Projective embeddings of 3- and 4-nets in perspective position

Norbert Bogya

Bolyai Institute, University of Szeged

$$
24 \text { June } 2014
$$

*Joint work with Gábor Nagy (University of Szeged) and Gábor Korchmáros (Università degli Studi della Basilicata)

Definitions

k-net
A finite k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of lines, each of size n, such that every point incident with two lines from distinct classes is incident with exactly one line from each of the k classes.

Definitions

k-net
A finite k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of lines, each of size n, such that every point incident with two lines from distinct classes is incident with exactly one line from each of the k classes.

Definitions

k-net
A finite k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of lines, each of size n, such that every point incident with two lines from distinct classes is incident with exactly one line from each of the k classes.

Definitions

k-net
A finite k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of lines, each of size n, such that every point incident with two lines from distinct classes is incident with exactly one line from each of the k classes.

Definitions

k-net
A finite k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of lines, each of size n, such that every point incident with two lines from distinct classes is incident with exactly one line from each of the k classes.

- Derived $(k-1)$-net.

Definitions

Dual k-net

A finite dual k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of points, each of size n, such that every line meet two points from distinct classes meet exactly one point from each of the k classes.

Definitions

Dual k-net

A finite dual k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of points, each of size n, such that every line meet two points from distinct classes meet exactly one point from each of the k classes.

Definitions

Dual k-net

A finite dual k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of points, each of size n, such that every line meet two points from distinct classes meet exactly one point from each of the k classes.

Definitions

Dual k-net

A finite dual k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of points, each of size n, such that every line meet two points from distinct classes meet exactly one point from each of the k classes.

Definitions

Dual k-net

A finite dual k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of points, each of size n, such that every line meet two points from distinct classes meet exactly one point from each of the k classes.

Definitions

Dual k-net

A finite dual k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of points, each of size n, such that every line meet two points from distinct classes meet exactly one point from each of the k classes.

Definitions

Dual k-net

A finite dual k-net of order n is an incidence structure consisting of $k \geq 3$ pairwise disjoint classes of points, each of size n, such that every line meet two points from distinct classes meet exactly one point from each of the k classes.

- Derived dual $(k-1)$-net.

Dual 3-net in perspective position

- $\left(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$ classes of points (components)
- $\left|\Lambda_{i}\right|=n$

Dual 3-net in perspective position

- $\left(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$ classes of points (components)
- $\left|\Lambda_{i}\right|=n$

Perspective dual 3 -net with a center C

A $\left(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$ dual 3 -net is in perspective position with a center C, if $C \notin \cup \Lambda_{i}$ and if every line through C meeting a component meets each component in exactly one point.

Dual 3-net in perspective position

- $\left(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$ classes of points (components)
- $\left|\Lambda_{i}\right|=n$

Perspective dual 3 -net with a center C

A $\left(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$ dual 3 -net is in perspective position with a center C, if $C \notin \cup \Lambda_{i}$ and if every line through C meeting a component meets each component in exactly one point.

3-nets in PG(2, K $)$ coordinatized by a group

Classes of lines: $\mathcal{A}, \mathcal{B}, \mathcal{C}$.

3-nets in PG(2, K $)$ coordinatized by a group

Classes of lines: $\mathcal{A}, \mathcal{B}, \mathcal{C}$. Group: $G=(G, \cdot)$.

3-nets in PG(2, K $)$ coordinatized by a group

Classes of lines: $\mathcal{A}, \mathcal{B}, \mathcal{C}$.
Group: $G=(G, \cdot)$.
Bijective maps: $\alpha: G \rightarrow \mathcal{A}, \beta: G \rightarrow \mathcal{B}, \gamma: G \rightarrow \mathcal{C}$.

3-nets in PG(2, K $)$ coordinatized by a group

Classes of lines: $\mathcal{A}, \mathcal{B}, \mathcal{C}$.
Group: $G=(G, \cdot)$.
Bijective maps: $\alpha: G \rightarrow \mathcal{A}, \beta: G \rightarrow \mathcal{B}, \gamma: G \rightarrow \mathcal{C}$. A 3 -net realizes the group G, if for all $a, b, c \in G$ we have

$$
a \cdot b=c \quad \Longleftrightarrow \quad \alpha(a), \beta(b), \gamma(c) \text { meet in one point. }
$$

3-nets in PG(2, $\mathbb{K})$ coordinatized by a group

Classes of lines: $\mathcal{A}, \mathcal{B}, \mathcal{C}$.
Group: $G=(G, \cdot)$.
Bijective maps: $\alpha: G \rightarrow \mathcal{A}, \beta: G \rightarrow \mathcal{B}, \gamma: G \rightarrow \mathcal{C}$. A 3 -net realizes the group G, if for all $a, b, c \in G$ we have

$$
a \cdot b=c \quad \Longleftrightarrow \quad \alpha(a), \beta(b), \gamma(c) \text { meet in one point. }
$$

Dual 3-nets in PG(2, $\mathbb{K})$ coordinatized by a group

Classes of points: $\mathcal{A}, \mathcal{B}, \mathcal{C}$.
Group: $G=(G, \cdot)$.
Bijective maps: $\alpha: G \rightarrow \mathcal{A}, \beta: G \rightarrow \mathcal{B}, \gamma: G \rightarrow \mathcal{B}$.
A dual 3-net realizes a group G, if for all $a, b, c \in G$ we have

$$
a \cdot b=c \quad \Longleftrightarrow \quad \alpha(a), \beta(b), \gamma(c) \text { are collinear points. }
$$

$$
Q=\{1,2,3,4,5\}
$$

$$
Q=\{1,2,3,4,5\}
$$

$Q=\{1,2,3,4,5\}$

$$
Q=\{1,2,3,4,5\}
$$

$*$	1	2	3	4	5
1					
2			4		
3					
4					
5			1		5
Latin square					

Latin square $\longleftrightarrow(Q, *)$ quasigroup.

Cross-ratio

Theorem (Korchmáros, Nagy, Pace, 2013)

A 4-net in PG(2, $\mathbb{K})$ has a constant cross-ratio.

Cross-ratio

Theorem (Korchmáros, Nagy, Pace, 2013)

A 4-net in PG(2, $\mathbb{K})$ has a constant cross-ratio.

Cross-ratio

Theorem (Korchmáros, Nagy, Pace, 2013)

A dual 4 -net in $\mathrm{PG}(2, \mathbb{K})$ has a constant cross ratio, that is, for any line intersecting the components, the cross-ratio of the four intersection points is constant.

Transversal line

The ℓ line is a transversal of a $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) 3$-net, if ℓ intersect all the lines of the 3 -net in the total n points.

Transversal line
The ℓ line is a transversal of a $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) 3$-net, if ℓ intersect all the lines of the 3 -net in the total n points.

Theorem (B., Korchmáros, Nagy, 2014)
Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ be a 3 -net of order n in $\operatorname{PG}(2, \mathbb{K})$. Assume that ℓ is a transversal. Then there is a scalar κ such that for all $P \in \ell \cap \lambda\left(P=m_{1} \cap m_{2} \cap m_{3}, m_{1} \in \lambda_{1}, m_{2} \in \lambda_{2}, m_{3} \in \lambda_{3}\right)$, the cross-ratio of the lines $\ell, m_{1}, m_{2}, m_{3}$ is κ.

Transversal line

The ℓ line is a transversal of a $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) 3$-net, if ℓ intersect all the lines of the 3 -net in the total n points.

Theorem (B., Korchmáros, Nagy, 2014)
Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ be a 3 -net of order n in $\operatorname{PG}(2, \mathbb{K})$. Assume that ℓ is a transversal. Then there is a scalar κ such that for all $P \in \ell \cap \lambda\left(P=m_{1} \cap m_{2} \cap m_{3}, m_{1} \in \lambda_{1}, m_{2} \in \lambda_{2}, m_{3} \in \lambda_{3}\right)$, the cross-ratio of the lines $\ell, m_{1}, m_{2}, m_{3}$ is κ.

Theorem (B., Korchmáros, Nagy, 2014)

Let $\Lambda=\left(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$ a dual 3 -net of order n in PG($\left.2, \mathbb{K}\right)$. Assume that Λ is in perspective position with respect to point T. Then there is a scalar κ such that for all lines ℓ through T, the cross-ration of the points $T, \ell \cap \Lambda_{1}, \ell \cap \Lambda_{2}, \ell \cap \Lambda_{3}$ is κ.

Classification of dual 3-nets

Classification of dual 3-nets

- Algebraic: its points are on a cubic curve.

Classification of dual 3-nets

- Algebraic: its points are on a cubic curve.
- Proper algebraic

Classification of dual 3-nets

- Algebraic: its points are on a cubic curve.
- Proper algebraic
- Conic-line type

Classification of dual 3-nets

- Algebraic: its points are on a cubic curve.
- Proper algebraic
- Conic-line type
- Regular
- Regular: its components lie on three lines.

Classification of dual 3-nets

- Algebraic: its points are on a cubic curve.
- Proper algebraic
- Conic-line type
- Regular

- Regular: its components lie on three lines.
- Triangular: the three lines form a triangle.

Classification of dual 3-nets

- Algebraic: its points are on a cubic curve.
- Proper algebraic
- Conic-line type
- Regular

- Regular: its components lie on three lines.
- Triangular: the three lines form a triangle.
- Pencil type: the three lines are concurrent.

Classification of dual 3-nets

- Algebraic: its points are on a cubic curve.
- Proper algebraic
- Conic-line type
- Regular

- Regular: its components lie on three lines.
- Triangular: the three lines form a triangle.
- Pencil type: the three lines are concurrent.
- Tetrahedron type: its components lie on the sides of a non-degenerate quadrangle (sides and diagonals).

Regular and tetrahedron type dual 3-nets

Theorem (B., Korchmáros, Nagy, 2014)
Any regular dual 3 -net in perspective position is of pencil type.

Pencil type dual 3-net doesn't exist in zero characteristic.
In positive characteristic they only exist when the order of the dual 3 -net is divisible by the characteristic.

Theorem (B., Korchmáros, Nagy, 2014)
No regular dual 3 -net in perspective position exists in zero characteristic. This holds for dual 3 -nets in positive characteristic whenever the order of the 3 -net is smaller than the characteristic.

Theorem (B., Korchmáros, Nagy, 2014)

No tetrahedron type dual 3-net in perspective position exists in zero characteristic. This holds for dual 3 -nets in positive characteristic whenever the order of the 3 -net is smaller than the characteristic.

Theorem (B., Korchmáros, Nagy, 2014)

No tetrahedron type dual 3-net in perspective position exists in zero characteristic. This holds for dual 3 -nets in positive characteristic whenever the order of the 3 -net is smaller than the characteristic.

Proposition (B., Korchmáros, Nagy, 2014)

Let \mathbb{K} be an algebraically closed field whose characteristic is zero or greater than n. Then no dual 4 -net of order n embedded in $\mathrm{PG}(2, \mathbb{K})$ has a derived dual 3 -net which is either triangular or of tetrahedron type.

Conic-line type dual 3-nets

Conic-line type dual 3-nets

Proj. coord. system: $T=(0,0,1), \ell: Z=0, \mathcal{C}: X Y=Z^{2}$. It can be shown, the Λ has a parametrization with $n^{\text {th }}$ root of unity:

$$
\Lambda_{2}=\left\{\left(c, c^{-1}\right),\left(c \xi, c^{-1} \xi^{-1}\right), \ldots,\left(c \xi^{n-1}, c^{-1} \xi^{-n+1}\right)\right\},
$$

where $c \in \mathbb{K}^{*}$ and ξ is a $n^{\text {th }}$ root of unity in \mathbb{K}.
The $u:(x, y) \mapsto(-x,-y)$ perspectivity takes Λ_{2} to Λ_{3} :

$$
\Lambda_{3}=\left\{\left(-c,-c^{-1}\right),\left(-c \xi,-c^{-1} \xi^{-1}\right), \ldots,\left(-c \xi^{n-1},-c^{-1} \xi^{-n+1}\right)\right\} .
$$

If n is even, then $\xi^{n / 2}=-1$. If n is odd then

$$
\Lambda_{1}=\left\{\left(c^{-2}\right),\left(c^{-2} \xi\right), \ldots,\left(c^{-2} \xi^{n-1}\right)\right\} .
$$

Conic-line type dual 3-nets

Proj. coord. system: $T=(0,0,1), \ell: Z=0, \mathcal{C}: X Y=Z^{2}$. It can be shown, the Λ has a parametrization with $n^{\text {th }}$ root of unity:

$$
\Lambda_{2}=\left\{\left(c, c^{-1}\right),\left(c \xi, c^{-1} \xi^{-1}\right), \ldots,\left(c \xi^{n-1}, c^{-1} \xi^{-n+1}\right)\right\},
$$

where $c \in \mathbb{K}^{*}$ and ξ is a $n^{\text {th }}$ root of unity in \mathbb{K}.
The $u:(x, y) \mapsto(-x,-y)$ perspectivity takes Λ_{2} to Λ_{3} :
$\Lambda_{3}=\left\{\left(-c,-c^{-1}\right),\left(-c \xi,-c^{-1} \xi^{-1}\right), \ldots,\left(-c \xi^{n-1},-c^{-1} \xi^{-n+1}\right)\right\}$.
If n is even, then $\xi^{n / 2}=-1$. If n is odd then

$$
\Lambda_{1}=\left\{\left(c^{-2}\right),\left(c^{-2} \xi\right), \ldots,\left(c^{-2} \xi^{n-1}\right)\right\} .
$$

Lemma

For n odd, the above $\left(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$ conic-line type dual 3-net is in perspective position with center T.

Theorem (B., Korchmáros, Nagy, 2014)

Let \mathbb{K} be an algeraically closed field of characteristic zero or greater than n. Then every conic-line type dual 3 -net of order n in $\operatorname{PG}(2, \mathbb{K})$ in perspective position is projectively equivalent to the example given on the previous slide.

Theorem (B., Korchmáros, Nagy, 2014)

Let \mathbb{K} be an algeraically closed field of characteristic zero or greater than n. Then every conic-line type dual 3 -net of order n in $\operatorname{PG}(2, \mathbb{K})$ in perspective position is projectively equivalent to the example given on the previous slide.

Proposition (B., Korchmáros, Nagy, 2014)

Let \mathbb{K} be an algeraically closed field of characteristic zero or greater than n. Then no dual 4 -net of order n in $\operatorname{PG}(2, \mathbb{K})$ has a derived dual 3 -net of conic-line type.

Proper algebraic dual 3-net
$\Lambda=\left(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$ lies on Γ irreducible cubic curve.
Suppose: $\operatorname{char}(\mathbb{K}) \notin\{2,3\}$.

shape of Γ	\# of infl. points	canonical form
nonsingular	9	$Y^{2}=X(X-1)(X-c)$
node	3	$Y^{2}=X^{3}$
cusp	1	$Y^{2}=X^{3}+X^{2}$

j-invariant

The j-invariant classifies elliptic curves up to isomorphism.
j-invariant
If a cubic curve Γ can be trasformed into the form

$$
Y^{2}=X(X-1)(X-c)
$$

then the j-invariant of the curve is

$$
j(\Gamma)=2^{8} \frac{\left(c^{2}-c+1\right)^{3}}{c^{2}(c-1)^{2}}
$$

Theorem (B., Korchmáros, Nagy, 2014)

Let \mathbb{K} be an algebraically closed field of characteristic different from 2 and 3. Let $\Lambda=\left(\Lambda_{1}, \Lambda_{2} \Lambda_{3}\right)$ be a dual 3 -net of order $n \geq 7$ in $\mathrm{PG}(2, \mathbb{K})$ which lies on an irreducible cubic curve Γ. If Γ is singular or is nonsingular with $j(\Gamma) \neq 0$ then Λ is not in perspective position. If $j(\Gamma)=0$ then there are at most three point T_{1}, T_{2}, T_{3} such that Λ is in perspective position with center T_{i}.

Theorem (B., Korchmáros, Nagy, 2014)

Let \mathbb{K} be an algebraically closed field of characteristic different from 2 and 3. Let $\Lambda=\left(\Lambda_{1}, \Lambda_{2} \Lambda_{3}\right)$ be a dual 3 -net of order $n \geq 7$ in $\mathrm{PG}(2, \mathbb{K})$ which lies on an irreducible cubic curve Γ. If Γ is singular or is nonsingular with $j(\Gamma) \neq 0$ then Λ is not in perspective position. If $j(\Gamma)=0$ then there are at most three point T_{1}, T_{2}, T_{3} such that Λ is in perspective position with center T_{i}.

Proposition (B., Korchmáros, Nagy, 2014)
Let \mathbb{K} be an algebraically closed field, such that char $(\mathbb{K}) \notin\{2,3\}$. Then no dual 4 -net of order $n \geq 7$ in $\operatorname{PG}(2, \mathbb{K})$ has a derived dual 3 -net lying on a plane cubic.

Summary

Theorem (B., Korchmáros, Nagy, 2014)

Let Γ be a dual 3 -net of order n coordinatized by a group. Assume that Λ is embedded in a projective plane $\mathrm{PG}(2, \mathbb{K})$ over an algebraically closed field witk $\operatorname{char}(\mathbb{K})=0$ or $\operatorname{char}(\mathbb{K})>n$. If Λ is in perspective position and $n \neq 8$ then one of the following two cases occur:
(i) A component of \wedge lies on a line whilethe other two lie on a nonsingular conic.
(ii) Λ is contained in a nonsingular cubic curve \mathcal{C} with zero $j(\mathcal{C})$-invariant, and Λ is in perspective position with at most three center.

Summary

Theorem (B., Korchmáros, Nagy, 2014)

Let Γ be a dual 3 -net of order n coordinatized by a group. Assume that Λ is embedded in a projective plane $\mathrm{PG}(2, \mathbb{K})$ over an algebraically closed field witk $\operatorname{char}(\mathbb{K})=0$ or $\operatorname{char}(\mathbb{K})>n$. If Λ is in perspective position and $n \neq 8$ then one of the following two cases occur:
(i) A component of \wedge lies on a line whilethe other two lie on a nonsingular conic.
(ii) Λ is contained in a nonsingular cubic curve \mathcal{C} with zero $j(\mathcal{C})$-invariant, and Λ is in perspective position with at most three center.

Thank you for your attention!

Cubic curve

Addition on cubic curve

Let Γ be a cubic curve and let Γ^{*} be the set of its smooth points. Let $O \in \Gamma^{*}$ be a fixed point. In this case we can define the sum of $A, B \in \Gamma^{*}$ points:

Cubic curve

Addition on cubic curve

Let Γ be a cubic curve and let Γ^{*} be the set of its smooth points. Let $O \in \Gamma^{*}$ be a fixed point. In this case we can define the sum of $A, B \in \Gamma^{*}$ points:

Cubic curve

Addition on cubic curve

Let Γ be a cubic curve and let Γ^{*} be the set of its smooth points.
Let $O \in \Gamma^{*}$ be a fixed point. In this case we can define the sum of $A, B \in \Gamma^{*}$ points:

Cubic curve

Theorem

Let Γ be a cubic curve and let Γ^{*} be the set of its smooth points. Let $O \in \Gamma^{*}$ be a fixed point. Then $\left(\Gamma^{*},+, O\right)$ is an abelian group.

Theorem

(1) If Γ : $Y=X^{3}$, then $\left(\Gamma^{*},+\right) \cong(K,+)$.
(2) If $\Gamma: Y^{2}=X^{3}$, then $\left(\Gamma^{*},+\right) \cong(K,+)$.
(3) If $\Gamma: Y^{2}=X^{3}+X^{2}$, then $\left(\Gamma^{*},+\right) \cong\left(K^{*}, \cdot\right)$.

Classification theorem

Theorem

In $\mathrm{PG}(2, \mathbb{K})$ defined over an algebraically closed field \mathbb{K} of characteristic $p \geq 0$, let $\Lambda=\left(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$ be a dual 3-net of order $n \geq 4$ which realizes a group G. If either $p=0$ or $p>n$ then one of the following holds.
(i) G is cyclic or direct product of two cyclic groups and Λ is algebraic.
(ii) G is dihedral and Λ is of tetrahedron type.
(iii) G is the quaternion group of order 8 .
(iv) G has order 12 and is isomorphic to A_{4}.
(v) G has order 24 and is isomorphic to S_{4}.
(vi) G has order 60 and is isomorphic to A_{5}.

