $j(C)$-invariant, and Λ is in perspective position with at most three center.

Thank you for your attention!
Addition on cubic curve

Let Γ be a cubic curve and let Γ^* be the set of its smooth points. Let $O \in \Gamma^*$ be a fixed point. In this case we can define the sum of $A, B \in \Gamma^*$ points:

\[A + B \]
Addition on cubic curve

Let Γ be a cubic curve and let Γ^* be the set of its smooth points. Let $O \in \Gamma^*$ be a fixed point. In this case we can define the sum of $A, B \in \Gamma^*$ points:
Addition on cubic curve

Let Γ be a cubic curve and let Γ^* be the set of its smooth points. Let $O \in \Gamma^*$ be a fixed point. In this case we can define the sum of $A, B \in \Gamma^*$ points:
Cubic curve

Theorem

Let Γ be a cubic curve and let Γ^* be the set of its smooth points. Let $O \in \Gamma^*$ be a fixed point. Then $(\Gamma^*, +, O)$ is an abelian group.

Theorem

1. If $\Gamma: Y = X^3$, then $(\Gamma^*, +) \cong (K, +)$.
2. If $\Gamma: Y^2 = X^3$, then $(\Gamma^*, +) \cong (K, +)$.
3. If $\Gamma: Y^2 = X^3 + X^2$, then $(\Gamma^*, +) \cong (K^*, \cdot)$.
In $\text{PG}(2, \mathbb{K})$ defined over an algebraically closed field \mathbb{K} of characteristic $p \geq 0$, let $\Lambda = (\Lambda_1, \Lambda_2, \Lambda_3)$ be a dual 3-net of order $n \geq 4$ which realizes a group G. If either $p = 0$ or $p > n$ then one of the following holds.

(i) G is cyclic or direct product of two cyclic groups and Λ is algebraic.

(ii) G is dihedral and Λ is of tetrahedron type.

(iii) G is the quaternion group of order 8.

(iv) G has order 12 and is isomorphic to A_4.

(v) G has order 24 and is isomorphic to S_4.

(vi) G has order 60 and is isomorphic to A_5.