
ON THE MULTIPLICATION GROUPS OF SEMIFIELDS

GÁBOR P. NAGY

Abstract. We invesitage the multiplicative loops of finite semifields.
We show that the group generated by the left and right multiplication
maps contains the special linear group. This result solves a BCC18
problem of A. Drápal. Moreover, we study the question whether the big
Mathieu groups can occur as multiplication groups of loops.

1. Introduction

A quasigroup is a setQ endowed with a binary operation x·y such that two
of the unknowns x, y, z ∈ Q determines uniquely the third in the equation
x · y = z. Loops are quasigroups with a unit element. The multiplication
tables of finite quasigroups are Latin squares. The multiplication tables of
finite loops are normalized Latin squares, that is, in which the first row and
column contain the symbols {1, . . . , n} in increasing order. The left and
right multiplication maps of a loop (Q, ·) are the bijections La : x 7→ a · x
and Ra : x 7→ x ·a, respectively. These are precisely the permutations which
are given by the rows and columns of the corresponding Latin square. The
group generated by the left and right multiplication maps of a loop Q is the
multiplication group Mlt(Q).

Loops arise naturally in geometry when coordinatizing point-line inci-
dence structures. Most importantly, any projective plane can be coordina-
tized by a planar ternary ring (PTR), having an additive and a multiplicative
loop, cf. [De68]. A special case of PTRs is the class of (pre-)semifields, where
the addition is associative and both distributivities hold. More precisely, a
pre-semifield is a set S endowed with two binary operations x+ y and x ◦ y
such that the addition is an elementary Abelian group with neutral element
0, S∗ = S \ {0} is a multiplicative quasifield and the two operations sat-
isfy both distributive laws. A semifield is a pre-semifield with multiplicative
unit element, that is, where (S∗, ◦) is a loop. Semifields are sometimes called
non-associative division rings, as well.

The most known proper semifield is the division ring of the real octonions
O and its complex counterpart O(C). Both are alternating algebras of di-
mension 8 over the ground field. On the one hand, a disadventage of the
complex octonions is that they contain zero divisors. On the other hand,
it can be constructed over an arbitrary field F , and, the set of invertible
elements form a loop in all cases. It is well known that these structures play
an important role in the understanding of the orthogonal group O+(8, F )
and its triality automorphism. In fact, O+(8, F ) is the multiplication group
of the loop of the invertible elements of O(F ). Moreover, the automor-
phism group of O(F ) is the exceptional Lie group G2(F ). This fact explains
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the natural 7-dimensional orthogonal representation of G2(F ). Concerning
these and other basic properties of octonions, we refer the reader to [CS03].

Any finite semifield S defines a loop whose multiplication group is con-
tained in GL(n, q) where Fq is the center of S. The center Z(S∗) of S∗
is isomorphic to F∗q , hence for the multiplication group of the factor loop
Q = S∗/Z(S∗), we have Mlt(Q) ≤ PGL(n, q). Conversely, let (Q, ·) be a
loop and assume that for some n, q, its multiplication group is contained in
the group ΓL(n, q), where the latter is considered as a permutation group
acting on the nonzero vectors of V = Fnq . Then, we can identify Q with
V ∗ = V \ {0} and consider V = (V,+, ·) as endowed with two binary opera-
tions, where 0 · x = x · 0 = 0. The fact that the left and right multiplication
maps are additive is equivalent with V being a semifield.

In this paper, we investigate the following problem: Let G be a finite
permutation group on the set Q. Is there a loop operation x · y on Q such
that Mlt(Q) ≤ G? In particular, we are interested in the cases where G is a
projective linear group or a big Mathieu group. Concerning this question,
the most general results are due to A. Vesanen [Ve95] and A. Drápal [Dr02],
who showed that (a) if Mlt(Q) ≤ PΓL(2, q) (q ≥ 5), then Q is a cyclic group,
and, (b) the answer is negative for the groups PSp(2n, q) (n ≥ 2), PU(n, q2)
(n ≥ 6), PO(n, q) (n ≥ 7 odd), and POε(n, q) (n ≥ 7− ε even). Recall that
for the loop Q of units of O(Fq) modulo the center, Mlt(Q) = PΩ+(8, q).

In [Ca03, Problem 398], A. Drápal asked the above question in the fol-
lowing formulation: Given n ≥ 3 and a prime power q, does there exist a
normalized Latin square such that for the group G generated by the rows
and the columns, PSL(k, q) ≤ G ≤ PΓL(k, q) holds? We answer this ques-
tion affirmatively when qn > 8. Our construction uses multiplicative loops
of semifields and it is unique in the the following sense. Let Q be a finite
loop such that PSL(n, q) ≤ M(Q) ≤ PGL(n, q). Then there is a semifield
S with center Fq and dimension n over Fq such that Q ∼= S∗/Z(S∗).

2. On transitive linear groups

Let p be a prime, V = Fdp, and Γ = GL(d, p). Let G ≤ Γ be a subgroup
acting transitively on V ∗ = V \ {0}. Then G0 E G ≤ NΓ(G0), where we
have one of the following possibilities for G0 (cf. [Ca99, Section 7.3]):

Case Cond. on p Cond. on d G0

(I) p arbitrary e|d SL(d/e, pe)
(II) p arbitrary e|d, d/e even Sp(d/e, pe)
(III) p = 2 d = 6e G2(pe)
(IV) p ∈ {2, 3, 5, 7, 11, 23, 19, 29, 59} d ∈ {2, 4, 6} sporadics

(I)-(III) are three infinite classes of transitive linear groups, the others
are sporadic constructions. There are 25 sporadic cases, the largest group
in this class has order 12 096. Using the computer algebra software GAP4
[GAP4], the followsing result can easily be checked:

Lemma 2.1. No sporadic finite transitive linear groups can be the group of
multiplications of a finite loop. �
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Proposition 2.2. Let S be a finite semifield of dimension n over its center
Fq. Let G be the group of multiplications of the multiplicative loop S∗. Then
SL(n, q) ≤ G ≤ GL(n, q).

Proof. Let the socle G0 of G be SL(n0, r), Sp(n0, r) or G2(r). Then G ≤
ΓL(n0, r) and Fr is a normal subfield of S. The generalized Cartan-Brauer-
Hua theorem ([Gr83, Lemma 1.1]) implies that Fr is central in S, hence r = q,
n0 = n and G ≤ GL(n, q). Let us assume that G0 = Sp(n, q) or G0 = G2(q).
In the latter case n = 6 and q is even, hence G2(q) < Sp(6, q). Indeed, for
q even, the 6-dimensional representation of the exceptional Lie group G2(q)
is constructed from its natural 7-dimensional orthogonal representation by
using the isomorphism O(7, q) ∼= Sp(6, q), cf [Ta92, Theorem 11.9]. Thus, in
both cases, the multiplication group of the central factor loop Q = S∗/Z(S∗)
is contained in PSp(n, q). This contradicts [Ve95, Theorem S]. �

Proposition 2.3. Let n ≥ 3 be an integer and q a prime power such that
qn > 8. Then, there is a semifield S such that the multiplication group G of
S∗ satisfies SL(n, q) ≤ G ≤ GL(n, q).

Proof. By Proposition 2.2, we only have to present a semifield which has
dimension n over its center Fq. We distinguish between three cases: (1)
q ≥ 3, (2) q = 2 and n is odd, and (3) q = 2 and n is even.

In case (1), we can use Albert’s twisted fields [Al61]. Let F be the finite
field Fqn . Let θ : x 7→ xq and σ : x 7→ xq

n−1
be automorphisms of F and

c ∈ F such that c = xq−1 has no solution in F . As in [Al61], the semifield
S = (F,+, ∗) is defined using the quadruple (F, θ, σ, c) . As n ≥ 3, θ 6= σ
and we can use [Al61, Theorem 1] to deduce that the center of S is Fq.

In case (2), we construct a proper binary semifield S = (F,+, ∗) of Knuth’s
type from the fields F = F2n , F0 = F2 and F0-linear map f : F → F0. As
in [Kn65b, Section 2], we first define x ◦ y = xy + (f(x)y + f(y)x)2 and put
x∗y = (x/1)◦ (y/1) where x/1 is given by (x/1)◦1 = x. Let z be a nonzero
element of Z(S,+, ∗). Then (x◦1)∗ ((y ◦1)∗z) = ((x◦1)∗ (y ◦1))∗z implies

x ◦ (y ◦ z/1)/1 = (x ◦ y)/1 ◦ z/1.
We define the maps α, β : S→ S by

α(u) = (u ◦ z/1)/1, β(u) = u/1 ◦ z/1.
Then the above equation has the form

x ◦ α(y) = β(x ◦ y),

and the triple (id, α, β) defines an autotopism of the pre-semifield (F,+, ◦).
By [Kn65b, Theorem 6], α(u) = z′u for some z′ ∈ F0. As α 6= 0, this implies
z′ = 1 and α = id. Thus,

u ◦ 1 = α(u) ◦ 1 = u ◦ z/1 =⇒ 1 = z/1
=⇒ z = 1 ◦ 1 = 1 + (2f(1))2 = 1.

Hence, Z(S) consists of 0 and 1.
In case (3), put F = F2n/2 and pick elements f, g ∈ F such that y3 + gy+

f 6= 0 for all y ∈ F . Define the multiplication on S = F + λF by

(a+ λb)(c+ λd) = (ac+ bσdτ
2
f) + λ(bc+ aσd+ bσdτg),
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where xσ = x2 and τ = σ−1. As n ≥ 4, σ 6= id and by [Kn65a, Section 7.4],
S is a semifield with unit element 1 = 1 + λ · 0. Assume that a+ λb ∈ Z(S).
If c ∈ F such that cσ 6= c then

ac+ λ(bc) = (a+ λb)c = c(a+ λb) = ac+ λ(cσb)⇐⇒ b = 0.

Furthermore,
λa = aλ = λaσ ⇐⇒ a = aσ ⇐⇒ a ∈ F2.

This shows Z(S) = F2. �

Remarks: It is an easy exercise to show that a semifield cannot have
dimension 2 over its center. Moreover, it is also easy to see that no proper
semifield of order 8 exists.

3. The main results on multiplication groups of semifields

The first part of the following theorem gives a general affirmative answer
to Drápal’s problem. The second part of the theorem is a partial converse
of our construction based on semifields. The proof of this part is basically
contained in the proof of [Ve95, Theorem S]. However, as it is not formu-
lated in this way, we present a self-contained proof, using a slightly different
notation.

Theorem 3.1. (a) For any integer n ≥ 3 and prime power q with qn >
8, there is a loop Q such that PSL(n, q) ≤ Mlt(Q) ≤ PGL(n, q).

(b) Let Q be a loop such that Mlt(Q) ≤ PGL(n, q) with n ≥ 3. Then
there is a semifield S of dimension n over its center Fq such that
Q ∼= S∗/Z(S∗).

Proof. Part (a) follows immediately from Proposition 2.2 and 2.3. Let Q
be a loop with multiplication group G = Mlt(Q) ≤ PGL(n, q). We simply
put F = Fq and write the elements of Q = PG(n − 1, q) in the form xF
with x ∈ Fn \ {0}. Let us denote the unit element of Q by eF . For any
element xF , the left and right translations LxF , RxF are represented by n×n
matrices over F and we assume LeF = ReF = I. We have

(xF ) · (yF ) = (xRyF )F = (yLxF )F,

and for all vectors x, y there is a unique nonzero scalar cx,y with

(1) xRyF = yLxF · cx,y.

Clearly, cλx,y = λcx,y holds. For any x, y, z with x + y 6= 0, the following
yields:

zL(x+y)F · cx+y,z = (x+ y)RzF = xRzF + yRzF = zLxF · cx,z + zLyF · cy,z.

Let us now fix the elements x, y with x+ y 6= 0 and define the matrices

U = L(x+y)FL
−1
xF , V = LyFL

−1
xF

and the scalars
α(z) =

cx,z
cx+y,z

, β(z) =
cy,z
cx+y,z

.
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By [Ve95, Lemma A], α(z) and β(z) are nonzero constants; in particular,
α(z) = α(e) and β(z) = β(e). Thus, for any x, y ∈ Fn \ {0} with x+ y 6= 0,
we have

(2) L(x+y)F · cx+y,e = LxF · cx,e + LyF · cx,e.

Let us now consider the set

L = {0} ∪ {αLxF | α ∈ F ∗, x ∈ Fn \ {0}}

of matrices. L is closed under addition. Indeed, for fixed nonzero scalars
α, β and vectors x, y, there are unique scalars λ, µ in F such that cλx,e = α,
cµy,e = β. Then either αLxF + βLyF = 0 ∈ L or by (2),

αLxF + βLyF = cλx,eLxF + cµy,eLyF = cλx+µy,eL(λx+µy)F ∈ L.

We make the vector space V = Fn into a semifield in the following way.
Denote by Tx the element cx,eLxF of L. Then by (1),

eTx = eLxF · cx,e = xReF = x.

For x, y ∈ V , define x ◦ y = yTx.
Claim 1: (V \ {0}, ◦) is a loop with unit element e.
Clearly, Te is the identity matrix, hence e ◦ x = xTe = x. x ◦ e = eTx = x

by definition. The equation x ◦ y = z has a unique solution y = zT−1
x in

y. Let us fix nonzero vectors y, z and take an element x0 ∈ V such that
(x0F )(yF ) = zF , that is, yLx0F = αz for some α ∈ F . Then α−1 = cλx0,e

for some nonzero scalar λ. With x = λx0, we have Tx = α−1Lx0F and
z = yTx = x ◦ y.

Claim 2: (V,+, ◦) is a semifield.
Since the left multiplication maps of V are the Tx’s, we have left distribu-

tivity. Moreover, as L is closed under addition, for any x, y ∈ V there is
a unique z such that Tx + Ty = Tz. Applying both sides to e, we obtain
z = x+ y. Therefore,

(x+ y) ◦ z = zTx+y = z(Tx + Ty) = zTx + zTy = x ◦ z + y ◦ z.

Claim 3: The loop Q is the central factor of V .
Let I denote the identity matrix on V . Then for all α ∈ F , αI = Tαe ∈ L.

Using a trick as above, one can show that Tλx = λTx, which implies that
(λx) ◦ y = λ(x ◦ y). This means that the right multiplication maps are in
GL(V ), as well. In particular, the multiplication maps corresponding to the
elements λe are centralized by all left and right multiplication maps, thus,
λe ∈ Z(V ) for all λ ∈ F . By

(x ◦ y)F = (yTx)F = (yLxF )F = (xF )(yF ),

the map ϕ : x → xF is a surjective loop homomorphism. The kernel of ϕ
consists of the elements λe, thus, kerϕ is central in V . Since PSL(n, q) ≤
Mlt(Q) acts primitively, Q is a simple loop and the kernelK of the homomor-
phism is a maximal normal subloop. This proves that kerϕ = Z(V ∗). �
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4. Mathieu groups as multiplication groups of loops

In [Dr02], A. Drápal made some remarks on the question whether the
Mathieu group can occur as multiplication groups of loops. As noted, there
it is rather straigthforward to show that the small Mathieu groups M10,M11

are not the multiplication groups of loops. Moreover, extensive computer
calculation showed that the same holds for the big Mathieu groups M22 and
M23. For M22, the computation was independently repeated in [MN09]. The
author of this paper performed an independent verification on M23 which
gave the same result as Drápal had.

The computation was implemeted in the computer algebra GAP4 [GAP4].
In order to reduce the CPU time we used some tricks. First of all, let L be
an n ×n normalized Latin square and let A = {a1, . . . , an}, B = {b1, . . . , bn}
be the permutations defined by the rows and columns of L, in order. Then
a1 = b1 = id, 1ai = 1bi = i and aibja

−1
i b−1

j leaves 1 fixed. Conversely,
assume that A,B are sets of permutations of degree n such that

(T1) id ∈ A,B,
(T2) for all i ∈ {1, . . . , n} there are unique elements a ∈ A, b ∈ B such

that i = 1a = 1b, and,
(T3) for all a ∈ A, b ∈ B, aba−1b−1 leaves 1 fixed,

then a normalized Latin square can be constructed such that the rows and
columns of L determine the elements of A and B. Indeed, for any i, j ∈
{1, . . . , n}, the jth element of the ith row will be ja, where a is the unique
element of A with 1a = i.

Let A,B be sets of permutations of degree n satisfying (T1)-(T3) and put
G = 〈A,B〉. Then, the following pairs of sets satisfy (T1)-(T3) as well:

(a) B,A;
(b) Ah, Bh, where h ∈ G1;
(c) Au−1, uBu−1, where u ∈ A;
(d) vAv−1, Bv−1, where v ∈ B.

This implies the following

Lemma 4.1. Let L be a Latin square of order n and assume that the rows
and columns generate the group G. Let a be an arbitrary row of L. Then
for any a∗ ∈ aG ∪ (a−1)G there is a Latin square L∗ such that a∗ is a row of
L∗ and the rows and columns of L∗ generate G.

Proof. Let A,B denote the sets of permutations given by the rows and
columns of L. If a∗ = a−1 then define L∗ from the sets A∗ = Aa−1, B∗ =
aBa−1. Thus, it suffices to deal with the case a∗ = ag. We can write
g = hv−1 where h ∈ G1, v ∈ B. The sets Ah, Bh determine a Latin square
Lh such that ah is a row of Lh. This means that we can assume that
a∗ = vav−1 where u ∈ A. It follows from (d) that vAv−1, Bv−1 determines
a Latin square L∗ with row a∗. In all cases, the rows and columns generate
G. �

Put G = M23 ≤ S23 such that {1, . . . , 7} is a block of the corresponding
Witt design D. Let us assume that L is a Latin square such that the rows A
and columns B generate G. Let a14, a15, a23 be elements of orders 14, 15 and
23 of G, respectively, mapping 1 to 2. Any fixed point free permutation x ∈
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G is conjugate to one of the following elements: a14, a15, a23, a
−1
14 , a

−1
15 , a

−1
23 .

By Lemma 4.1, we can assume that the second row of L is a14, a15 or a23.
Define X = {(1g, . . . , 7g) | g ∈ G}, |X| = 637 560.

On an office PC running GAP4 [GAP4], it takes about 72 hours to list all
7× 7 submatrices K which have the property that all rows and columns are
in X, with given first column and first and second rows. If the second row
is determined by a14 of a15 then the number of such submatrices is about
4000 and it takes 1 hour more to show that none of these submatrices can
be extended to a Latin square of order 23 such that the rows and columns
are in G. That is, about 150 hours of CPU time suffices to show that no
column or row of L can be of order 14 or 15. Thus, we can assume that all
rows and columns of L have order 23. Moreover, for any two rows x, y of
L, xy−1 has order 23, as well. About 3 hours of computation shows that
any Latin square with these properties must correspond to a cyclic group of
order 23.

We have therefore the following

Proposition 4.2. (a) There is no loop Q of order 10 or 22 such that
Mlt(Q) ≤M10 or Mlt(Q) ≤M22.

(b) Let Q be a loop of order 11 or 23 such that Mlt(Q) ≤ M11 or
Mlt(Q) ≤M22. Then Q is a cyclic group.

(c) There are loops Q1 and Q2 of order 12 and 24 such that Mlt(Q1) =
M12 and Mlt(Q2) = M24.

Proof. The loop Q1 is Conway’s arithmetic progression loop given in [Co88,
Section 18]. Q1 is commutative and its automorphism group is transitive.
The multiplication table of the loop Q2 is given by the following:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

2 1 4 3 15 18 11 24 8 17 21 20 9 10 22 7 5 19 23 6 12 13 16 14

3 4 1 2 20 17 9 16 23 21 8 14 19 11 6 13 12 5 15 10 24 18 22 7
4 3 2 1 19 22 14 21 11 6 10 5 7 20 23 24 18 13 9 15 17 16 8 12

5 8 7 6 12 10 13 23 15 3 19 2 4 17 14 18 24 21 16 11 20 9 1 22

6 7 8 5 16 9 17 20 1 15 14 18 24 23 19 4 2 22 10 3 13 12 11 21
7 6 5 8 2 3 4 1 18 12 16 10 23 19 17 15 11 20 14 24 22 21 13 9

8 5 6 7 9 16 20 17 21 13 1 23 10 24 3 14 19 2 18 22 11 15 12 4
9 17 20 16 24 11 18 15 19 8 12 7 5 4 13 22 21 23 2 14 1 3 6 10

10 13 23 12 22 19 21 14 5 11 2 24 18 9 4 6 8 1 20 7 16 17 15 3

11 18 15 24 1 4 3 2 14 16 5 9 20 12 7 21 22 8 13 19 10 23 17 6
12 23 13 10 11 24 15 18 7 19 20 22 21 2 9 8 6 16 4 5 3 1 14 17

13 10 12 23 17 20 16 9 4 22 18 19 14 6 24 1 3 11 8 2 5 7 21 15
14 22 19 21 8 7 6 5 13 4 17 1 3 15 16 23 10 9 11 12 18 24 2 20
15 24 11 18 23 13 10 12 17 14 6 21 22 3 8 20 9 7 1 16 2 4 19 5
16 20 17 9 18 15 24 11 12 1 22 4 2 5 21 10 23 14 7 13 6 8 3 19

17 9 16 20 4 1 2 3 10 18 7 15 11 22 5 12 13 6 21 23 19 14 24 8
18 11 24 15 21 14 22 19 16 23 3 13 12 8 1 9 20 4 6 17 7 5 10 2

19 21 14 22 13 23 12 10 6 20 4 17 16 18 2 5 7 3 24 8 15 11 9 1
20 16 9 17 10 12 23 13 2 7 15 8 6 21 11 3 1 24 22 4 14 19 5 18
21 19 22 14 6 5 8 7 20 24 13 11 15 1 12 17 16 10 3 9 4 2 18 23
22 14 21 19 3 2 1 4 24 9 23 16 17 7 10 11 15 12 5 18 8 6 20 13

23 12 10 13 7 8 5 6 22 2 24 3 1 16 18 19 14 15 17 21 9 20 4 11
24 15 18 11 14 21 19 22 3 5 9 6 8 13 20 2 4 17 12 1 23 10 7 16

Q2 is noncommutative and |Aut(Q2)| = 5. �
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