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Introduction

The first impulse to study non-associative structures came in the first decades
of this century from the foundations of geometry, in particular from the
investigation of coordinate systems of non-Desarguesian planes. The interest
of W. Blaschke in the systematic treatment of loops and quasigroups was
motivated by topological questions of differential gemetry (1938). R. Baer
(1939), A.A. Albert (1943, 1944) and R.H. Bruck (1958) established the
theory of quasigroups and loops as an independent algebraic theory.

Beside the theory of abstract loops, in view of the deepness of the meth-
ods and result, the most developed part of the theory of loops is certainly
the theory of topological and differentiable loops. This field gained impor-
tance originally by the work of M.A. Akivis, V.V. Goldberg, K.H. Hofmann,
H. Salzmann and K. Strambach, the usefulness of analytic methods is shown
in the work of L.V. Sabinin, for a collected documentation see [CPS90]. Very
recent contributions to this field are the monographs [NS99] of P.T. Nagy
and K. Strambach (under preparation) and [Sab99] by L.V. Sabinin.

The main object of this dissertation is the category of algebraic commu-
tative Moufang loops. The adjective algebraic is used in the sense it is used
in the theory of algebraic groups: The underlying set of the loop under con-
sideration is an (affine) algebraic variety over an algebraically closed field K

and the loop operations are morphisms of algebraic varieties.
On the one hand, the richness of the analytic theory enables us to speak

of the Lie theory of some special loop classes (Moufang, Bruck, local Bol).
On the other hand, the theory of algebraic groups, built up along the same
lines as the theory of Lie groups in some sense, is one of the main branches of
group theory. This makes the fact that algebraic loops and quasigroups were
so far only sporadically investigated ([Ene94], [NS99, Section 11]) surprising.
The main aim of this dissertation is to start filling out this gap and to create
the foundations of the theory of algebraic loops. The first large obstacle is
the absence of properly formulated definitions and problem settings. For this
reason, we decided to restrict ourselves to the class of commutative Moufang
loops; an abstractly defined class with many useful properties and a rather
transparent structure.

In Chapter 1, we recall the basic definitions and properties of the theory
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INTRODUCTION 5

of abstract commutative Moufang loops and give some important expamles.

In Chapter 2, we first define the concept of an algebraic commutative
Moufang loop. After giving the (easy) generalizations of properties of al-
gebraic groups we prove that any algebraic commutative Moufang loop is
nilpotent (Theorem 2.1.6). This result determines the guide line of our inves-
tigations. Its immediate consequences are: the characteristic 3 of the ground
field K, the existence of algebraic factor loops (Corollaries 2.1.7 and 2.1.8)
and the description of the algebraic structure of the underlying variety of
the loop (Theorem 2.1.10). Later on, the study of central extensions of alge-
braic commutative Moufang loops leads to the complete classification of the
2-dimensional connected species of them (Theorem 2.3.4). Finally we prove
the main result of this chapter by showing that the multiplication group of an
algebraic commutative Moufang loop has a unique structure of an algebraic
transformation group, acting on the loop (Theorem 2.4.2).

Our next aim is to give a meaningful definition for the tangent algebra of
a commutative Moufang loop. The fact that the most important classes of
commutative topological Moufang loops are associative (cf. [HS90]) makes
this question more exciting. The solution is the idea of looking at commu-
tative Moufang loops as special cases of Bruck loops (instead of Moufang
loops).

In Chapter 3, we first consider the concept of restricted Lie triple systems
and prove a result concerning their embeddability in restricted Lie algebras
(Theorem 3.1.2). In the next step, we define the category of formal Bol loops
analogously to the theory of formal groups which was originally derived in
a natural way from the theory of classical Lie groups by S. Borchner. Our
approach to this field is the naive one in Dieudonné’s terminolgy ([Die73]).
Using methods of the theory of local analytic Bol loops we show that the
space of L- derivations of a formal Bol loop forms a (restricted if char K = 3)
Lie triple system (Proposition 3.3.4). At the end of the chapter, we relate
the infinitesimal Lie triple system of a formal Bruck loop with its formal
associator (Proposition 3.4.1); also this relation is motivated by methods of
local analytic Bruck loops.

In Chapter 4, we explain the localization process for algebraic Bol loops.
This process allows us to apply the results of the previous chapter in order
to obtain properties of the structure of the tangent algebra of an algebraic
commutative Moufang loop (Theorem 4.3.1). We also give a method of re-
covering the tangent L.t.s. of an algebraic commutative Moufang loop in the
tangent Lie algebra of its multiplication group (Proposition 4.2.3). Using
this method, we obtain an algebraic homomorphism of the group of inner
mappings of the loop in the (linear) group of automorphisms of the tangent
L.t.s. (Theorem 4.3.7). This homomorphism implies well expected results on
tangent spaces of closed normal and associator subloops (Propositions 4.3.8



6 INTRODUCTION

and 4.3.9).

After these results, it is natural to ask to what extent one can invert the
above functorial map from the category of algebraic commutative Moufang
loops to the category of restricted Lie triple systems. However, knowing the
complexity of analogous problem for algebraic groups, one cannot expect a
simple answer. Indeed, on the one hand, the “variety” of connected algebraic
commutative Moufang loops of dimension 2 is “infinite dimensional” (cannot
be parametrized with finitely many parameters), but any such has a trivial
tangent algebra of dimension 2.

On the other hand, Theorem 4.3.1 contains an infinite family of necessary
conditions for a restricted Lie triple system to be the tangent algebra of an
algebraic commutative Moufang loop. The first of these conditions says that
the ternary L.t.s. operation must alternate; an example on page 49 shows
that this property is not sufficient. It is not difficult to generalize this example
to show that no finite part of the family implies the rest.

In Chapter 5, we consider a modification of the aforementioned “invert-
ing problem”. The modification relies on the fact that in characteristic 0, the
classical Hausdorff-Campbell formula produces a 1-1 correspondence between
the category of formal groups and the category of Lie algebras. P. Cartier
[Car62] proved an analogous correspondence between the category of formal
groups of height 0 and the category of restricted Lie algebras in characteris-
tic p > 0. We generalize this last result by proving a functorial equivalence
between the category of formal Bruck loops of height 0 and the category of
restricted Lie triple systems in characteristic 3 (Theorem 5.3.1).

In Chapter 6, we consider a special class of algebraic commutative Mo-
ufang loops, namely the loop of units of a commutative alternative algebra.
Starting with a finite commutative Moufang loop, we construct a finite di-
mensional commutative alternative algebra as a factor of the loop ring. In
this way, we represent every finite commutative Moufang loop L modulo its
second associator subloop L′′ linearly (Theorem 6.3.5).

The most commonly used notations of this dissertations are:

L, . . . loops
G, . . . groups
λx left translation
λx,y inner mapping
(x, y, z), α(x, y, z) associator of loop elements
L′ associator subloop of L
Z(L) center of L
G(L) left translation group of L
N ⋉H semidirect product of the groups N and H
K algebraically closed field of definition
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K[L] ring of regular functions on L
K[[T 1, . . . , T n]] ring of formal power series in n

indeterminates over K

K[[X1, . . . , Xn, Y 1, . . . , Y n]] ring of formal power series in 2n
indeterminates over K

T ,X,Y n-tuples (T 1, . . . , T n), (X1, . . . , Xn) and
(Y 1, . . . , Y n)

Der(K[[T ]]) Lie algebra of derivations
PDer(K[[T ]]) space of point derivations
g, . . . Lie algebras of the groups G, . . .
l, . . . tangent algebras of the loops L, . . .
(x, y, z) ternary operation in Lie triple systems
A∗ loop of units of the alternative algebra A
[x, y], [x, y, z] commutator and associator brackets of

algebra elements
KL loop ring of L over the field K
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Chapter 1

Loop theoretical backgrounds

In this chapter, we recall those definitions and basic properties of the theory
of loops, which play an important rôle in our investigations. The abstract
class of commutative Moufang loops is the intersection of two larger loop
classes of great importance: the Moufang loops and the Bruck loops. Both
of these are subclasses of the classes of Bol loops. For introductory literature
on loops and on commutative Moufang loops see [Pfl90] and [Bru58].

The following principle is valid for the whole dissertation: It is not our
aim to work out all definitions and results in full generality, the basic objects
of our investigation are algebraic commutative Moufang loops. However, in
many cases the general formulation of the results was so evident and the extra
work with the definitions were so little that we gave way to the temptation.

Definition. The set L endowed with the binary operation “·” is a loop if
there is a unit element 1 ∈ L such that for all x ∈ L holds x = 1 · x = x · 1
and, furthermore, for any a, b, c, d ∈ L, the equations x · a = b, c · y = d have
unique solutions in x and y.

We denote the solutions by x = a\b and y = d/c. The property of the
unique solvability can be equivalently expressed by the identities

x · (x\y) = y, (x/y) · y = x, x\(x · y) = x, (x · y)/y = x. (1.1)

As one sees from the definition, loops are in some sense the non-associative
generalizations of groups. However, in general, interesting loop classes always
bear some weak form of associativity. The widest class of interest to us is
the class of Bol loops, defined by the identity

x · (y · xz) = (x · yx) · z. (1.2)

It is known that this identity implies 1/x = x\1 = x−1 and then the identity
x−1 · xy = y holds. In the following technical lemma we prove a kind of
converse of these facts.
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Lemma 1.0.1. Let L = (L, ·, (.)−1, 1) be a set, endowed with a binary, a
unary and a nullary operation, satisfying the identities

x · 1 = x = 1 · x, x−1 · xy = y and x · (y · xz) = (x · yx) · z.

Then, L is a Bol loop.

Proof. We only have to show that L is a loop. Let us define the operations

x\y = x−1y and x/y = y−1(yx · y−1)

and show that they satisfy the identities (1.1). Clearly, x−1x = x−1 · x1 = 1.
Let us now assume first that xy = xz for some elements x, y, z ∈ L. Then,
y = x−1 · xy = x−1 · xz = z. Therefore,

x−1 · (x · x−1y) = (x−1 · xx−1) · y = x−1y

implies the identity x ·x−1y = y. This proves x · (x\y) = y and x\(x · y) = x.
Moreover, using the Bol identity, we have

x/y · y = (y−1(yx · y−1)) · y
= y−1 · (yx · y−1y)
= y−1 · yx = x

and
(xy)/y = y−1 · ((y · xy) · y−1)

= y−1 · (y · x1) = x,

which finishes the proof of the lemma.
An important subclass of Bol loops is defined by the so called automorphic

inverse property
(xy)−1 = x−1y−1. (1.3)

The most common name of this class is Bruck loops (cf. [NS99]). For Bruck
loops, it can be useful to require an extra property, namely that the map
x 7→ x2 be a bijection of the underlying set L. Such loops are called B-loops
by G. Glauberman [Gla64] and 2-divisible Bruck loops by P.T. Nagy and K.
Strambach [NS99].

Let L be an abstract Bruck loop. For any element x, y ∈ L, we define

the (left) translation map λx(y) = xy,

and
the inner mapping λx,y(z) = (xy)−1(x · yz)

and the groups
G = G(L) = 〈λx : x ∈ L〉,
H = H(L) = 〈λx,y : x, y ∈ L〉
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generated by these maps. Clearly, the left translation group G(L) acts tran-
sitively on L, H ≤ G(L) is the stabilizer subgroup of the unit element 1 ∈ L
and the set

{λx : x ∈ L}

is a system of (left and right) coset representatives to H .
Now, we come to the definition of the loop class which will be the most

deeply investigated in this dissertation.

Definition. The loop (L, ·) is said to be an abstract commutative Moufang
loop (abbreviated CML), if for all x, y, z ∈ L,

(xy)(xz) = x2(yz) (1.4)

holds.

It is not completely immediate to see that these loops are commutative,
but one can show it rather quickly, using similar tricks as in the proof of
Lemma 1.0.1. Moreover, due to the commutativity, one has x/y = xy−1 and
x\y = x−1y. This means that CML’s can be axiomatized in the same way as
groups, but taking (1.4) instead of associativity.

In the rest of this chapter, L will denote an (abstract) commutative Mo-
ufang loop.

Let us denote by Fx,y the set of elements which are left fixed by λx,y. The
intersection of all these sets is the center of L, that is, the set

Z(L) = {z ∈ L|x · yz = xy · z ∀x, y ∈ L}.

In a CML, for an element z ∈ Z(L) the identities x · zy = xz · y and z · xy =
zx · y also hold for any x, y ∈ L. Clearly, Z(L) is a normal subgroup of L,
having many similarities to the center of a group. For example, we can speak
of lower central series of L.

Let us now define the associator map of a CML:

(x, y, z) = (x · yz)−1 · (xy · z).

For the subsets A,B,C of L, (A,B,C) denotes the subloop generated by
all the elements (a, b, c) with a ∈ A, b ∈ B and c ∈ C. The associator
subloop L′ = (L,L, L) is the smallest normal subloop of L such that L/L′

is an Abelian group. Now, we also can speak about the upper cental series
of L: L0 = L and Li+1 = (L,L, Li) for i > 0. L is nilpotent, if Li = 1 for
some i. Just like for groups, the lengths of upper and lower central series of
a nilpotent loop coincide (cf. [Bru58, Chapter VI]).

We enumerate the most important properties of abstract CML’s (see
[Bru58]).
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(L1) For all x ∈ L, x3 ∈ Z(L).

(L2) The associator map alternates in the sense that (y, x, z) = (x, y, z)−1,
(x, z, y) = (x, y, z)−1 and (xn, y, z) = (x, y, z)n for n ∈ Z.

(L3) The inner mapping

λx,y : z 7→ (xy)−1 · (x · yz)

is an automorphism of L.

(L4) The loops L′ and L/Z(L) have exponent 3.

(L5) (Theorem of Bruck and Slaby.) Let L be an abstract CML which is
generated by n elements. Then L is nilpotent of class at most n− 1.

Item (L1) and (L4) imply that “interesting” CML’s have exponent 3, they
are therefore 2-divisible (Bruck loops, of course).

Item (L5) implies that finite CML’s are nilpotent. However, as the fol-
lowing example due to Bruck shows, there exist infinite CML’s with trivial
center.

Examples

Our first example is due to Bruck [Bru58]. Let K be a field of characteristic 3.
Let let us take the set S = {x0, x1, . . .} and let S̃ be the semigroup generated
by S, with neutral element x0. Let R be a vector space over K with basis S̃.
Define a multiplication on R by using the associative and distributive laws
to extend the following multiplication of elements of S:

x0xi = xi = xix0, xixj =







xixj if i < j
0 if i = j
−xjxi if i > j

.

Let V be the subspace of R with basis S = {x1, x2, . . .} and let R be the
exterior algebra of V over K. Define · on L = V × R by

(a, x) · (b, y) = (a + b, x+ y + (x− y)ab).

Then, (L, ·) is a CML. A direct calculation gives the inverse (a, x)−1 =
(−a,−x) and the associator

((a, x), (b, y), (c, z)) = (0, xbc+ yca+ zab).

This shows that L′ = (0, RV 2) is an Abelian group and L has solvability
class 2.

If |S| = n then the nilpotence class of L is ⌊n/2⌋, see [Bru58, Chapter
VIII.1]. If S is infinite, then Z(L) = {(0, 0)}. Indeed, taking an arbitrary
element (a, x) ∈ V ×R, a is a finite linear combination of elements xi1 . . . xim .
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Choosing xr, xs ∈ S such that ik < r < s holds for all ik occurring in x, one
has

((a, x), (xr, 0), (xs, 0)) = (0, xxrxs) 6= (0, 0).

The second example is due to Zassenhaus. Let K be a field of character-
istic 3 and define ”◦” on L = K

4 by







x0

x1

x2

x3






◦







y0

y1

y2

y3







=







x0 + y0 + (x1 − y1)(x2y3 − x3y2)
x1 + y1

x2 + y2

x3 + y3







Then, (L, ◦) is an (algebraic) commutative Moufang loop. If K is algebraically
closed, then

{(x0, x1, x
3
1, x

9
1) : x1, x2 ∈ K}

is a proper closed, connected subloop of dimension 2 which has dimension
two.

Our final example ([Nag99a]) is an algebraic proper (not Bruck and not
Moufang) Bol loop of exponent 3. Let K be again a field of characteristic 3
and let us define the following loop operation on K

4:







x1 + y1

x2 + y2

x3 + y3 + x1y2 − x2y1

x4 + y4 + (x1y2 − x2y1)(x3 − y3 + x1y2 − x2y1)






.

Then, (K4, ◦,−(.)) is a proper Bol loop of exponent 3.



Chapter 2

Algebraic commutative
Moufang loops

2.1 Algebraic CML’s

Definition. Let L be an algebraic variety over the algebraically closed field
K and an abstract loop L = (L, ·, /, \). We say that L is an algebraic loop if
the L× L→ L maps

(x, y) 7→ x · y, x/y, x\y

are morphisms of algebraic varieties.

One can say that the above definition defines algebraic loops in a wide
sense. A more restricted definition of algebraic quasigroups was given in
[Ene94], where one requires the right multiplication group of an algebraic
quasigroup Q to be an algebraic transformation group on Q. For the class of
algebraic loop we are investigating, we prove this property in Theorem 2.4.2.

The most general class of loops we are dealing with are Bol loops. Due to
Lemma 1.0.1, the category of algebraic Bol loops can be defined in the same
way than algebraic groups.

Definition. Let L be an algebraic variety over the algebraically closed field
K and an abstract Bol loop (L, ·, (.)−1) in the sense of Lemma 1.0.1. We say
that L is an algebraic Bol loop if the map

{
L× L→ L
(x, y) 7→ xy−1

is a morphism of algebraic varieties.

Clearly, for any subclass of Bol loop which is defined by identities in the
two loop operations we can define the corresponding class of algebraic loop.
Thus, we are able to speak of algebraic Bruck loops, algebraic Moufang loops

13



14 CHAPTER 2. ALGEBRAIC CML’S

or algebraic commutative Moufang loops. In contrast, the proper definition
of algebraic 2-divisible Bruck loops remains open.1

Now, subloops and homomorphisms of algebraic loops are defined in a
very obvious way: algebraic subloops are Zariski closed subvarieties, closed
under product and inverting and homomorphisms of algebraic loops are sup-
posed to be homomorphisms of loops and morphisms of algebraic varieties.
It is also clear that the kernel of an algebraic homomorphism is a closed
normal subloop, but the converse, namely that any closed normal subloop
occurs as kernel of an algebraic homomorphism, is not so obvious at all. We
will get around this difficulty in a way which can only be applied for centrally
nilpotent algebraic loops (Lemma 2.1.2).

In the sequel, L will always denote an algebraic CML (ACML for short)
over the algebraically closed field K. Many properties of algebraic groups can
be easily generalized for ACML’s. For example, the identity component L0

of L is a normal subloop such that L/L0 is finite. And, since the theory of
finite CML’s is rather elaborate, we will restrict ourselves to the case when
L = L0 is connected. Another property is that the center Z(L) is a closed
subgroup of L. Both of these properties follow from the fact that the map

{
L× L× L→ L
(x, y, z) 7→ λx,y(z)

is a morphism of varieties.
By definition, an algebraic group G is affine if the algebraic variety G is

affine, and is an Abelian variety if G is projective and irreducible. It is well
know that an Abelian variety is always an Abelian group (cf. [Sha94, Chap.
III, 4.3, Theorem 2.]). We have to modify slightly the proof to obtain the
same result for algebraic (commutative Moufang) loops.

Proposition 2.1.1. Let L be an algebraic commutative Moufang (Bol) loop
whose algebraic variety is projective and irreducible. Then L is an algebraic
Abelian group.

Proof. Consider the family of maps uz(x, y) = λx,y(z) from L × L to L
with base L. Obviously if e is the unit element we have ue(x, y) = e for all
(x, y) ∈ L×L, and hence by [Sha94, Chap. III, 4.3, Lemma], uz(L×L) is a
point for every z ∈ L. Hence uz(x, y) = uz(e, e) = z, and this means that L
is an Abelian group.
Remark. This proof, combined with the proof of [Sha94, Chap. III, 4.3,
Theorem 2.] imply the above result for any algebraic loop.

From now on, in the whole dissertation, without mentioning it, we will
consider only affine algebraic Bol loops.

1The reason for this is that to require the 2-division map x 7→ x

1

2 to be morphical

seems to be too strong.
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Lemma 2.1.2. Let L be an algebraic (commutative Moufang) loop let N be
a closed subgroup of the center Z(L) of L. Then, the factor variety L/N
exists and the factor loop has a uniquely defined structure of an algebraic
(commutative Moufang) loop.

Proof. The factor variety exists and is uniquely defined by [Ros56, Theorem
2].

Some theorems on subgroups of algebraic groups are easy to generalize for
Moufang loops. Lemmas 2.1.3 and 2.1.4 and Proposition 2.1.5 are analogons
of [Hum75, Lemma 7.4, Proposition 7.5 and Proposition 17.2], to obtain their
proofs only small modifications were needed.

Lemma 2.1.3. Let U, V be two dense open subsets of an algebraic CML L.
Then L = U · V .

Proof. Since inversion is an isomorphism of varieties, V −1 is again a dense
open set. So is its translate xV −1 (for any given x ∈ L). Therefore, U
must meet xV −1, u = xv−1 holds for some u ∈ U and v ∈ V . This forces
x = u · v ∈ U · V .

For each positive integer n, we define a set Mn of mappings Ln → L
inductively. For n = 1, M1 consists only of the identity map L→ L. For n >
1, we take Mn to be the union of the sets Mp×Mn−p where p = 1, . . . , n− 1;
we write (w,w′) = w.w′ for (w,w′) ∈ Mp ×Mn−p. The map w.w′ : Ln → L
will be defined by (w.w′)(x1, . . . , xn) = w(x1, . . . , xp) · w

′(xp+1, . . . , xn). The
element w ∈ Mn is said to be of length l(w) = n. If M1, . . . ,Mn are subsets
of L, then w(M1, . . . ,Mn) means the set of elements w(x1, . . . , xn) with x1 ∈
M1, . . . , xn ∈Mn.

Given an arbitrary subset M of L, let us denote by A(M) the intersection
of all closed subloops of L containing M . This is the smallest closed subloop
of G containing M ; we call it the loop closure of M .

Lemma 2.1.4. Let L be an ACML, I an index set, fi : Xi → L (i ∈ I) a
family of morphisms from irreducible varieties Xi, such that 1 ∈ Yi = fi(Xi)
for each i ∈ I. Set M = ∪i∈IYi. Then:

(i) A(M) is a connected subloop of L.

(ii) For some positive integer n and an element w ∈ Mn, k(i) ∈ I and

e(i) = ±1 (i = 1, . . . , n), we have A(M) = w(Y
e(1)
k(1) , . . . , Y

e(n)
k(n) ).

Proof. Enlarge I such that the morphisms x 7→ fi(x)
−1 also occur. Define

the set

S = {(w, k(1), . . . , k(n)) : w ∈ ∪n∈NMn, n = l(w), (k(1), . . . , k(n)) ∈ In}.

For an element a = (w, k(1), . . . , k(n)) ∈ S, set Ya = w(Yk(1), . . . , Yk(n)).
As the image of the irreducible variety Xk(1) × · · · × Xk(n) under the mor-
phism fk(1) × · · · × fk(n) composed with µw, Ya is constructible (cf. [Hum75,
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(4.4)]), and Ȳa is an irreducible variety passing through e. Using the max-
imal condition on irreducible closed subsets of L0, we can therefore find
an element a ∈ S for which Ȳa is maximal. Given any two elements b =
(w, k(1), . . . , k(n)), c = (w′, k′(1), . . . , k′(n)) ∈ S, we define

(b, c) = (w.w′, k(1), . . . , k(n), k′(1), . . . , k′(n)) ∈ S.

We claim that
(∗) ȲbȲc ⊆ Ȳ(b,c).

The proof is in two steps. For x ∈ Yc, the (continuous) map y 7→ yx sends
Yb into Y(b,c), hence Ȳb into Ȳ(b,c), i.e., ȲbYc ⊆ Ȳ(b,c). In turn, x ∈ Ȳb sends Yc
into Ȳ(b,c), hence Ȳc as well.

Because Ȳa is maximal, and e lies in each Ȳb, (∗) implies that

Ȳa ⊆ ȲaȲb ⊆ Ȳ(a,b) = Ȳa

for any b ∈ S. Setting b = a, we have Ȳa stable under multiplication.
Choosing b such that Yb = Y −1

a (cf. first sentence of the proof), we also
have Ȳa stable under inversion. Conclusion: Ȳa is a closed subloop of G
containing all Yi (i ∈ I), so Ȳa = A(M), proving (i). Moreover, since Ya is
constructible, Lemma 2.1.3 shows that Ȳa = Ya · Ya = Y(a,a), so the tuple
(a, a) = (w, k(1), . . . , k(n)) satisfies (ii).

Proposition 2.1.5. Let A, B, C closed subloops of an ACML L.

(i) If A is connected, then (A,B,C) is closed and connected.

(ii) If A, B and C are normal in L, then (A,B,C) is closed (and normal
in L). In particular, (L,L, L) is always closed.

Proof. (i) Associate with each y ∈ B, z ∈ C the morphism ϕy,z : A →
L defined by ϕy,z(x) = x−1λy,z(x) = (x, y, z). Since A is connected and
ϕy,z(1) = 1, Lemma 2.1.4 shows that the group generated by all ϕy,z(A)
(y ∈ B, u ∈ C) is closed and connected; but this is by definition (A,B,C).

(ii) It follows from part (i) that (A0, B, C), (A,B0, C) and (A,B,C0)
are closed, connected (as well as normal) subloops of G, so their product
D has the same properties. To show that (A,B,C) is closed, it therefore
suffices to show that D has finite index in (A,B,C), which is a purely loop-
theoretical question. In the abstract CML L/D, the image of A0 (resp. B0,
C0) centralizes the image of BC (resp. AC, AB). Since |A : A0|, |B :
B0|, |C : C0| < ∞, this implies that the set S = {(x, y, z) (mod D); x ∈
A, y ∈ B, z ∈ C} is finite. Moreover, elements of S have order 3, therefore
they generate a CML of exponent 3 modulo D, which is finite by [Bru58,
Theorem VIII.11.2]. This means that (A,B,C)/D is finite.

The proposition implies that the elements of the upper central series of a
loop are closed, and connected as well if L is connected. We can now prove
the main result of this section.
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Theorem 2.1.6. Let L be a connected ACML of positive dimension. Then
Z(L) has positive dimension. In particular, any ACML is nilpotent.

Proof. Suppose the statement is not true and let L be a connected coun-
terexample of minimal dimension. dimZ(L) = 0, hence |Z(L)| < ∞. De-
fine Z2(L) with the property Z2(L)/Z(L) = Z(L/Z(L)). If dimZ2(L) > 0,
then L/Z2(L) has a finite lower central series, therefore its upper central
series L = L0, L1, . . . is finite, too. Let n be the greatest index for which
Li 6= {1}, then Ln ≤ Z(L) closed and connected, a contradiction. This
means that dimZ2(L) = 0 and |Z2(L)| < ∞. But for a fixed a ∈ L, the
map L × L → L, (x, y) 7→ λx,y(a) is morphical, thus the ”conjugacy class”
{λx,y(a) : (x, y) ∈ L × L} is connected if L is connected. Therefore, a fi-
nite normal subloop of a connected loop lies in the center, and we have
Z2(L) = Z(L). Hence, L/Z(L) has trivial center and by Lemma 2.1.2, we
can assume that the algebraic CML L has trivial center.

By definition, Z(L) = ∩x,y∈LFx,y, where Fx,y are closed subsets of L.
Thus, there exist a finite set S = {x1, y1, . . . , xn, yn} such that

{1} =
n⋂

i=1

Fxi,yi
.

On the other hand, the subloopM generated by S is nilpotent by the theorem
of Bruck-Slaby (L5), so it contains an element 1 6= z ∈ Z(M). This element
is left fixed by all the λxi,yi

’s, therefore z ∈ Fxi,yi
for all i = 1, . . . , n, a

contradiction.
Remark. The above proof is based on the important CML property of local
nilpotence.

Corollary 2.1.7. Let N be a closed normal subloop of the algebraic CML L.
Then, there exists an algebraic CML L̄ and a surjective algebraic homomor-
phism ϕ : L → L̄ whose kernel is N . The loop L̄ is uniquely defined up to
isomorphisms of algebraic loops.

Proof. Let us first assume that N is connected and let us define the normal
subloops N0 = N and Ni+1 = (L,L,Ni). By Proposition 2.1.5, the subloops
Ni are connected and by the nilpotence of L, we have Nk = {1} for some
k > 0. Let k be the largest index for which Nk 6= {1}, then (L,L,Nk) = {1}
and Nk ≤ Z(L). By Lemma 2.1.2, the algebraic factor loop L/Nk is well
defined, and we can apply induction on dimL since dimNk > 0.

IfN is not connected, then we first factorize with its connected component
N0. Since N/N0 is finite, it is central in L/N0, thus the factor L/N =
(L/N0)/(N/N0) is well defined, too.

In the rest of this dissertation, the uniquely defined algebraic loop L̄ will
be denoted by L̄ = L/N and will be called the algebraic factor loop without
referring to the previous corollary.
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Corollary 2.1.8. Let L be a connected proper ACML over the field K. Then
charK = 3.

Proof. Let n be the greatest index for which Ln 6= {1}, then Ln is a closed,
connected, Abelian algebraic group of positive dimension. Moreover, since
n > 0, any element of Ln has order 3 (cf. property (L4)) and Ln is unipotent.
This implies char K = 3 and Ln is a K-vector group.

In this chapter, we always assume K to have characteristic 3, even if L is
not connected or proper.

We call an element x of an ACML unipotent, if its order is a power of 3.
A subloop of L is unipotent, if it contains only unipotent elements.

Proposition 2.1.9. Let L be an ACML. Then L = U × S, where U is a
unipotent subloop and S is the subgroup of all semisimple elements of Z(L).

Proof. Z(L) and L/L′ are Abelian algebraic groups over K, they are therefore
the direct product of a unipotent and a semisimple subgroup; Z(L) = Z1×S
and L/L′ = Ū × S̄. Let U ≤ L be the subloop of L such that U/L′ = Ū . The
orders of the elements of Ū are 3-powers, and L′ has exponent 3, thus U is
a unipotent subloop of L. Conversely, since L/U ∼= S̄ is a group consisting
of semisimple elements, all unipotent loop elements are contained in U . We
will show that L = US.

Take an arbitrary element x ∈ L and consider the loop closure M = A(x)
of x. Since the associator map is trivial on 〈x〉, M is associative. More
precisely, it is an Abelian algebraic group over K. Using its decomposition
M = Mu ×Ms (cf. [Hum75, Proposition 19.2]), we find unipotent u ∈ Mu

and semisimple s ∈ Ms elements of L with x = us. On the one hand, u has
3-power order, u ∈ U . On the other hand, the connected component M0

s is
a torus and Ms/M

0
s is finite with order prime to 3 (cf. [Hum75, Theorem

16.2]). Thus, the map x 7→ x3 is bijective on Ms and an element r exists
with r3 = s. This implies s ∈ Z(L) and s ∈ S.

Of course, we are more interested in the subloop U of L. The following
theorem describes its structure as algebraic variety.

Theorem 2.1.10. Let L be a connected ACML of dimension n and suppose
that L consists of unipotent elements only. Then, L is isomorphic to the
affine space K

n as variety.

Proof. Let k be the greatest index for which Lk 6= {1} and consider the
connected Abelian algebraic group Lk of exponent 3; it is isomorphic to K

m

as an algebraic group (m = dimLk). By induction we assume that L̄ = L/Lk
is birationally isomorphic to K

n−m. Moreover, Lk operates regularly and
morphically on the variety L. Let us denote by τ : L → L̄ the natural
rational homomorphism. By [Ros56, Theorem 10], there exists a cross section
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σ : L̄→ L, defined over K, with τ ◦ σ = idL̄. We claim that the morphisms

A :

{
L̄× Lk → L
(x̄, c) 7→ σ(x̄) · c

B :

{
L→ L̄× Lk
x 7→ (τ(x), x · σ(τ(x))−1)

are each other’s inverses. Indeed, one has

B(σ(x̄)c) = (τ(σ(x̄)), σ(x̄)c · (σ(τ(σ(x̄)c))−1)
= (x̄, σ(x̄)c · σ(x̄)−1) = (x̄, c);

A((τ(x), x · σ(τ(x))−1)) = σ(τ(x)) · (x · σ(τ(x))−1 = x.

Thus, L is isomorphic to L̄× Lk ∼= K
n as a variety.

Corollary 2.1.11. Let L be a unipotent ACML. Then L has a finite exponent
of the form 3e. The map x 7→ x2 is a bijective morphism of L with inverse
x 7→ x(3e+1)/2.

Proof. Let us first suppose that L is connected. We claim that x3d
= 1

for all x ∈ L where d = dimL. If d = 1, then L is isomorphic to K
+

and has exponent 3. If d > 1, then L has a connected normal subloop
M of codimension 1, we can assume by induction that y3d−1

= 1 for all
y ∈M . Furthermore, L/M is a connected unipotent Abelian algebraic group
of dimension 1, thus x3 ∈M holds for all x ∈ L. This implies x3d

= 1.
If L is not connected, then L/L0 is a finite CML of 3-power order. Hence

x3f
∈ L0 and x3f+d

= 1 for all x ∈ L. The last statement follows immediately.

The inverse of the map x 7→ x2 will be denoted by x 7→ x
1
2 .

2.2 Central extensions

Theorem 2.1.10 makes possible to consider the theory of central extensions
of algebraic commutative Moufang loops via the second cohomology groups.

Let (E, ·) be a connected unipotent ACML, M be a connected subgroup
of Z(E) and L = E/M . We use additive terminology for L and M : the loop
operations are going to be ”⊕” and ”+”, resp. The inverse of x is −x and
the unit element will be denoted by 0, in all cases.

Let σ1 be a cross section σ1 : L → E over K. Define the morphism
σ : L→ E by

σ(x) = (σ1(x) · (−σ1(−x)))
1
2 , x ∈ L.

Then, σ is a cross section as well, with the further property

σ(−x) = −σ(x). (2.1)
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The morphism

f :

{
L× L→ M
(x, y) 7→ (−σ(x⊕ y)) · (σ(x) · σ(y))

has the following properties:

(C1) f(x, y) = f(y, x) for all x, y ∈ L.

(C2) f(x, 0) = f(0, y) = f(x,−x) = 0 for all x ∈ L.

(C3) d′f(x, y, z) = 0 for all x, y, z ∈ L, where

d′f(x, y, z) = f(x⊕ y, x⊕ z) + f(x, y) + f(x, z)

−f(x⊕ x, y ⊕ z)− f(x, x)− f(y, z).

The property f(x,−x) = 0 follows from (2.1); it is not essential but makes
computations easier. Property (C3) follows from the commutative Moufang
identity (1.4).

We call d′ the modified boundary operator. Let us recall the definition
of the usual boundary operators. For the morphisms ϕ : L → M and f :
L× L→ M we have

dϕ :

{
L× L→M
(x, y) 7→ ϕ(x⊕ y)− ϕ(x)− ϕ(y)

and

df :

{
L× L× L→ M
(x, y, z) 7→ f(x⊕ y, z) + f(x, y)− f(x, y ⊕ z)− f(y, z).

Definition. Let (L,⊕) be an algebraic CML and M be a vector group over
K. We define the following sets of morphism.

B2(L,M) = {f : L2 →M : f = dϕ for some morphism ϕ : L→M},
Z2
ℓ (L,M) = {f : L2 →M : f satisfies (C1), (C2) and (C3)},

Z2(L,M) = {f : L2 →M : f satisfies (C1), (C2) and df = 0},
Z2

3e(L,M) = {f ∈ Z2
ℓ (L,M) : f(x, x) = 0 identically}.

On any of these sets, a natural (additive) group structure is defined as well.
We call the elements of B2(L,M) and Z2

ℓ (L,M) 2-coboundaries and loop
2-cocycles, respectively.

Lemma 2.2.1. We have B2(L,M), Z2(L,M) ≤ Z2
ℓ (L,M) in general. If L

is associative, then even B2(L,M) ≤ Z2(L,M) holds.

Proof. Simple calculation shows d′dϕ = 0 and

ddϕ(x, y, z) = ϕ((x⊕ y)⊕ z)− ϕ(x⊕ (y ⊕ z))
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for any map ϕ : L → M . This proves the first and the third assertions. To
show Z2(L,M) ≤ Z2

ℓ (L,M), take an arbitrary element f ∈ Z2(L,M). Then

d′f(x, y, z) = f(x⊕ y, x⊕ z) + f(x, y) + f(x, z)
−f(x⊕ x, y ⊕ z)− f(x, x)− f(y, z)

= f(2x⊕ y, z) + f(x⊕ y, x) + f(x, y)
−f(2x⊕ y, z)− f(2x, y)− f(x, x)

= f(y, 2x) + f(x, x)− f(2x, y)− f(x, x)
= 0,

where 2x denotes x⊕ x.

Definition. Let L be an algebraic CML and M be a vector group. We define
the following cohomology groups

H2
ℓ (L,M) = Z2

ℓ (L,M)/B2(L,M),
H2

3e(L,M) = Z2
3e(L,M)/B2(L,M).

If L is associative, then we put

H2(L,M) = Z2(L,M)/B2(L,M).

Clearly, H2
3e(L,M), H2(L,M) ≤ H2

ℓ (L,M) holds.

Proposition 2.2.2. The elements of the factor group

H2
ℓ (L,M) = Z2

ℓ (L,M)/B2(L,M)

are in 1-1 relation with the isomorphism classes of ACML extensions of L
by M .

Proof. Let us consider an algebraic CML extension

0→M → E → L→ 0.

It follows from the proof of Theorem 2.1.10 that E = L×M can be assumed
without loss of generality. Moreover, the embedding M → E is simply
a 7→ (0, a).

Given such an extension, we define the map f : L2 → M as at the
beginning of this section. We saw that f ∈ Z2

ℓ (L,M). Conversely, any
morphism f ∈ Z2

ℓ (L,M) defines an algebraic CML structure on E = L×M
by

(x, a) · (y, b) = (x⊕ y, a+ b+ f(x, y)). (2.2)

Choosing the section σ(x) = (x, 0), we get back the original f : L2 →M . In
general, any section belonging to this extension has the form σ(x) = (x, ϕ(x))
with morphism ϕ : L→M . The factor set f̃ defined by this σ is f̃ = f −dϕ.
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Let us suppose that f1, f2 ∈ Z2
ℓ (L,M) belong to isomorphic extensions

E1, E2. Then, the isomorphism E1 → E2 has the form (x, a) 7→ (x, a+ϕ(x))
and a simple calculation gives f2 − f1 = dϕ. This proves the 1-1 relation
between extension and elements of the group Z2

ℓ (L,M)/B2(L,M).
We close this section with a simple remark.

Lemma 2.2.3. Let an algebraic CML structure be defined on L = K
n. Then,

a coordinatization of L can be chosen in such a way, that X−1 = −X holds
identically on L.

Proof. We use induction on n. If n = 1, then there is nothing to prove.
If n > 1, then L can be seen as a central extension of a loop of smaller
dimension. Let f be the factor set belonging to this extension. By property
f(x,−x) = 0 (cf. (C2)), we have

(x, a) · (−x,−a) = (0, 0),

and (x, a)−1 = (−x,−a) = −(x, a).

2.3 Classification of 2-dimensional algebraic

CML’s

At the end of Chapter 1, we saw an example for a proper algebraic com-
mutative Moufang loop of dimension 2. In this section, we give a complete
classification of two dimensional algebraic commutative Moufang loops.

By an easy calculation we obtain the identities

(x, a)3 = (3x, 3a+ f(2x, x) + f(x, x)),
((x, a), (y, b), (z, c)) = ((x, y, z), df(x, y, z)).

where we write 2x, 3x, . . . for x⊕ x, x⊕ x⊕ x, . . ..
If L is a vector group, then these equalities become (x, a)3 = (0, f(x, x))

and ((x, a), (y, b), (z, c)) = (0, df(x, y, z)), respectively. Thus, in this case,
the elements of H2(L,M) and H2

3e(L,M) describe precisely the associative
and exponent 3 extensions of L, respectively.

Lemma 2.3.1. Let L and M be vector groups over the field K of character-
istic 3. Then, H2

ℓ (L,M) = H2(L,M)×H2
3e(L,M).

Proof. Let us take an arbitrary element f ∈ Z2
ℓ (L,M) with vector groups

L,M over K and consider the extension (2.2). Since the map x̃ 7→ 3x̃ =
(0, f(x, x)) is a loop homomorphism from E to M containing M in its kernel,
we obtain that the map L → M , x 7→ f(x, x) is a homomorphism. Put
L = K

n, M = K
m and ϕ(x) = f(x, x). We have

ϕk(X) =
∑

i,j

akijX
3j

i , a
(k)
ij ∈ K.
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By (C2), f contains no linear term, thus j ≥ 1 in the above sum. This makes
possible to define the rational map f2 : K

n × K
n → K

m by

fk2 (X, Y ) = −
∑

i,j

akij(X
2
i Yi +XiY

2
i )3j−1

.

An easy calculation gives ϕ(X) = f2(X,X) and df2 = 0. Thus, f2 ∈
Z2(L,M). Putting f1 = f −f2, we obtain f1 ∈ Z

2
ℓ (L,M) with f1(X,X) = 0,

hence f1 ∈ Z
2
3e. This proves Z2

ℓ (L,M) = Z2
3e(L,M) + Z2(L,M).

Let us now take an element f ∈ Z2
3e(L,M)∩Z2(L,M). Then f defines an

extension E which is an Abelian group of exponent 3, that is, E is a vector
group as well. Hence, the extension splits and f ∈ B2(L,M) (cf. [Hum75,
Corollary 20.4.]).

The following lemma can be shown by straightforward calculation.

Lemma 2.3.2. Define the function f : K
3 → K by

f(X1, X2, X3, Y1, Y2, Y3) = (X1 − Y1)(X2Y3 −X3Y2).

Then we have

(d′f)(Xi, Yi, Zi) = 0 and (df)(Xi, Yi, Zi) = −

∣
∣
∣
∣
∣
∣

X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

∣
∣
∣
∣
∣
∣

,

where d and d′ are defined with respect to (K,+).

Lemma 2.3.3. a) Any element of H2(K,K) can be uniquely represented by
a polynomial f ∈ K[X, Y ] with f(X, Y ) =

∑

j≥1 aj(X
2Y +XY 2)3j

.

b) Any element of H2
3e(K,K) can be uniquely represented by a polynomial

f ∈ K[X, Y ] with

f(X, Y ) =
∑

i<j<k

cijk(X
3i

− Y 3i

)(X3j

Y 3k

−X3k

Y 3j

).

Proof. Part a) follows immediately from the proof of Lemma 2.3.1. For part
b), we fix an element f ∈ Z2

3e(K,K). As we saw at the beginning of this
section, ((x, a), (y, b), (z, c)) = (0, (df)(x, y, z)) holds for the associator map
on the extension defined by f .

Since K = M ≤ Z(E), the properties of the associator map imply the
induced polynomial u = df ∈ K[X, Y, Z] to be additive and alternating in
the sense of (L2). (The additivity relies on the fact that the loop L has
nilpotency class 2.) Thus, u has the form

u(X, Y, Z) =
∑

i<j<k

cijk

∣
∣
∣
∣
∣
∣

X3i
Y 3i

Z3i

X3j
Y 3j

Z3j

X3k
Y 3k

Z3k

∣
∣
∣
∣
∣
∣

. (2.3)
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Let us define the polynomial

f0(X, Y, Z) = −
∑

i<j<k

cijk(X
3i

− Y 3i

)(X3j

Y 3k

−X3k

Y 3j

),

with coefficients cijk taken from (2.3). Then, by Lemma 2.3.2, d′f0 = 0
and df0 = df . Moreover, f(X,X) = 0 and f0(X,X) = 0 by definition,
thus f − f0 ∈ Z2

3e(K,K) ∩ Z2(K,K) = B2(K,K) (see Lemma 2.3.1), and f0

represents f . Clearly, the coefficients cijk of u determine the coefficients of
f0 uniquely.

Lemma 2.3.1 and 2.3.3 imply the complete classification of 2-dimensional
algebraic commutative Moufang loops.

Theorem 2.3.4. Let K be an arbitrary algebraically closed field of charac-
teristic 3. Choose arbitrary coefficients {aj}1≤j≤n and {cijk}0≤i<j<k≤m and
define the polynomial f ∈ K[X, Y ] by

f(X, Y ) =
∑

0≤i<j<k≤m

cijk(X
3i

− Y 3i

)(X3j

Y 3k

−X3k

Y 3j

)

+
∑

1≤j≤n

aj(X
2Y +XY 2)3j

.

Then, the operation

(x, a) · (y, b) = (x+ y, a+ b+ f(x, y))

defines an algebraic commutative Moufang loop on K
2. Moreover, any con-

nected 2-dimensional algebraic CML is isomorphic to precisely one of these
loops. �

2.4 Group of automorphisms and the multi-

plication group

In this section, we consider the central algebraic CML extension

0→ (M,+)→ (L̃, ·)→ (L,⊕)→ 0,

where (L,⊕) is a connected unipotent algebraic CML over K; M is a 1-
dimensional connected central subgroup of L̃, identified with K

+.
Let us consider an algebraic automorphism α̃ of L̃ which leaves the ele-

ments of M fixed. (Like any element of the group of inner mappings does.)
Then we have

α̃(z, c) = α̃(z, 0) · α̃(0, c) = (α(z), c+ h(z)), (2.4)
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where α : L→ L is the induced automorphism on L = L̃/M and h : L→M
is a morphism. Let us observe that the set of L → M regular morphisms
can be identified with K[L] and any morphism α : L → L acts on K[L] in a
natural way: For h ∈ K[L] we have

τα(h) = α∗(h) = h ◦ α.

If α̃ = (α, h) and β̃ = (β, k) are automorphisms of L̃ fixing M , then their
product is

α̃β̃ = (αβ, τβ(h) + k). (2.5)

The fact that α̃ is an automorphism implies that

α̃((z, c) · (z′, c′)) = (α(z ⊕ z′), c+ c′ + f(z, z′) + h(z ⊕ z′))

and

α̃(z, c) · α̃(z′, c′) = (α(z)⊕ α(z′)), c+ c′ + h(z) + h(z′) + f(α(z), α(z′)))

are equal. This happens if and only if α and h satisfy the equations
{
α(z ⊕ z′) = α(z)⊕ α(z′)
f(z, z′) + h(z ⊕ z′) = h(z) + h(z′) + f(α(z), α(z′))

(2.6)

for all z, z′ ∈ L.
Let now α̃ be the inner map λ̃(x,a),(y,b) of L̃. This map does not depend

on a, b, we will write λ̃x,y. A simple calculation shows that the morphism
L→ M belonging to λ̃x,y is

hx,y(z) = h(x, y, z)

= f(−x⊕ y, x⊕ (y ⊕ z))− f(x, y) + f(x, y ⊕ z) + f(y, z).

Using this notation, we prove:

Lemma 2.4.1. Let L̃ be a connected ACML. Then, the inner mappings λ̃x̃,ỹ
of L̃ are contained in an algebraic transformation group H̃ of L̃ consisting
of automorphisms of L̃. Moreover, the map L̃ × L̃ → H̃, (x̃, ỹ) 7→ λ̃x̃,ỹ is a
morphism.

Proof. If dim L̃ ≤ 1 then L̃ is associative and there is nothing to prove.
Suppose that dim L̃ > 1 and choose M ≤ Z(L) to be connected of dimension
1. We identify M with K, so, for any K-variety X, a regular morphism X →
M is simply an element of K[X]. We use induction on dim L̃ and assume that
H is an algebraic transformation group of L, it consists of automorphisms of
L, and it contains all inner mappings of L.

For the morphism h ∈ K[L× L× L] = K[L]⊗ K[L]⊗ K[L], one has

h(x, y, z) =
∑

g
(1)
i (x)g

(2)
i (y)g

(3)
i (z),
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where g
(j)
i ∈ K[L] (j = 1, 2, 3; i = 1, . . . t). Let W1 be the vector space

spanned by the functions g
(3)
i . H acts locally finitely on K[L] via the action

τβ for β ∈ H . Thus, W1 is contained in a finite dimensional H-stable vector
space W ≤ K[L]. Since the action of H on W by τ is morphical and, for
h, k ∈ W , we have k, τβ(h), k + τβ(h) ∈ W , equation (2.5) introduces the
algebraic semidirect product H ⋉W . The morphism

ϕ :

{
H ⋉W × L̃→ L̃
((α, h), (z, c)) 7→ (α(z), h(c))

defines an algebraic action of H ⋉W on L̃.
We define the subset H̃ of H ⋉W by

H̃ = {(α, h) ∈ H ⋉W |α and h satisfy (2.6)}.

We claim that for fixed elements z, z′ ∈ L, (2.6) is an algebraic equation for
α and h. Indeed, the map

{
H ⋉W × L× L→ M
(α, h, z, z′) 7→ f(z, z′) + h(z ⊕ z′)− h(z)− h(z′)− f(α(z), α(z′))

is a morphism. With fixed z, z′ ∈ L, this is a H×W → M morphism, and the
pre-image of {0} is closed. This means that H̃ is a closed subvariety ofH⋉W .
Moreover, H̃ is a subgroup H⋉W , it consists precisely of automorphisms of
L̃ contained in H ⋉ W . Let us fix arbitrary elements x, y ∈ L and consider
the inner mapping λ̃x,y = (λx,y, hx,y) of L̃. By the definition of H and W ,

λx,y ∈ H and hx,y =
∑
g

(1)
i (x)g

(2)
i (y)g

(3)
i ∈ W , thus λ̃x,y ∈ H̃ . Hence, H̃ is

the algebraic group we were looking for.
By induction, the map (x, y) 7→ λx,y is rational for x, y ∈ L. The map

(x, y) 7→ hx,y =
∑
g

(1)
i (x)g

(2)
i (y)g

(3)
i is rational as well. Therefore, for ele-

ments x̃ = (x, a), ỹ = (y, b) ∈ L̃ = L×M , we have the rational map

{
L̃× L̃→ H̃

(x̃, ỹ) 7→ (λx,y, hx,y) = λ̃x̃,ỹ.
�

The main result of this section is

Theorem 2.4.2. Let L be a connected ACML. Then the multiplication group
G(L) can be uniquely given the structure of a connected algebraic group acting
morphically on L.

Proof. By Lemma 2.4.1, there exists an algebraic transformation group H of
automorphisms of L, which contains all inner mapping λx,y of L. Define the

variety Ĝ by Ĝ = L×H and introduce the operation

(x, α) ◦ (y, β) = (x · α(y), λx,α(y)αβ)
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on Ĝ. By [Kik75, Theorem 2.1] (or, in a more general context, [MS90, Section
XII.6.]), (Ĝ, ◦) is a group. We claim that (Ĝ, ◦) is an algebraic group, acting
rationally on L via

ϕ :

{

Ĝ× L→ L
((x, α), z) 7→ x · α(z).

Clearly, ϕ is a morphism, so we only have to show that the map

{
L×H × L→ L
(x, α, y) 7→ λx,α(y)

is rational. Indeed, this is the composition of the rational mappings

(x, α, y) 7→ (x, α(y)) and (x, z) 7→ λx,z,

both being rational by Lemma 2.4.1. Finally, for x ∈ L, the action of (x, id)
equals to λx and the map x 7→ (x, id) is rational.

We identify the elements λx and (x, id) ∈ Ĝ. Then, the set

S(L) = {λx : x ∈ L}

is an irreducible subvariety of Ĝ. Then by [Hum75, Proposition 7.5], there
exists a finite number n such that the group closure of S(L) in Ĝ is G(L) =
S(L)n. This implies G(L) to be a closed subgroup of Ĝ. The uniqueness of
the algebraic structure of G(L) follows from [Ram64].

An analogue of this theorem yields for analytic Bruck loops. Namely,
Kikkawa [Kik75] showed that for an analytic Bruck loop L, the group G(L)
is a Lie transformation group on L. Moreover, it follows from [MS90, p. 424]

that dimG(L) ≤ n +

(
n

2

)

with n = dimL. In the rest of this chapter we

construct an example to show that in the algebraic case, no limitation on
dimG(L) can be expected.

Let m = 2n be an arbitrary positive even number. Let us define the
”structure constants”

c012 = c034 = . . . = c0,m−1,m = 1, cijk = 0 otherwise, 0 ≤ i < j < k ≤ m,

and
cσ(i)σ(j)σ(k) = sgn(σ) · cijk, 0 ≤ i < j < k ≤ m, σ ∈ S3.

Put
f(X, Y ) =

∑

0≤i<j<k≤m

cijk(X
3i

− Y 3i

)(X3j

Y 3k

−X3k

Y 3j

),

and consider the 2-dimensional algebraic CML L = K
2 with the operation

(x, a) · (y, b) = (x+ y, a+ b+ f(x, y)).
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We have
λ(x,a),(y,b)(z, c) = (z, c+ hx,y(z)),

that is,
(0, hx,y(z)) = λ(x,a),(y,b)(z, c) · (z, c)

−1

= ((x, a), (y, b), (z, c))
= (0, df(x, y, z)),

where the second equality follows from [Bru58, (5.16), p. 124]. Hence,

hx,y(Z) = −
∑

0≤i<j<k≤m

cijk

∣
∣
∣
∣
∣
∣

x3i
y3i

Z3i

x3j
y3j

Z3j

x3k
y3k

Z3k

∣
∣
∣
∣
∣
∣

,

and the coefficient of Z3k
in hx,y is

ak(x, y) = −
∑

0≤i,j≤m

cijkx
3i

y3j

.

We have

a0(X, Y ) = −
n∑

i=1

(X32i−1

Y 32i

−X32i

Y 32i−1

) =
n∑

i=1

(X3Y −XY 3)32i−1

and

a1(X, Y ) = XY 32
−X32

Y, a2(X, Y ) = −XY 3 +X3Y,
...

am−1(X, Y ) = XY 3m−1
−X3m−1

Y, am(X, Y ) = −XY 3m−2
+X3m−2

Y.

Since the polynomials X3i
and Y 3j

are linear independent, the polynomials
X3i

Y 3j
−X3j

Y 3i
are linear independent as well. Thus, the only 3-polynomial

relation between a0(X, Y ), . . . , am(X, Y ) is

a0 −
∑

a32i−1

2 = 0.

This means that the set

{(a0(x, y), . . . , am(x, y) : x, y ∈ K}

is contained in a unique 1-codimensional additive subgroup of K
m+1; with

other words, it generates an m-dimensional additive subgroup A of K
m+1. On

the other hand, the product of two automorphism of form (id, g1), (id, g2)
of L is (id, g1 + g2), thus the automorphism group generated by λ(x,a),(y,b)

is isomorphic to the additive subgroup of K[L] generated by the set {hx,y :
x, y ∈ K}, which is clearly isomorphic to A. We therefore have proved

dimH = m, dimG(L) = m+ 2.



Chapter 3

Formal Bol loops and their
tangent algebras

The concept of formal loops (just like formal groups) is derived in a natural
way from the classical theory of local analytic loops: instead of considering
the absolutely convergent Taylor expansion of the loop multiplications, one
can define formal “product” and “inverting rules” using formal power series
over an arbitrary field ([Die57], [Die73], [Car62], [Sel67]).

In this chapter, introduce and investigate the concept of formal Bol loops
and especially their tangent algebras. Therefore, we first consider the ternary
algebra of Lie triple systems; by the motivation of the theory of local analytic
Bol loops they are hopeful candidates as tangential objects of formal Bol
loops.

The treatment of formal loops in this chapter will be the naive one (direct
calculations with formal power series, terminology by Dieudonné), in Chapter
5, we will use a slightly more general definition.

3.1 Restricted Lie triple systems

In this section, we define a restricted structure for Lie triple systems in the
characteristic p > 2 setting, akin to the restricted structure for Lie algebras.
These object were also studied very recently and completely independently
by T.L. Hodge [Hod00].

Definition. A finite dimensional vector space b over a field K equipped with
a trilinear operation (., ., .) is called a Lie triple system (abbrev. L.t.s.), if
for all x, y, z, u, v ∈ b,

(x, x, y) = 0 (3.1)

(x, y, z) + (y, z, x) + (z, x, y) = 0 (3.2)

(u, v, (x, y, z)) = ((u, v, x), y, z) + (x, (u, v, y), z) + (x, y, (u, v, z))(3.3)

29
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Given a Lie algebra g and a L.t.s. b, we define the linear maps

ad z :

{
g→ g

a 7→ [a, x]
, ∆x,y :

{
b→ b

a 7→ (a, x, y)
, Dx,y :

{
b→ b

a 7→ (x, y, a)

and ∆x = ∆x,x.

Any Lie algebra (g, [., .]) can be made into a L.t.s. with the operation
(x, y, z) = [[x, y], z]. A theorem of N. Jacobson [Jac51] asserts that every
L.t.s. b is isomorphic to a subalgebra of a (g, (., ., .)) with Lie algebra g.

Moreover, if dim b = n <∞ then dim g ≤ n +

(
n

2

)

.

Given a set M , one may define a free Lie algebra L(M) over the field K

on M and L(M) ⊆ F(M), where F(M) is the free associative K-algebra on
M (see [Bou89]).

By definition, the free L.t.s. B(M) on M is a L.t.s. such that M ⊆ B(M)
and whenever N is a L.t.s. over K and ϕ0 a mapping of M into N, there is
a unique L.t.s. homomorphism ϕ : B(M)→ N.

The free L.t.s. on M may be constructed by forming the free Lie alge-
bra L(M) on M , and taking the Lie triple subsystem B of (L(M), (., ., .)),
generated by M .

If the ground field has characteristic p and if M consists of two elements
x, y, then it is known that the element

Λp(x, y) = (x+ y)p − xp − yp

of F(M) is in fact in L(M). Indeed, Λp(x, y) is a homogenous [., .]-polynomial
of degree p, with integer coefficients. Therefore, if p > 2, Λp(x, y) is a
uniquely determined element of B(M). Hence, it makes sense to define
Λp(u, v) whenever u and v are elements of a L.t.s. b over K, as the image of
Λp(x, y) under the homomorphism of B(M) into b sending x into u, y into
v (cf. [Sel67]).

We recall the definition of a restricted Lie algebra (Jacobson).

Definition. A restricted Lie algebra over a field K of prime characteristic p
is a Lie algebra g together with a mapping z 7→ z[p] of b into g satisfying the
identities:

[x, y[p]] = [[x, y] . . . , y
︸ ︷︷ ︸

p

]; (3.4)

(αz)[p] = αpz[p]; (3.5)

(y + z)[p] = y[p] + z[p] + Λp(x, y); (3.6)

This definition motivates the following.
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Definition. A restricted Lie triple system over a field K of prime character-
istic p is a L.t.s. b together with a mapping z 7→ z[p] of b into b satisfying
the identities:

(x, y[p], z) = (((x, y, y), . . . y, y), y
︸ ︷︷ ︸

p

, z); (3.7)

(αz)[p] = αpz[p]; (3.8)

(y + z)[p] = y[p] + z[p] + Λp(x, y); (3.9)

The identities (3.4) and (3.7) are equivalently expressed by ad(z[p]) =
(ad z)p and Dx,y[p] = D

∆
(p−1)/2
y (x),y

, respectively.

Lemma 3.1.1. Let g be a restricted Lie algebra over a field of characteristic
p > 2. Let us suppose that the linear subspace b of g is closed under the
operations [[A,B], C] and A 7→ Ap. Then, b is a restricted Lie triple system
with respect to these operations.

Proof. Except for (3.7), all the defining properties of a L.t.s. can be checked
easily. For (3.7), we have

(x, y[p], z) = [[x, y[p]], z]
= [[[x, y], . . . y

︸ ︷︷ ︸

p

], z]

= (((x, y, y), . . . y, y), y
︸ ︷︷ ︸

p

, z). �

Theorem 3.1.2. Let b be restricted L.t.s. over a field of characteristic 3.
Then, b can be embedded in a restricted Lie algebra g. Moreover, if dim b =
n <∞, then dim g ≤ n+ n2.

Proof. Let us suppose that b is a L.t.s. over a field K of characteristic p = 3.
Derivations of Lie triple systems can be defined in the usual way. In order to
modify Jacobson’s embedding method, we need the concept of [3]-derivations.
Let us put

D = {δ ∈ Der(b)|δ(x[3]) = ((δ(x), x, x) ∀x ∈ b}.

First we show that D is a restricted Lie algebra such that Dx,y ∈ D. By
(3.1), (3.2) and (3.7), one has (x, y, z[p]) = ((x, z, z), z, y) − ((y, z, z), z, x).
Therefore, to show that Dx,y ∈ D, we only have to prove the identity

((x, y, z), z, z) = ((x, z, z), z, y)− ((y, z, z), z, x). (3.10)

We claim that (3.10) yields in the free L.t.s. B on the set M = {x, y, z}. In-
deed, B is a subsystem of the free Lie algebra on M , which can be embedded
in the free associative K-algebra F. However, in F, (3.10) becomes

[[x, y], z3] = [[x, z3], y]− [[y, z3], x],
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which follows from the Jacobi identity.
Let us now suppose δ, ǫ ∈ D. We have

δ3(x[3]) = δ(δ(δ(x), x, x))

= (δ3(x), x, x) + 2(δ2(x), δ(x), x) + (δ2, x, δ(x)) + (δ(x), x, δ2(x))

= (δ3(x), x, x)

and

[δ, ǫ](x[3]) = δ(ǫ(x), x, x)− ǫ(δ(x), x, x)

= ([δ, ǫ](x), x, x)− 2(δ(x), ǫ(x), x)

+(ǫ(x), x, δ(x))− (δ(x), x, ǫ(x))

= ([δ, ǫ](x), x, x),

whence δ3, [δ, ǫ] ∈ D and D is a restricted Lie subalgebra of Der(b). Let us
define the vector space g = b⊕D with the operations

[x+ δ, y + ǫ] = δ(y)− ǫ(x) + [δ, ǫ] +Dx,y,

(y + ǫ)[3] = y[3] + ǫ3 + ǫ2(y)−Dǫ(y),y.

(The [3]-map is motivated by Λ3(x, y) = (x, y, y) + (y, x, x).) Jacobson’s
proof shows that (g, [., .]) is a Lie algebra and b → g is an embedding of a
L.t.s.

Concerning the [3]-map, a straightforward calculation gives that both
[δ, (y + ǫ)[3]] and [[[δ, y + ǫ], y + ǫ], y + ǫ] are equal to

δ(y[3]) + δǫ2(y) + [δ, ǫ3] +Dδǫ(y),y +Dǫ(y),δ(y).

On the other hand, both [x, (y + ǫ)[3]] and [[[x, y + ǫ], y + ǫ], y + ǫ] are equal
to

−ǫ3(x) + (y, ǫ(y), x) +Dx,ǫ2(y) +Dx,y[3].

This yields

[x+ δ, (y + ǫ)[3]] = [[[x+ δ, y + ǫ], y + ǫ], y + ǫ],

which proves that g is a restricted Lie algebra. Clearly, if dim b = n < ∞,
then dim D ≤ dim(Der(b)) ≤ n2.
Remark. In [Hod00], the result of the above theorem is obtained for general
prime p > 2 but under the assumption z(b) = {0}. (Cf. page 54.)

3.2 Formal loops

For the rest of this dissertation, X i, Y i, Z i, T i will denote indeterminates over
the field K with n ∈ N and i, j, k = 1, . . . , n. We also put X = (X1, . . . , Xn),
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Y = (Y 1, . . . , Y n), Z = (Z1, . . . , Zn), T = (T 1, . . . , T n). To avoid confusion,
we use K[[T ]] for the ring of formal power series in n and K[[X,Y ]] for the
ring of formal power series in 2n variables. K[[T ]] is a local ring with unique
maximal ideal M

(T )
and complete with respect to the M

(T )
-adic topology

This distinction is important, because for formal series the tensor product
K[[T ]] ⊗ K[[T ]] is properly embedded in K[[X ,Y ]]. Fortunately, the tensor
product and the M

(X ,Y )
-adic topologies are compatible and K[[T ]]⊗K[[T ]]

can be canonically identified with a dense subset of K[[X ,Y ]].
By Lemma 1.0.1 we know that requiring the correct axioms, (abstract)

Bol loops can be defined by two operation. This motivates the following
definition.

Definition. A formal Bol loop is a system of n formal power series µi(X,Y ) ∈
K[[X ,Y ]] in 2n variables and n power series ei(T ) ∈ K[[T ]] in n variables
such that with the further notation µ = (µi), e = (ei), the identities

µ(0,Y ) = Y , µ(X, 0) = 0, (3.11)

µ(e(X),µ(X,Y )) = X (3.12)

µ(X,µ(Y ,µ(X,Z)))) = µ(µ(X,µ(Y ,X)),Z) (3.13)

hold.

The next lemma shows that the existence of the formal inverting is not
really important for formal Bol loops. Moreover, if char(K) 6= 2, then the
2-divisibility is automatically given, as well.

Lemma 3.2.1. Let the system of formal series µi(X,Y ), . . . , µi(X,Y ) ∈
K[[X ,Y ]] over the field K satisfy the identities (3.11).

a) There exist formal power series e1(T ), . . . , en(T ) ∈ K[[T ]] satisfying
(3.12).

b) If char(K) 6= 2, then a system of power series ν1(T ), . . . , νn(T ) ∈
K[[T ]] exists with µ(ν(T ),ν(T )) = T and ν(µ(T ,T )) = T .

Proof. From condition (3.11) follows that

µi(X ,Y ) = X i + Y i +
∑

terms of degree ≥ 1 w.r.t. X i and Y j .

We therefore deduce from the theorem of implicit functions for formal power
series [Bou50, p. 64, prop. 10 and p.59, prop. 4] that there exists n well
defined formal series

ei(T ) = −T i +
∑

terms of degree ≥ 2 w.r.t. T i

such that (3.12) holds. For b), if char(K) 6= 2, then the Jacobian of µ(X,X)
is not zero and a system of power series ν1(T ), . . . , νn(T ) ∈ K[[T ]] exists
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with µ(ν(T ),ν(T )) = T by the mentioned theorem of implicit functions.
Furthermore, one has

ν(µ(ν(T ),ν(T ))) = ν(T ). (3.14)

On the other hand, let M be the unique maximal ideal of K[[T ]], generated
by {T 1, . . . , T n}. Calculation modulo M2 shows that

νi(T ) =
1

2
T i +

∑

terms of degree ≥ 2 w.r.t. T i,

thus T i 7→ νi(T ) induces an automorphism of the ring K[[T ]]. This means
that (3.14) is equivalent with

ν(µ(T ,T )) = T

and the lemma is proved.
It is well know that any automorphism U of the ring K[[T ]] is induced

by some map T i 7→ ui(T ) ∈ K[[T ]] with non-singular “Jacobian” ∂ui

∂T j (0),
and vice versa. By some abuse of language, we will simply call such maps
substitutions or change of coordinates.

The next lemma claims that with an appropriate change of coordinates,
the inverting rule e of a formal loop can be brought to the simple form −T .

Lemma 3.2.2. Let the series ei(T ) ∈ K[[T ]] (i = 1, . . . , n) be given such
that

ei(e(T )) = T i and
∂ei

∂T j
(0) = −δij .

Then, there exist a system of series ui(T ), vi(T ) ∈ K[[T ]] such that

ui(v(T )) = T i, vi(u(T )) = T i, and ui(e(v(T ))) = −T i.

Proof. Let us define the series ui(T ) = ei(T )− T i. Obviously,

ui(e(Y )) = ei(e(Y ))− ei(Y ) = Y i − ei(Y ) = −ui(Y ). (3.15)

However, we have
∂ui

∂T j
(0) = −2δij , hence, by the theorem of implicit func-

tions, there exists a system of series vi(T ) ∈ K[[T ]] with

ui(v(T )) = T i, and vi(u(T )) = T i.

Substituting Y = v(T ) in (3.15), we get ui(e(v(T ))) = −T i.
As for any algebra over K, we define derivations of K[[T ]] as K-linear

maps D : K[[T ]]→ K[[T ]], satisfying the Leibnitz rule

D(fg) = D(f)g + fD(g), (f, g ∈ K[[T ]]).
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A point derivations of K[[T ]] is a K-linear map δ : K[[T ]]→ K with

δ(fg) = δ(f)g(0) + f(0)δ(g), (f, g ∈ K[[T ]]).

Derivations and point derivations of K[[T ]] are uniquely determined by their
effects on T 1, . . . , T n (cf. [Bou50, p. 61, Proposition 6]). Thus, they can be
written in the form

ai(T )
∂

∂T i
, and ai

∂

∂T i

∣
∣
∣
∣
T =0

,

with ai(T ) ∈ K[[T ]] and ai ∈ K, respectively.
Now, let a formal Bol loop be given with formal product (µi(X,Y )) and

cosider a point derivation α ∈ K[[T ]]. Then, the map α⊗1 : K[[T ]]⊗K[[T ]]→
K[[T ]] has a unique continuous extension

α⊗̂1 : K[[X ,Y ]]→ K[[T ]].

On the other hand, the given formal loop induces a homomorphism ∆ :
K[[T ]] → K[[X,Y ]] of commutative algebras by T i 7→ µi(X,Y ). Let us
define the map

D̃α = (α⊗̂1) ◦∆ : K[[T ]]→ K[[T ]].

Lemma 3.2.3. The map D̃ : α 7→ D̃α is a K-linear embedding

PDer(K[[T ]]) →֒ Der(K[[T ]]).

Moreover, for α = ai
∂

∂T i

∣
∣
∣
∣
T =0

holds

D̃α = ai
∂µj

∂X i
(0,T )

∂

∂T j
.

Remark. We call the derivations D̃α the L-derivations of the formal loop
(µi(X,Y )). The analogy with right invariant derivations of local Lie groups
is obvious.
Proof. It suffices to calculte the formula for D̃α. By definition, we have

α⊗̂1 = ai
∂

∂X i

∣
∣
∣
∣
X=0,Y =T

and ∆(f(T )) = f(µ(X,Y )).

Hence,

D̃α(f(T )) =

(

ai
∂

∂X i

∣
∣
∣
∣
X=0,Y =T

)

(f(µ(X,Y )))

= ai
∂µj

∂X i
(0,T )

∂f

∂T j
(T ).
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3.3 Infinitesimal algebras of formal Bol loops

In contrast to the previous section, we now start using the Bol property of
our formal loops heavily. The basis of the applied calculation methods relies
on [Nôn61].

For i = 1, . . . , n, we introduce the power series

ei(T ) = νi1(T , 0) and ϕi(X,Y ) = µi(X,µ(Y ,X)).

Lemma 3.3.1. Assume that K is a field of characteristic 6= 2. Then we
have

(i)
∂µi

∂Xj
(X, 0) = δij,

∂µi

∂Y j
(0,Y ) = δij;

(ii)
∂ei

∂T k
(0, 0) = −δik;

(iii)
∂ϕi

∂Xj
(0, 0) = 2δij,

∂ϕi

∂Y j
(0,Y ) = δij.

(iv) With the notation χik(T ) =
∂ϕi

∂Xk
(0,T ) and ξik(T ) =

∂µi

∂Xk
(0,T ), the

matrices (χik(T ))i,k and (ξik(T ))i,k are invertible over K[[T ]].

Proof. Differentiating the identities

µi(X, 0) = X i, µi(0,Y ) = Y i, ϕi(0,Y ) = Y i,

we get (i) and the second equation of (iii). Differentiating the identity

µi(e(X),µ(X,Y )) = Y i

by Xk, we have

∂µi

∂Xj
(e(X),µ(X,Y ))

∂ej

∂Xk
(X) +

∂µi

∂Y j
(e(X),µ(X,Y ))

∂µj

∂Xk
(X,Y ) = 0.

Substituting X = Y = 0, we get

∂µi

∂Xj
(0, 0)

∂ej

∂T k
(0) +

∂µi

∂Y j
(0, 0)

∂µj

∂Xk
(0, 0) = 0,

which implies (ii).
For the first equation of (iii), we differentiate both sides of ϕi(X,Y ) =

µi(X,µ(Y ,X)) by Xj, put Y = 0 and use (ii). Then we have

∂ϕi

∂Xj
(X, 0) = 2

∂µi

∂Xj
(X,X), (3.16)

which gives (iii) by (i).
Finally, by (i) and (iii), if char(K) 6= 2, then the power series det(ξik(T )),

det(χik(T )) are invertible elements of the ring K[[T ]], hence the matrices are
invertible over K[[T ]].
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Lemma 3.3.2. Let us consider the formal Bol loop B with formal product
(µi(X,Y )) and assume char(K) 6= 2. Let us define the elements

ξij(Y ) =
∂µi

∂Xj
(0,Y ) ∈ K[[Y ]] and Ek = ξik(Y )

∂

∂Y i
∈ Der(K[[Y ]]).

Then, the Ek’s span the space V of L-derivations of B; the space V is closed
under the operation [[A,B], C].

Proof. We have to show the very last statement only. In any Bol loop, the
identity t · yx = (t · xt) · t−1y holds. Its formal version is

µi(T ,µ(X,Y )) = µi(ϕ(T ,X),µ(e(T ),Y )).

Differentiating it by T k and putting T = 0 results

∂µi

∂Xk
(0,µ(X,Y )) =

∂µi

∂Xj
(X,Y )

∂ϕj

∂Xk
(0,X)−

∂µi

∂Y j
(X,Y )

∂µj

∂Xk
(0,Y ).

(3.17)
Let us define the K[[X ,Y ]]-derivations

Ak = χik(X)
∂

∂X i
,

and put Fk = Ak −Ek. Then, (3.17) can be equivalently written as

Fk(µ
i(X,Y )) = ξik(µ(X ,Y )). (3.18)

Applying (3.18) several times, we get

[[Fk, Fℓ], Fm](µi) = (FkFℓFm − FℓFkFm − FmFkFℓ + FmFℓFk)(µ
i)

= FkFℓ(ξ
i
m(µ))− FℓFk(ξ

i
m(µ))

−FmFk(ξ
i
ℓ(µ)) + FmFℓ(ξ

i
k(µ))

= Fk

(
∂ξim
∂Y r

(µ)ξrℓ (µ)

)

− Fℓ

(
∂ξim
∂Y r

(µ)ξrk(µ)

)

−Fm

(
∂ξiℓ
∂Y r

(µ)ξrk(µ)

)

+ Fm

(
∂ξik
∂Y r

(µ)ξrℓ (µ)

)

= U i
kℓm(µ),

where

U i
kℓm(T ) =

∂ξim
∂Y r

(T )
∂ξrℓ
∂Y s

(T )ξsk(T )−
∂ξim
∂Y r

(T )
∂ξrk
∂Y s

(T )ξsℓ (T )

−
∂ξiℓ
∂Y r

(T )
∂ξrk
∂Y s

(T )ξsm(T ) +
∂ξik
∂Y r

(T )
∂ξrℓ
∂Y s

(T )ξsm(T )

−
∂2ξiℓ

∂Y r∂Y s
(T )ξsm(T )ξrk(T ) +

∂2ξik
∂Y r∂Y s

(T )ξsm(T )ξrℓ (T )

∈ K[[T ]].
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On the other hand, straightforward calculation gives

[[Ek, Eℓ], Em] = U i
kℓm(Y )

∂

∂Y i
, (3.19)

for the series U i
kℓm(Y ) with k, ℓ,m = 1, . . . , n. Moreover, the invertibility

of the matrices (χik(T ))i,k and (ξik(T ))i,k implies the existence of elements
wikℓm(T ), w̄ikℓm(T ) ∈ K[[T ]] such that

[[Ek, Eℓ], Em] = wikℓm(Y )Ei,
[[Ak, Aℓ], Am] = w̄ikℓm(X)Ai

(3.20)

hold for all k, ℓ,m = 1, . . . , n. (3.19) and (3.20) imply

U i
kℓm(Y ) = wjkℓm(Y )ξij(Y ).

Combining this with [[Fk, Fℓ], Fm](µi) = U i
kℓm(µ), we obtain

[[Fk, Fℓ], Fm](µi(X,Y )) = wjkℓm(µ(X,Y ))ξij(µ(X,Y )). (3.21)

By [Ak, Eℓ] = 0, we have

[[Fk, Fℓ], Fm](µi) = w̄jkℓm(X)Aj(µ
i)− wjkℓm(Y )Ej(µ

i). (3.22)

Using Lemma 3.3.1, we get

Aj(µ
i(X,Y ))|X=0 = χsj(0)

∂µi

∂Xs
(0,Y ) = 2ξij(Y ),

Aj(ϕ
i(X,Y ))|X=0 = χsj(0)

∂ϕi

∂Xs
(0,Y ) = 2χij(Y ),

Ej(µ
i(X,Y ))|X=0 = ξsj (Y )

∂µi

∂Y s
(0,Y ) = ξij(Y ).







(3.23)

(3.23) can be applied to substitute X = 0 in (3.22):

[[Fk, Fℓ], Fm](µi(X,Y ))|X=0 = 2w̄jkℓm(0)ξij(Y )− wjkℓm(Y )ξij(Y ). (3.24)

Substituting X = 0 in (3.21), we obtain

[[Fk, Fℓ], Fm](µi(X,Y ))|X=0 = wjkℓm(Y )ξij(Y ). (3.25)

Now, if we compare (3.24) with (3.25) and use the invertibility of (ξik(T ))i,k,
we obtain the final result

wjkℓm(Y ) = w̄jkℓm(0) = wjkℓm(0) ∈ K (3.26)

for all k, ℓ,m, j = 1, . . . , n.
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Lemma 3.3.3. Let us use the notation of Lemma 3.3.2. If char(K) = 3,
then the space V of L-derivations is closed under the operation A 7→ A3.

Proof. We start with applying (3.18) several times to obtain

F 3
k (µi) = F 2

k (ξik(µ)) = Fk

(
∂ξik
∂Y r

(µ)ξrk(µ)

)

=
∂2ξik

∂Y s∂Y r
(µ)ξsk(µ)ξrk(µ) +

∂ξik
∂Y r

(µ)
∂ξrk
∂Y s

(µ)ξsk(µ)

= U i
k(µ).

At the same time, straightforward calculation gives

E3
k = U i

k(Y )
∂

∂Y i
= wjk(Y )Ej ,

where the existence of the power series wjk(Y ) ∈ K[[Y ]] follows from Lemma
3.3.1(iv). Thus,

F 3
k (µi) = wjk(µ)ξij(µ). (3.27)

On the other hand, still using Lemma 3.3.1(iv), we can put A3
k = w̄ik(X)Ak

for some series w̄ik(X) ∈ K[[X ]]. By [Ak, Ek] = 0, we have

F 3
k (µi) = A3

k(µ
i)− E3

k(µ
i) = w̄jk(X)Aj(µ

i)− wjk(Y )Ej(µ
i). (3.28)

Setting X = 0 in (3.27) and (3.28) and applying (3.23), we obtain

wjk(Y )ξij(Y ) = 2w̄jk(0)ξij(Y )− wjk(Y )ξij(Y ),

which gives
wik(Y ) = w̄ik(0) = wik(0) ∈ K

for all i, k = 1, . . . , n.

Proposition 3.3.4. The space of formally invariant derivations of a formal
Bol loop forms a Lie triple system. Moreover, if the characteristic of the
ground field is 3, then the Lie triple system is restricted.

Proof. Since the space of derivations is an associative algebra, the statements
follow immediately from Lemma 3.1.1, Lemma 3.3.2 and Lemma 3.3.3.

3.4 The infinitesimal formal associator

Let us a system of power series µi(X,Y ), ei(T ) defining a formal Bruck loop
be given. Let us assume that ei(T ) = −T i holds. This and the automorph
inverse property imply the series µi to have the form

µi(X,Y ) = X i + Y i + µi3(X,Y ) + o(5), (3.29)
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where µi3(X,Y ) is a homogenous polynomial of degree 3 in X1, . . . , Y n.
Moreover, µi3(X,−X) = 0 and µi3(−X ,−Y ) = −µi3(X,Y ) hold. We define
the associator series

αi(X ,Y ,Z) = µi(µ(µ(X,Y ),Z),−µ(X,µ(Y ,Z))).

On the one hand,

αi(0,Y ,Z) = αi(X, 0,Z) = αi(X,Y , 0) = 0

implies αi(X,Y ,Z) to have the form

αi(X,Y ,Z) = αi3(X,Y ,Z) + o(5),

where αi3 is a homogenous polynomial

αi3(X,Y ,Z) =
n∑

k,ℓ,m=1

ωikℓmX
kY ℓZm

of degree 3. Putting 〈x,y, z〉 = αi3(x,y, z) for the elements x,y, z ∈ K
n,

we get a trilinear map (Kn)3 → K
n. We call 〈., ., .〉 the infinitesimal formal

associator of the formal loop; it is clear that this concept is the precise analog
of the local analytic construction.

Proposition 3.4.1. Let us use the above notation and assumptions for the
power series µi of a formal Bruck loop. Let us identify the vector spaces K

n

and PDer(K[[Y ]]) via the canonical bases

{ǫ(i)|i = 1, . . . , n} and

{
∂

∂T i

∣
∣
∣
∣
T =0

|i = 1, . . . , n

}

.

Using this identification, let us define the K-linear map

Φ : K
n → b ≤ Der(K[[Y ]]), x 7→ D̃x.

Then, Φ is an isomorphism between the ternary algebras (Kn, 〈., ., .〉) and
(b, [[., .], .]).

Proof. Concerning the infinitesimal algebra b, we use the notation of Section
3.3. From ξik(0) = δik follows that Φ maps the canonical basis element ǫ(i) of
K
n to the basis element Ei of b. Let us denote by ωikℓm and wikℓm the structure

constants of (Kn, 〈., ., .〉) and (b, [[., .], .]) in these basis, respectively. We will
show that

wikℓm = −2ωikℓm (3.30)

holds for all k, ℓ,m, i = 1, . . . , n. We remark that this fact is in accordance
with [MS90, p. 419, (8.6)].
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Since we have

[[Ek, Eℓ], Em] = U i
kℓm(Y )

∂

∂Y i
= wikℓmEi,

U i
kℓm(Y ) = wjkℓmξ

i
j(Y ) holds, implying

wikℓm = U i
kℓm(0) =

∂2ξik
∂Y ℓ∂Y m

(0)−
∂2ξiℓ

∂Y k∂Y m
(0),

for µi(X,Y ) does not contain quadratic terms and
∂ξij
∂Y s

(0) = 0 for all i, j, s =

1, . . . , n. If we put

µi3(X,Y ) =
∑

1≤a<b<c≤n

giabc(X
a, Xb, Xc, Y a, Y b, Y c),

then we can write

wikℓm =
∂3giabc

∂Xk∂Y ℓ∂Y m
(0)−

∂3giabc
∂Xℓ∂Y k∂Y m

(0) (3.31)

for {a, b, c} = {k, ℓ,m}.
On the other hand, by (3.29) we have

αi(X,Y ,Z) = µi(µ(X,Y ),Z)− µi(X,µ(Y ,Z))
+µi3(µ(X,Y ) + Z + o(3),−X − µ(Y ,Z) + o(3))
+o(5)

= µi(µ(X,Y ),Z)− µi(X,µ(Y ,Z))
+µi3(µ(X,Y ) + Z,−X − µ(Y ,Z)) + o(5)

= µi(X,Y ) + Z i + µi3(µ(X,Y ),Z)
−X i − µi(Y ,Z)− µi3(X,µ(Y ,Z))
+µi3(X + Y + Z + o(3),−X − Y −Z + o(3)) + o(5)

= µi3(X,Y ) + µi3(X + Y + o(3),Z)
−µi3(Y ,Z)− µi3(X,Y + Z + o(3)) + o(5)

= (dµi3)(X,Y ,Z) + o(5),
(3.32)

where the operator d associate the function

(df)(X, Y, Z) = f(X + Y, Z) + f(X, Y )− f(X, Y + Z)− f(Y, Z)

to a function f(X, Y ). Thus, we obtain

αi3(X,Y ,Z) = (dµi3)(X,Y ,Z) =
∑

1≤a<b<c≤n

(dgiabc)(X
a, . . . , Zc). (3.33)

Now, by (3.31) and (3.33), all we have to show is the following statement:
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(*) For all a, b, c with 1 ≤ a < b < c ≤ n, the coefficient of XkY ℓZm in dgiabc
is precisely

−
1

2

(
∂3giabc

∂Xk∂Y ℓ∂Y m
(0)−

∂3giabc
∂Xℓ∂Y k∂Y m

(0)

)

for all k, ℓ,m with {k, ℓ,m} = {a, b, c}.

However, we should not forget that the series µi define a formal Bol loop.
With help of calculations of type (3.32), we get

(d′µi3)(X,Y ,Z) = 0 (3.34)

from the formal Bol identity, where the operator d′ associate the function

(d′f)(X, Y, Z) = f(2X + Y, Z) + f(X, Y +X) + f(Y,X)

−f(X, Y +X + Z)− f(Y,X + Z)− f(X,Z)

to a function f(X, Y ). For any 1 ≤ a, b, c ≤ n, putting Xj = Y j = Zj = 0
for all j 6∈ {a, b, c}, we obtain

(d′giabc)(X
a, Xb, Xc, Y a, Y b, Y c, Za, Zb, Zc) = 0.

Conversely, if d′giabc = 0 holds for all 1 ≤ a, b, c ≤ n, then (3.34) is satis-
fied. Using a short “Maple V” program, one can see that the homogenous
polynomial giabc satisfies d′giabc = 0 if and only if it has the form

s1 (XaXb Y a +Xb Y a2) + s2 (−Xa (Y c)2 + 2Xc Y a Y c + (Xc)2 Y a)

+ s3 (Xc (Y c)2 + (Xc)2 Y3) + s4 (2Xc Y b Y c −Xb (Y c)2 + (Xc)2 Y b)

+ s5 (−Xa (Y b)2 + 2Xb Y a Y b + (Xb)2 Y a)

+ s6 ((Xb)2 Y c −Xc (Y b)2 + 2Xb Y b Y c)

+ s7 ((Xb)2 Y b +Xb (Y b)2) + s8 (Xa (Y a)2 + (Xa)2 Y a)

+ s9 (−Xc (Y a)2 + 2Xa Y a Y c + (Xa)2 Y c)

+ s10 (XaXb Y a + (Xa)2 Y b + 2Xa Y a Y b)

+ s11 (−Xc Y a Y b +XaXb Y c +Xa Y b Y c +Xb Y a Y c)

+ s12 (XaXb Y b +Xa (Y2)
2)

+ s13 (XaXc Y a +Xc (Y a)2) + s14 (Xa (Y c)2 +XaXc Y c)

+ s15 (XaXc Y b +Xc Y a Y b −Xb Y a Y c +Xa Y b Y c)

+ s16 (Xb Y a Y c −Xa Y b Y c +Xc Y a Y b +XbXc Y a)

+ s17 (XbXc Y c +Xb (Y c)2) + s18 (Xc (Y b)2 +XbXc Y b)

with s1, . . . , s18 ∈ K. Some more (symbolic, thus programmable) calculation
gives that polynomials of the above form satisfy (*).



Chapter 4

Tangent algebras of algebraic
CML’s

4.1 Localization of algebraic loops

It is known that via the localization process, any algebraic group determines
a formal group (see [Die57, Sel67]). In this section, we explain this method
for the class of algebraic Bol loops and use it to describe the tangent algebra
of an algebraic Bol loop abstractly.

Let L be a Bol loop which is an (affine) algebraic variety over the alge-
braically closed field K such that the L× L→ L maps (x, y) 7→ xy, x/y, x\y
are morphisms. For simplicity, we assume L to be connected of dimension n.
Clearly, L is a smooth variety, that is, every point of L is simple.

We denote by ox(L) the ring of functions which are regular in x; we have
K[L] = ∩x∈Lox(L) and K(L) is the fraction field of K[L]. ox(L) is also called
the local ring of L at x. For a simple point x of L, ox(L) is a regular local ring
with maximal ideal Mx, we denote by Ox(L) its completion with respect to
the Mx-adic topology, Ox(L) can be identified with the ring of power series
K[[T ]] = K[[T 1, . . . , T n]] in n = dimL indeterminates (see [Die57, no. 14]).

Let us now consider the L× L → L morphism µ : (x, y) → xy. It maps
the simple point (e, e) of L×L to the simple point e of L, hence it defines a
homomorphism µ∗ of oe(L) into o(e,e)(L×L) = oe(L)⊗oe(L). By continuity,
µ∗ can be extended to a homomorphism

∆ : K[[T ]]→ K[[X ,Y ]]

of the completions K[[T ]] and K[[X ,Y ]] (T = (T i),X = (X i),Y = (Y i)).
We call δ the formal coproduct on K[[T ]]. Now, for each i = 1, . . . , n, we
define the power series µi(X,Y ) = ∆(T i).

We do the same for the inverting map x 7→ x−1 to define the power series
ei(T ). We write µ(X,Y ) = (µi(X,Y )) and e(T ) = (ei(T )). However, by
Lemma 3.2.1, it suffices to consider the series µi(X,Y ).

43
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Lemma 4.1.1. The formal power series µi(X,Y ) (i = 1, . . . , n) determine
a formal Bol loop in n variables.

Proof. We start with showing the Bol identity. Let us consider the mappings

u1 : (x1, x2, x3, x4) 7→ x1(x2 · x3x4),
u2 : (x1, x2, x3, x4) 7→ (x1 · x2x3)x4,
v : (x1, x2, x3) 7→ (x1, x2, x1, x3).

We have

u∗1(T ) = µ(X1,µ(X2,µ(X3,X4))));
u∗2(T ) = µ(µ(X1,µ(X2,X3)),X4);
v∗(X1) = X1, v

∗(X2) = X2, v
∗(X3) = X1, v

∗(X4) = X4,

where K[[T ]], K[[X1,X2,X3,X4]] and K[[X1,X2,X3]] are the completed
local rings of L, L4 and L3 at e, (e, e, e, e) and (e, e, e), respectively. However,
by the left Bol identity, we have u1 ◦ v = u2 ◦ v and v∗ ◦ u∗1 = v∗ ◦ u∗2, which
implies the equality

µ(X1,µ(X2,µ(X1,X4)))) = µ(µ(X1,µ(X2,X1)),X4)

of formal power series. This proves the Bol identity for µ, the other identities
can be shown in a similar way.

A point derivation δ in x ∈ L is a linear map ox(L) → K such that the
Leibnitz rule

δ(fg) = δ(f)g(x) + f(x)δ(g)

holds for all f, g ∈ K[L]. A derivation D on L is a linear map K(L)→ K(L)
such that

D(fg) = D(f)g + fD(g)

holds for all f, g ∈ K[L]. Obviously, a (point) derivation is completely de-
termined by its effect on K[L]. More precisely, a linear map K[L] → K

(K[L] → K[L]) satisfying the Leibnitz rule can be uniquely extended to a
(point) derivation of K(L).

It is well known that for a given point x ∈ L, the set of point derivations
can be identified with the tangent space Tx(L) of L in x (see [Hum75, p.
38]). Let us denote by l the tangent space Te(L) at the unit element. One
can associate any tangent vector α ∈ l to a derivation Dα in a well known
way. For any f ∈ K[L], we define Dα(f) by

Dα(f)(x) = α(τxf),

where the K(L)→ K(L) mapping τx is defined by (τxf)(y) = f(yx). Indeed,
one can use the calculations on [Hum75, p. 66 and 68] to show that D : α 7→
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Dα is an linear embedding PDer(K(L)) →֒ Der(K(L)) and Dα = (α⊗ 1) ◦ µ∗

where µ∗ is the loop coproduct K[L]→ K[L]⊗ K[L].

As explained above, one can embed oe(L) in K[[T ]] (T = (T 1, . . . , T n)) in
a canonical way. Clearly, every (point) derivation of oe(L) can be extended to
a (point) derivation of the ring of formal power series K[[T ]]. This extension
results a natural homomorphism Der(K[L])→ Der(K[[T ]]) of Lie algebras.

In the next lemma, we use the terminology and notation of Lemma 3.2.3.

Lemma 4.1.2. For the maps D : α 7→ Dα, D̃ : α 7→ D̃α we have D̃α ∈
Der(K[[T ]]) and the diagram

TeL
D
−−−→ Der(K[L])

natural



y



yextensions

PDer(K[[T ]]) −−−→
D̃

Der(K[[T ]])

commutes. The map Der(K[L]) → Der(K[[T ]]) is an embedding of Lie alge-
bras. Moreover, we have

D̃α = aiξji (T )
∂

∂T j
, with α = ai

∂

∂T i

∣
∣
∣
∣
T =0

and ξji (T ) =
∂µj

∂X i
(0,T ).

Proof. The mappings of the diagram are well well defined and the formula
for D̃α holds by Lemma 3.2.3. Let α be a point derivations pf K[L] with
completion α̃ ∈ PDer(K[[T ]]). The derivations Dα = (α⊗ 1) ◦ µ∗ and D̃α̃ =
(α̃⊗̂1)◦∆ are compatible since the formal coproduct ∆ : K[[T ]]→ K[[X ,Y ]]
is the completion of the coproduct µ∗ : K[L]→ K[L]⊗K[L] by definition.

We are now able to formulate our main result on the tangent structure
of algebraic Bol loops.

Theorem 4.1.3. Let L be an algebraic Bol loop over an algebraically closed
field K with char(K) 6= 2. We define the tangent algebra l of L as the space
of derivations {Dα|α ∈ Te(L)} of K(L). Then, l is a Lie triple system with
respect to the operation [[Dα, Dβ], Dγ]. Moreover, if char(K) = 3, then the
map Dα 7→ D3

α makes l into a restricted Lie triple system.

Proof. We keep using the notation of Chapter 3. By Lemma 4.1.2, the
correspondence Dα ↔ akEk defines an isomorphism between l and the space
V spanned by the Ek’s. Hence, Proposition 3.3.4 imply the theorem.

Remark. Clearly, any algebraic group G is an algebraic Bol loop. From
now on, in the sense of the above proposition, beside the tangent Lie algebra
of G we can speak of the tangent L.t.s. of G, as well.
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4.2 Loops as sections in algebraic groups

The method of considering loops as sections in their translation groups is
originally due to A.A. Albert ([Alb43], [Alb44]), for a very recent and exces-
sive reference see [NS99]. This method is extremely useful in the investigation
of Bruck and in particular commutative Moufang loops.

It is not the aim of this section to explain the method in details, but we
use it in order to recover the tangent algebra of an algebraic CML in the Lie
algebra of its multiplication group.

From now on, we consider the connected unipotent algebraic CML L. We
denote by H the group generated by the inner maps λx,y (x, y ∈ L) and by
G the multiplication group of L. From the proof of Theorem 2.4.2 we know
that G is isomorphic to L×H as a variety. Hence, we have the morphisms

ψ : G→ L and i : L→ G

such that i(x) = λx and ψ(λxh) = x for all x ∈ L and h ∈ H . Moreover,
for any x ∈ L and g ∈ G, the K-homomorphisms τx : K[L] → K[L] and
τ̄g : K[G]→ K[G] are defined by

(τxf)(x′) = f(x′x) and (τ̄gp)(g
′) = p(g′g)

for all x′ ∈ L, f ∈ K[L] and g′ ∈ G and p ∈ K[G].

Lemma 4.2.1. For all x ∈ L and h ∈ H, the following diagram commutes:

K[L]
τx−−−→ K[L]

ψ∗



y

x

i∗

K[G] −−−→
τ̄λxh

K[G]

Proof. With h′ = λyxλyλxh ∈ H , we have

(i∗τ̄λxhψ
∗ f)(y) = (τ̄λxhψ

∗ f)(λy)

= (ψ∗ f)(λyλxh) = (ψ∗ f)(λyxh
′)

= f(yx) = (τx f)(y)

for all y ∈ L and f ∈ K[L].
Let us denote by g the Lie algebra of G. Recall that the elements of g are

the (right) invariant derivations of K[G]; these are precisely the derivations
of the form Dα with point derivation α ∈ TeG (cf. [Hum75, Chapter III]);
by definition:

(Dαf)(g) = α(τ̄gf), g ∈ G.

Since i(e) = e, the morphism i defines a K-linear map di : TeL→ TeG.



4.2. LOOPS AS SECTIONS IN ALGEBRAIC GROUPS 47

Lemma 4.2.2. For any α ∈ TeL, the following diagram commutes:

K[L]
Dα−−−→ K[L]

ψ∗



y



yψ

∗

K[G] −−−→
Ddi(α)

K[G]

Proof. On the one hand, (ψ∗Dα f)(λxh) = (Dα f)(x) = α(τxf) holds for all
f ∈ K[L], x ∈ L and h ∈ H . On the other hand, we have

(Ddi(α)ψ
∗ f)(λxh) = di(α)(τ̄λxhψ

∗ f)

= α(i∗τ̄λxhψ
∗ f)

= α(τx f)

by Lemma 4.2.1.
We define the automorphism σ of G by σ(λxh) = λ−1

x h. It is clear that
σ is an involutive morphism of G (cf. [Bru58]), in the terminology of [NS99,
Section 11], G〈σ〉 is an algebraic reflection group with respect to the conju-
gacy class of σ.

Since σ(e) = e, the map dσ : α 7→ α ◦ σ∗ is an involutive automorphism
of TeG. Using the definitions given so far, we obtain

((σ∗Ddσ(α))f)(g) = (Ddσ(α)f)(σ(g)) = dσ(α)(τ̄σ(g)f)

= α(σ∗τ̄σ(g)f) = α(τ̄gσ
∗f)

= ((Dασ
∗)f)(g)

for all f ∈ K[G] and g ∈ G, whence Ddσ(α) = σ∗Dασ
∗. With other words,

the action of dσ on TeG is compatible the action δ 7→ σ∗δσ∗ of σ∗ on g. We
denote by (TeG)− and g− the nontrivial eigenspace of dσ and σ∗, respectively.
Clearly, g− is closed under [[., .], .].

Proposition 4.2.3. Let L be an algebraic CML with tangent algebra l. Let
G be the multiplication group of L with Lie algebra g. Then, the map Dα 7→
Ddi(α) (α ∈ TeL) defines an isomorphism between the Lie triple systems
(l, [[., .], .]) and (g−, [[., .], .]).

Proof. Clearly, the map Θ : Dα 7→ Ddi(α) (α ∈ TeL) is injective. Moreover,
since char(K) 6= 2, σ is a semisimple element, and by [Hum75, Proposition
18.1], g− is the tangent space of

{g−1σ(g)|g ∈ G} = {λx|x ∈ L},

which is isomorphic to L. Thus, dim l = dim g−. We still have to show
di(α) ∈ (TeG)− in order to see that Θ is a linear isomorphism between l
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and g−. And indeed, the composition L
(i,σi)
−→ G× G

µ
−→ G maps x to e, its

differential dµ ◦ (di, dσdi) is therefore 0. This means di(α) + dσ(di(α)) = 0
for all α ∈ TeL (cf. [Hum75, Proposition 10.1]), and implies σ∗Ddi(α)σ

∗ =
−Ddi(α) by the calculation above.

Finally, Lemma 4.2.2 implies ψ∗DαDβDγ = Ddi(α)Ddi(β)Ddi(γ)ψ
∗ for all

α, β, γ ∈ TeL, whence ψ∗[[Dα, Dβ], Dγ] = [[Ddi(α), Ddi(β)], Ddi(γ)]ψ
∗.

Let us now choose a basis α1, . . . , αn for TeL and consider the structure
constants wjkℓm, w̄jkℓm of l and g−, with respect to the basis Dα1 , . . . , Dαn and
Ddi(α1), . . . , Ddi(αn), respectively. As we just have seen,

ψ∗(wjkℓmDαj
) = (w̄jkℓmDdi(αj ))ψ

∗ = ψ∗(w̄jkℓmDαj
).

Substituting β = (wjkℓm − w̄
j
kℓm)αj ∈ TeL, we obtain ψ∗Dβ = 0. This implies

(Dβf)(x) = (ψ∗Dβf)(λx) = 0

for all f ∈ K[L] and x ∈ L, thus β = 0 and wjkℓm = w̄jkℓm holds for all
k, ℓ,m, j = 1, . . . , n.

4.3 Tangent algebras of algebraic CML’s

Theorem 4.1.3 shows that the tangent space of an algebraic Bol loop can
be endowed with a structure of a Lie triple system. In this section, we show
that for an algebraic commutative Moufang loop, the tangent algebra defined
in this way plays exactly the same role that Lie algebras do in the case of
algebraic groups.

In this section, we denote by α(x, y, z) the associator map (x·yz)−1·(xy ·z)
of a CML. For any non-negative integer i, Bruck [Bru58] defines the functions
fi on the commutative Moufang loop L by

f0(x, y, z) = α(x, y, z),

fi+1(x, y, z; a1, . . . , ai, u) = α(fi(x, y, u; a1, . . . , ai), u, z).

Let (b, (., ., .)) be a Lie triple system over a field K. For each non-negative
integer i, we define a function Fi on b by

F0(x, y, z) = (x, y, z),

Fi+1(x, y, z; a1, . . . , ai, u) = (Fi(x, y, u; a1, . . . , ai), u, z).

Theorem 4.3.1. Let L be an algebraic commutative Moufang loop with tan-
gent algebra l. Then, l is a restricted Lie triple system w.r.t. the operations
(Dα, Dβ, Dγ) = [[Dα, Dβ], Dγ] and D

[3]
α = D3

α (α, β, γ ∈ TeL). Moreover,
for each non-negative integer i, the functions Fi = Fi(x, y, z; a1, . . . , ai) are
symmetric in a1, . . . , an and skew-symmetric in x, y, z.
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Proof. We assume L to be connected w.l.o.g. and proper in order to avoid
trivialities. By Corollary 2.1.8, the base field has to have characteristic 3,
thus, by Theorem 4.1.3, (l, (., ., .)) is a restricted L.t.s. By Proposition 2.1.9,
L has a Jordan decomposition L = U × S with S ≤ Z(L). It is very easy to
see that this induces a decomposition l = u⊕ s, where u, s ⊳ l are the tangent
subalgebras of U and S, respectively, and the L.t.s. s is trivial. This means
that we may suppose L = U when considering non-trivial properties of the
tangent L.t.s. l.

By Theorem 2.1.10 and Lemma 2.2.3, L can be supposed to be identical
with K

n (n = dimL) such that X−1 = −X holds. Then, K[L] = K[T ] and
we can identify TeL with K

n by

(a1, . . . , an)←→ ai
∂

∂T i

∣
∣
∣
∣
T =0

.

Let us define the L.t.s. operation (., ., .) on K
n by

D(x,y,z) = [[Dx, Dy ], Dz],

clearly (Kn, (., ., .)) ∼= l holds. Furthermore, by Proposition 3.4.1, we have

α(x,y, z) = (x,y, z) + o(5).

This implies

fi(x,y, z; a1, . . . ,ai) = Fi(x,y, z; a1, . . . ,ai) + o(2i+ 5)

immediately. The properties of the functions fi given in [Bru58, Lemma
VIII.7.2.] imply the second part of the theorem.

Remark. One of the most important property of the tangent algebra of an
algebraic CML is that the L.t.s. operation alternates, i.e.,

(x, y, z) = −(y, x, z) and (x, y, z) = (y, z, x)

hold. Much to our regrets, this property is far not sufficient: If K is a field
of characteristic 3, then we can construct an L.t.s. on K

3 with structure
constants

w3
123 = −w3

132 = w3
231 = −w3

213 = w3
312 = −w3

321 = 1

and wikℓm = 0 for all other k, ℓ,m, i. We define the [3]-map to be the trivial
map x 7→ 0. The resulting ternary algebra is an “alternating” restricted
L.t.s., which does not happen to be the tangent algebra of a CML since
F1(x, y, y; a) = 0 is not satisfied.

On page 62, we will present an example for a proper formal Bruck loop (in
a generalized sense), whose tangent algebra is precisely the one just explained.
Similarly, one can show that now finite subset of the identities describing the
properties of the functions Fi characterizes the tangent algebras of algebraic
CML’s.
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Proposition 4.3.2. Let L and M be algebraic CML’s over the algebraically
closed field K and let u : L → M be a morphism of algebraic loops over K.
Then, the map Ψ : Dα → Ddu(α) (α ∈ TeL) defines a homomorphism between
the Lie triple systems l and m of L and M , respectively.

Proof. First we show that the diagram

K[M ]
Ddu(α)
−−−−→ K[M ]

u∗



y



yu∗

K[L] −−−→
Dα

K[L]

(4.1)

commutes. Indeed, for any f ∈ K[M ] and x, y ∈ L, we have (τxu
∗ f)(y) =

f(u(yx)) and (u∗τu(x) f)(y) = f(u(y)u(x)), hence τxu
∗ f = u∗τu(x) f . There-

fore,

(Dαu
∗ f)(x) = α(τxu

∗ f) = α(u∗τu(x) f) = du(α)(τu(x)f) = (u∗Ddu(α) f)(x).

The diagram implies DαDβDγu
∗ = u∗Ddu(α)Ddu(β)Ddu(γ) as well, hence

[[Dα, Dβ], Dγ]u
∗ = u∗[[Ddu(α), Ddu(β)], Ddu(γ)]

holds for all α, β, γ ∈ TeL. Let us put

Dδ = [[Dα, Dβ], Dγ ] and Dǫ = [[Ddu(α), Ddu(β)], Ddu(γ)]

with δ ∈ TeL and ǫ ∈ TeM . All we have to show is ǫ = du(δ). However, we
have Dδu

∗ = u∗Dǫ, thus u∗Dϕ = 0 with ϕ = du(δ)− ǫ. This means that

0 = (u∗Dϕ f)(e) = (Dϕf)(u(e)) = ϕ(f)

holds for all f ∈ K[L], whence ϕ = 0 and du(δ) = ǫ.
The following property of l is analog to the ones of Lie algebras given in

[Hum75, Lemma 8.5. and Lemma 9.4.].
Let H be a closed subloop of the algebraic CML L. The inclusion u : H →

L is an isomorphism onto a closed subloop, u∗ maps K[L] onto K[H ] = K[L]/I
(I the ideal vanishing on H). Therefore, du identifies TeH with a subspace
of TeG consisting of those α for which α(I) = 0. But u is also a morphism
of algebraic loops, so du : h → l is a L.t.s. homomorphism, which allows us
to view h as a Lie triples subsystem of l (see Proposition 4.3.2).

Proposition 4.3.3. Let H be a closed subloop of the algebraic CML L, I
the ideal of K[L] vanishing on H. Then H = {x ∈ L|τx(I) ⊆ I} and h =
{Dα|α ∈ TeL, Dα(I) ⊆ I}.
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Proof. See the proofs of [Hum75, Lemma 8.5. and Lemma 9.4.].
We have the following elementary formulas (cf. [Hum75, Proposition

10.1]).

Proposition 4.3.4. Let L be an algebraic CML with multiplication µ(x, y) =
xy and inverse mapping ι : x 7→ x−1. Then, for all α, β ∈ TeL:

(i) dµ(α, β) = α + β.

(ii) dι(α) = −α.

(iii) (dgx,y)(α) = (1− dλx,y)(α), where gx,y(z) = (x, y, z), (x, y, z ∈ L).

Proof. For (i) and (ii), see the proof of [Hum75, Proposition 10.1]. Since
by [Bru58, Lemma VIII.5.4.] we have gx,y(z) = (x, y, z) = zλx,y(z

−1), hence
gx,y is the composition µ ◦ (id, λx,y) ◦ (id, ι). If α ∈ TeL, then by (i) and (ii),
dgx,y(α) = dµ(α, dλx,y(−α)) = (1− dλx,y)(α).

Let us take an algebraic automorphism h of L. By diagram (4.1), we have
the action

Ddh(α) = (h−1)∗Dαh
∗ (4.2)

of dh on l. In particular, for any x, y ∈ L, we have the algebraic automor-
phism λx,y of L; we denote by Adx,y the action (4.2) on l. For any x ∈ L,
we have thus a map ux : L → hom(l, l), mapping y to Adx,y. hom(l, l)
has a natural structure of a variety. If ux is a morphism, then the map
u : L → hom(l, hom(l, l)), x 7→ dux is well defined. We will show that for
all x ∈ L, the maps ux and v are morphisms, and (dv)(α)(β)(γ) = 1

2
(α, β, γ)

holds. This fact is in analogy with [Hum75, Theorem 10.4].

Lemma 4.3.5. Let G be a 2-divisible algebraic group, that is, we assume
that the map x → x2 is a automorphism of the variety G. Let us denote by
ν : x 7→ x

1
2 the inverse of x 7→ x2. For any x, y ∈ G, we define the map

tx,y : G→ G by

tx,y(z) = (x−
1
2 y−1x

1
2 y)z(x−

1
2 y−1x

1
2 y)−1.

Then, for all x, y ∈ G, tx,y is a morphism. For any x ∈ G, let us define
the map ux : G → hom(g, g) by ux(y) = dtx,y. Then, for all x ∈ G, ux
is a morphism. Finally, we define the map v : G 7→ hom(g, hom(g, g)) by
v(x) = dux. Then, v is a morphism and

(dv)(α)(β)(γ) =
1

2
[[α, β], γ]

holds for all α, β, γ ∈ g.

Proof. For any x ∈ L, we define the G → G morphisms Int(x) (y) = xyx−1

and ψ(x) (y) = x−1y−1xy. Then, tx,y = Int(x−
1
2 y−1x

1
2y) and

dtx,y = Ad(x−
1
2 y−1x

1
2y) = (Ad ◦ψ(x

1
2 ))(y)
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in the notation of [Hum75]. Since for any x ∈ L, ψ(x
1
2 ) : G → G is a mor-

phism and Ad : G→ hom(g, g) is a morphism by [Hum75, Proposition 10.3],
vx is a morphism, as well. Moreover, dAd = ad and dψ(x) = 1−Ad(x−1) by

[Hum75, Proposition 10.1 and Theorem 10.4], thus, dux = ad ◦(1−Ad(x−
1
2 )).

ad : g→ hom(g, g) is linear map and Ad and x 7→ x−
1
2 are morphisms, thus

v : x 7→ dux is a morphism with differential

dv =
1

2
ad ◦ ad : g→ hom(g, hom(g, g)).

This finishes the proof of the lemma.

Let X1, X2, Y1, Y2 be (abstract) sets. We say that the maps f1 : X1 → Y1

and f2 : X2 → Y2 are (ϕ, ψ)-equivalent, if the maps ϕ : X1 → X2 and
ψ : Y1 → Y2 are bijections and f1 ◦ ψ = ϕ ◦ f2 holds. We express this fact
with the diagram

X1
f1
−−−→ Y1

ϕ



y



yψ

X2 −−−→
f2

Y2

.

If Y1 = Y2 and ϕ = ψ, we simply speak of ϕ-equivalence. Clearly, if
X1, X2, Y1, Y2 are varieties with morphism f1 and automorphisms ϕ, ψ of
varieties, then f2 is a morphism, as well.

Let V1, V2 be vector spaces, then hom(V1, V2) ∼= V ∗
1 ⊗ V2 in a natural

way. Now, if f1 : V1 → W1 and f2 : V2 → W2 are linear isomorphisms, then
they induce a hom(V1, V2) → hom(W1,W2) isomorphism, which we denote
by (f−1

1 )∗ ⊗ f2.

Lemma 4.3.6. The map L × L → hom(l, l), (x, y) 7→ dλx,y is a morphism
of algebraic varieties.

Proof. An element h ∈ H is an algebraic automorphism of L, normalizing
the set S = S(L). Moreover, h acts on L in the same way as it does on S
by conjugation. This is easy to show abstractly, and it follows from the con-
struction in the proof of Theorem 2.4.2 that the two actions are i-equivalent.
Thus, by Proposition 4.2.3, the linear action of dh on TeL is di-equivalent to
the linear action of Adh on g− ≤ g. By [Hum75, Proposition 10.3], the map
H → hom(g−, g−), h 7→ Adh is a morphism. On the other hand, the map
(x, y) 7→ Adx,y is precisely the composition of the morphisms

{
L× L→ H
(x, y) 7→ λx,y

,

{
H → GL(g−)
h 7→ Adh |g−
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and (di)−1 ⊗ (di)−1 : hom(g−, g−)→ hom(l, l). This gives us the diagrams

L
λx,y
−−−→ L

i



y



yi

S(L) −−−−→
ti(x),i(y)

S(L)

and

l
dλx,y
−−−→ l

di



y



ydi

g− −−−−−→
dti(x),i(y)

g−

.

We make two remarks for the next theorem. Due to the Jordan decom-
position L = U × S, we can assume L to be a connected, unipotent and
proper algebraic CML. Let us denote by G and H the translation group and
the group generated by the inner mappings of L. Let S(L) be the set of left
translations λx of L. Then G = S(L) × H ∼= L × H as variety. We denote
by i the automorphism x 7→ λx between the varieties L and S(L).

By Corollary 2.1.11, L has finite exponent of the form 3e, hence by [Bru58,
Lemma VIII.11.5.], G has finite exponent of the form 3f , thus, the group G
is 2-divisible.

Theorem 4.3.7. Let L be an algebraic CML with tangent L.t.s. (l, (., ., .)).
The map Ad : L × L → GL(l), defined by (x, y) 7→ Adx,y is a morphism of
algebraic varieties. The map Ux : L→ hom(l, l) defined by Ux(y) = Adx,y is
a morphism. Finally, the map V : L → hom(l, hom(l, l)) defined by V (x) =
dUx is a morphism with differential

(dV )(α)(β)(γ) =
1

2
(α, β, γ).

Proof. Applying the definition of morphically equivalent actions, we get first
the diagrams

L
Ux−−−→ hom(l, l)

i



y



y(di−1)∗⊗di

S(L) −−−→
ui(x)

hom(g−, g−)

and

l
dUx−−−→ hom(l, l)

di



y



y(di−1)∗⊗di

g− −−−→
dui(x)

hom(g−, g−)

,

explaining us the equivalences of the mappings dUx and dui(x) for all x ∈ L.
Using the same thing once more, we get

L
V
−−−→ hom(l, hom(l, l))

i



y



y(di−1)∗⊗(di−1)∗⊗di

S(L) −−−→
v

hom(g−, hom(g−, g−))

l
dV
−−−→ hom(l, hom(l, l))

di



y



y(di−1)∗⊗(di−1)∗⊗di

g− −−−→
dv

hom(g−, hom(g−, g−))







(4.3)
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representing the equivalences of the mappings V and v. Using Lemma 4.3.5,
we obtain that all maps mentioned in the proposition are morphism, and by
Proposition 4.2.3, the diagrams (4.3) give precisely

(dV )(α)(β)(γ) =
1

2
(α, β, γ).

An ideal (see [Lis52]) of a L.t.s. b is a subspace h such that for

(x, y, h), (x, h, y), (h, x, y) ≤ h

holds all x, y ∈ b. The center z(b) of b is the subspace consisting of the
elements z ∈ b such that

(z, b, b) = (b, z, b) = (b, b, z) = 0.

Proposition 4.3.8. Let K be a closed normal subloop of the algebraic CML
L. Then, the tangent L.t.s. k of K is an ideal in l.

Proof. To say that K is normal is to say that all λx,y (x, y ∈ L) stabilize K;
hence Adx,y (x, y ∈ L) stabilize k. Thus, in an appropriate basis, Adx,y has
the form (

∗ ∗
0 ∗

)

. (4.4)

Let us denote by M the subspace of hom(l, l), consisting of matrices of
the form (4.4). Then, Ux maps L to M and V (x) = dUx ∈ hom(l,M).
Since hom(l,M) is a linear subspace of hom(l, hom(l, l)), we have (dV )(α) ∈
hom(l,M) for all α ∈ l. This means that (dV )(α)(β) has the form (4.4) for
all α, β ∈ l, hence

(dV )(α)(β)(γ) =
1

2
(α, β, γ) ∈ k

for all γ ∈ k. By the alternation property of l, this suffices to have k ⊳ l.

Proposition 4.3.9. Let A, B and C closed subloops of the algebraic CML
L with tangent algebras a, b, c, respectively. Let D be the subloop (A,B,C),
generated by the associators. Then, the tangent algebra d of D contains all
elements

γ − Adx,y(γ), β − Adx,z(β), α− Ady,z(α),
V (x)(β)(γ), V (y)(α)(γ), V (z)(α)(β) and (α, β, γ)

(x ∈ A, y ∈ B, z ∈ C, α ∈ a, β ∈ b, γ ∈ c).

Proof. All concepts of the statement are well defined, since by Proposition
2.1.5, D is a closed subloop of L. We use the notation of Proposition 4.3.4.
For x ∈ A, y ∈ B, gx,y maps C → D, so the differential 1−Adx,y maps c→ d.
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This yields the elements of the first type listed, similarly for the second and
third type.

For fixed x ∈ A and γ ∈ c, consider the morphism B → d, y 7→ γ −
Adx,y(γ) = γ−Ux(y)(γ). Since it maps e to 0, we can compute its derivative
b → d, mapping β to V (x)(β)(γ) ∈ d (since V (x) = dUx). This works for
elements of the 4th, 5th and 6th types.

Finally, for fixed β ∈ b and γ ∈ c, we have the A → d morphism x 7→
V (x)(β)(γ), its derivative maps an element α ∈ a to the element

(dV )(α)(β)(γ) =
1

2
(α, β, γ)

of d, showing (α, β, γ) ∈ d.

Corollary 4.3.10. Let L be an algebraic CML with associator subloop L′ =
(L,L, L). Then, the tangent L.t.s. l′ of L′ includes (l, l, l) (= the set of all
linear combinations of elements (α, β, γ), α, β, γ ∈ l).



Chapter 5

The Cartier duality of formal
Bruck loops

In this chapter, we extend the definition given in Chapter 3 for formal loops.
The new definition enables us to prove a functorial equivalence between the
category of (restricted) Lie triple systems and a certain subcategory of the
category of formal Bruck loops in characteristic 0 and 3. Our construction
generalizes an analogous result of P. Cartier [Car62, Théorème 3, 4] on (re-
stricted) Lie algebras and formal groups.

5.1 Generalized formal loops

In Chapter 3, we defined a formal loop as an n-tuple µ(X,Y ) = (µi(X,Y ))
of elements of the ring K[[X ,Y ]] of formal powers in 2n variables. In this
case, the ring K[[T ]] (T = (T 1, . . . , T n)) of formal power series in n vari-
ables “imitated” the role of the ring of the regular functions of an algebraic
loop. For this reason, we will call K[[T ]] the function ring of the formal loop
µ(X,Y ).

From now on, the definition of formal loops remains unchanged if the
ground field K has characteristic 0. However, if char(K) = p > 0, then
we allow the ring K[[T ]]/I as formal function ring, as well, where the ideal
I ⊳ K[[T ]] is generated by elements of the form (T j)p

k
with j ∈ {1, . . . , n}

and k ≥ 1. This means that the power series µi(X,Y ) defining the formal
product are elements of the ring K[[X ,Y ]]/J , where the ideal J is generated
by the elements (Xj)p

k
, (Y j)p

k
with the above indices j, k.

In the following, the function ring of a formal loop will be still denoted
by K[[T ]], where (T j)p

k
= 0 is allowed when char(K) = p > 0. We will say

that the formal loop has height h if (T i)p
h+1

= 0 holds for all i ∈ {1, . . . , n}.
If there exists no positive integer h with this property, then we speak of a
formal loop of infinite height (cf. [Die73, Chapter II]).

56
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Clearly, the concept of derivations, point derivations, tangent algebras,
formal Bol loops and formal Bruck loops can be taken over to this extended
definition without any difficulty. The most important results concerning
formal Bol loops, like the Lemmas 3.3.2, 3.3.3, 3.2.2 and Proposition 3.4.1,
remain true.

There is another, more abstract way to define formal loops in the above
sense; this was done for formal groups by P. Cartier [Car62] and J. Dieudonné
[Die73]. Their definition is based on the properties of the function ring
A = K[[T ]]. On the one hand, A is clearly a commutative, associative algebra
over the field K. Moreover, A is a local ring with unique maximal ideal
M = (T 1, . . . , T n). Introducing the M-adic topology on A, it turns out
to be a linearly compact vector space with continuous algebra operations.
One can deduce from [Car62, Théorème 2] and [Die73, Chapter II] that
these properties (linearly compact, commutative, associative local algebra)
characterize the rings K[[T ]]/I, where I = 0 if char(K) = 0 and I is as above
if char(K) = p > 0.

Let us now consider the category ALCK of linearly compact, commutative,
associative local K-algebras. Morphisms are the continuous algebra homo-
morphisms, and the sum of the objects A and B can be defined as follows.
We endow the vector space A ⊗ B with the tensor product topology and
construct the completed tensor product A⊗̂B as the topological completion
of A⊗B via Cauchy sequences.

Finally, we can put on A the structure of a formal loop using the concept
of a coproduct, which is a continuous homomorphism

c : A→ A⊗̂A

and a counit (or augmentation), which is a continuous homomorphism

γ : A→ K,

sending both homomorphisms unit to unit.
In the original definition, for A = K[[T ]]/I, we have

A⊗̂A = K[[X,Y ]]/J

(I and J defined as above) and the coproduct is induced by the map T i 7→
µi(X,Y ).

The associativity of the formal loop (i.e., formal groups) translates to the
following commutative diagram:

A

c

��

c
// A⊗̂A

c⊗1
��

A⊗̂A 1⊗c
// A⊗̂A⊗̂A
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Other loop identities can be expressed by diagrams, too. However, even sim-
ple looking loop identities produce rather complex diagrams. For example,
the loop identity x(xy) = x2y has diagram

A

c

��

c
// A⊗̂A

c⊗1
// A⊗̂A⊗̂A

µ⊗1

��

A⊗̂A 1⊗c
// A⊗̂A⊗̂A µ⊗1

// A⊗̂A

In the rest of this chapter, we will use the naive concept of formal loops and
groups.

5.2 Cartier duality of formal groups

In this section, we explain the functorial equivalence between the category
of Lie algebras (restricted Lie algebras) and the category of formal groups
(formal groups of height 0).

Theorem 5.2.1 (Cartier). Let K be a field and let us denote the Lie algebra
of the formal group G by L(G).

a) If char(K) = 0, then L is an equivalence between the category of formal
K-groups and the category of Lie algebras over K.

b) If char(K) = p > 0, then L is an equivalence between the category of
formal K-groups of height 0 and the category of restricted Lie algebras over
K.

Proof. See [Car62, Théorème 3,4].
Using the formal Campbell-Hausdorff series of Lie groups, part a) of the

theorem can be shown immediately. However, the proof of part b) needs
some higher algebra. The idea is the following. Let g be a restricted Lie
algebra over the field K with char(K) = p > 0, let B = {b1, . . . , bn} be a
basis of g. Then, the restricted universal associative algebra Up(g) is a finite
dimensional K-space with basis

{bs11 · · · b
sn
n |0 ≤ s1, . . . , sn < p}

(see [Sel67, Theorem I.3.2]). One can introduce a cocommutative, coassocia-
tive coproduct on the associative algebra Up(g) by extending the map

g→ g⊕ g, x 7→ x⊕ x

into a map Up(g) → Up(g ⊕ g) = Up(g) ⊗ Up(g). Similarly, the trivial map
g→ 0 extends to a counit Up(g)→ K.

Now, if we consider the dual vector space A = Up(g)∗, A turns out to be a
finite dimensional, commutative, associative algebra with one, coassociative



5.3. THE GENERALIZATION OF THE CARTIER DUALITY 59

coproduct and counit. The basis of the dual space A can be (symbolically)
written in the form

{(T 1)s1 · · · (T n)sn|0 ≤ s1, . . . , sn < p}.

One shows that the commutative algebra structure of A is such that A is
isomorphic to the ring K[[T 1, . . . , T n]]/((T 1)p, . . . , (T n)p) of formal power se-
ries of height 0. Finally, the images µi(X,Y ) of the generating elements T i

under the coproduct map A→ A⊗A = K[[X,Y ]]/((X i)p, (Y j)p) define the
formal group G we were looking for. The coassociativity of the coproduct is
equivalent to the formal associativity of G.

5.3 The generalization of the Cartier duality

In this section, we generalize Theorem 5.2.1 for the category of formal Bruck
loops. Since our result uses heavily the embeddings of the tangential L.t.s.
of the formal Bruck loop (cf. Theorem 3.1.2), we have to restrict ourselves
to the case char(K) ∈ {0, 3}. However, a proof of Theorem 3.1.2 for the case
char(K) > 3 would immediately imply the full generality of the Theorem
5.3.1.

Let K be a field of characteristic 0 (characteristic 3) and let us denote by
L(B) the tangent (restricted) L.t.s. of the formal Bruck loop B.

Theorem 5.3.1. a) If char(K) = 0, then L is an equivalence between the
category of formal Bruck loops over K and the category of Lie triple systems
over K.

b) If char(K) = 3, then L is an equivalence between the category of formal
Bruck loops of height 0 over K and the category of restricted Lie triple systems
over K.

Proof. Since the construction of the tangent algebra of a formal Bruck loop
B is natural, the non-trivial part of the proof is to obtain the inverse of L,
that is, to find the formal loop of a given (restricted) L.t.s.

In [Nag99b], we showed the existence of a Campbell-Hausdorff formula
of local analytic Bruck loops. This means that if B is a local analytic Bruck
loop with tangent L.t.s. (b, (., ., .)), then we have the following: Identifying
the unit element of B with 0 we can choose an appropriate coordinate system
on B in such a way that in a neighborhood U of the unit element, the local
multiplication of B is given by the absolutely convergent series

∞∑

k=0

d2k+1(X, Y ), (5.1)
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where X, Y ∈ U and d2k+1(X, Y ) is a homogenous (., ., .)-polynomial of de-
gree 2k + 1. Moreover, the (., ., .)-polynomials are universal and the coeffi-
cients are rational numbers not depending on B or b.

Now, if char(K) = 0, then Q ⊂ K and we can take the series (5.1) as
a formal power series over K in n = dim b variables and forget about the
convergence in order to obtain part a) of the theorem for any field K of
characteristic 0. (On local analytic Bruck loops and their expansions see
also [MS90], [NS98] and [Fig99].)

Let us now assume char(K) = 3 and let b be a restricted L.t.s. over K.
In Theorem 3.1.2, we have shown that b can be embedded in a restricted Lie
algebra g of finite dimension. Moreover, we had the vector space decompo-
sition g = b⊕D, where D was a restricted Lie subalgebra of g, consisting of
derivations of b.

We define the map

σ : g→ g, x+ δ 7→ −x+ δ (x ∈ b, δ ∈ D).

A direct calculation gives that σ is an involutorial automorphism of g. Then,
σ can be lifted to an involutorial automorphism of the restricted universal
associative algebra U3(g) of g, we denote this algebra automorphism by σ, as
well. As we explained in the previous section, U3(g) is an associative algebra
with a cocommutative, coassociative coproduct and a counit. Clearly, σ is
an automorphism with respect to the co-operations, too.

Let us consider the dual algebra A = (U3(g))∗ together with the dual
(algebra and coalgebra) automorphism σ∗. As before, the commutative, as-
sociative algebra A is isomorphic to K[[T 1, . . . , T n]/((T i)3), the coproduct,
antipodism (=coinverse) and the dual automorphism σ∗ are given by the
maps

T i 7→ µi(X,Y ), ei(T ), si(T ),

respectively. Clearly, we have si(s(T )) = T i.

Lemma 5.3.2. With an appropriate change of coordinates, the series ei and
si can be brought to the form ei(T ) = −T i and si(T ) = ±T i.

Proof. By Lemma 3.2.2, we can assume that e(T ) = −T . Let us define the

matrix D = (dij) by dij = ∂si

∂T j (0), that is,

si(T ) =
∑

j

dijT
j +
∑

terms of degree ≥ 2 w.r.t. T i

and D2 = 1. We define the system of power series ui(T ) by

u(T ) = s(T ) +DT .

One gets u(s(T )) = Du(T ) immediately. On the other hand, u(T ) has
non-zero Jacobian. Thus, the map T i 7→ ui(T ) induces an automorphism of
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A which is a change of coordinates resulting s(T ) = DT . Now, by D2 = 1,
a linear substitution gives si(T ) = ±T i.

Finally, we have to show that the change of coordinates, induced by
T i 7→ ui(T ) does not affect the form of ei(T ) = −T i. Indeed, since s is
an automorphism w.r.t. the antipodism e, we have

u(−T ) = s(−T )−DT = −s(T )−DT = −u(T ).

We suppose now that the formal group G = (µi(X,Y )) on A is given such
that ei(T ) = −T i (i = 1, . . . , n), si(T ) = −T i (i = 1, . . . , m) and si(T ) = T i

(i = m+1, . . . , n) hold. It follows from Cartier’s Theorem 5.2.1 that the tan-
gent algebra of G is the restricted Lie algebra g. Clearly, the automorphism
σ∗ = s of G induces an involutorial automorphism ds of g and g decomposes
into g = g−⊕ g+. Moreover, since the induced Lie algebra automorphism ds
is the original σ, we have g− = b and m = dim b.

Following Glauberman [Gla64], to any 2-divisible Bol loop one can asso-
ciate a 2-divisible Bruck loop with operation

x ◦ y = x
1
2 · yx

1
2 .

In the next lemma, we copy this trick on formal Bol loops and use it for the
formal group G later on.

Lemma 5.3.3. Let the series (µi(X,Y )) define a formal Bol loop L with
with formal square root operation (νi(T )) and tangent L.t.s. l. Then, the
series

µ̂i(X,Y ) = µi(ν(X),µ(Y ,ν(X)))

define a formal Bruck loop L̂ such that
a) the inverting e and any automorphism of L are automorphisms of L̂.
b) the tangent L.t.s. l̂ of L̂ is isomorphic to l.

Proof. The fact that (µ̂i(X,Y )) is a formal Bruck loop can be shown in the
same steps that one uses to check the properties of the operation x ◦ y =
x

1
2 · yx

1
2 , cf. [Gla64], [MS90] or [NS99]. Part a) follows immediately.

Let us now consider the tangent algebras l and l̂ and use the notation of
Section 3.3. The tangent algebras are spanned by the derivations {Ek} and
{Âk} with

Ek = ξik(Y )
∂

∂Y i
, Êk = ξ̂ik(Y )

∂

∂Y i

and

ξik(Y ) =
∂µi

∂Xj
(0,Y ), ξ̂ik(Y ) =

∂µ̂i

∂Xj
(0,Y ).

Let us now recall the notation

ϕi(X,Y ) = µi(X,µ(Y ,X)), χik(Y ) =
∂ϕi

∂Xj
(0,Y ), Ak = χik(X)

∂

∂X i
.
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Clearly, µ̂(X,Y ) = ϕ(ν(X),Y ), thus, by ν(T ) = 1
2
T + . . .

ξ̂ik(Y ) =
1

2
χik(Y )

holds. Hence, {Êk} and {Ak} span isomorphic algebras. In particular, {Ak}
spans an restricted Lie triple, say l′. If we denote the structure constants of
l and l′ by wikℓm and w̄ikℓm, respectively, then the equations (3.20) and (3.26)
give wikℓm = w̄ikℓm.

This shows that l and l′ are isomorphic Lie triple systems. We can simi-
larly argue to see that the [3]-maps are isomorphic, too.

Using this lemma, we define the formal Bruck loop Ĝ = (µ̂i(X,Y )) on
G. All we have to show is that Ĝ has a formal subloop whose tangent space
is the subspace b = g−. Although the theory of formal subloops is rather
elaborated and we do not intend to go into details, the problem can be solved
very easily.

Lemma 5.3.4. The equations Tm+1 = . . . = T n = 0 define a formal subloop
of Ĝ whose tangent algebra is b.

Proof. All we have to show that the “space” Tm+1 = . . . = T n = 0
is closed under µ̂. Let us put X0 = (X1, . . . , Xm, 0, . . . , 0) and Y 0 =
(Y 1, . . . , Y m, 0, . . . , 0) and show

µ̂t(X0,Y 0) = 0, t = m+ 1, . . . , n.

Indeed, since e and s are automorphisms of Ĝ, we have

−µ̂t(X0,Y 0) = et(µ̂(X0,Y 0)
= µ̂t(−X0,−Y 0)
= µ̂t(s(X0), s(Y 0))
= st(µ̂(X0,Y 0))
= µ̂(X0,Y 0)

for any t ∈ {m+ 1, . . . , n}, which implies µ̂t(X0,Y 0) = 0.
This finishes the proof of Theorem 5.3.1.

An interesting example

The method explained so far can be applied to calculate the formal Bruck
loop of height 0 of a given restricted L.t.s. We did the calculation for the
example given on page 49. Thus, the following formal Bruck loop of height
0 has an “alternating” tangent L.t.s. but it is not a formal CML. (Actually,
it has trivial center, it is solvable but not nilpotent.)
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



X1 + Y1

X2 + Y2

X3 + Y3 + (X1 − Y1)(X2Y3 −X3Y2) + µ5(X,Y ) + µ7(X,Y )





µ5(X,Y ) = −X2
1 X

2
2 Y3 +X2

1 X2X3 Y2 +X1X
2
2 X3 Y1 −X1X

2
2 Y1 Y3

+X1X2X3 Y1 Y2 +X2
2 X3 Y

2
1 −X

2
2 Y

2
1 Y3 +X2X3 Y

2
1 Y2

µ7(X,Y ) = −X2
1 X

2
2 X3 Y1 Y2

For obtaining this example and for checking its correctness, we used the
computer algebra program GAP4 [Gro98].



Chapter 6

Commutative alternative
algebras

In this chapter, we consider a special class of algebraic commutative Moufang
loops, namely the loop of units of a commutative alternative algebra. More
precisely, starting with a finite commutative Moufang loop L and a field K

of characteristic 3 we constract a finite dimensional commutative alternative
algebra as a factor of the loop ring KL.

6.1 Alternative algebras and bimodules

An algebra A over the field K is a finite dimensional vector space over K

which is at the same time a distributive ring. In this chapter, we don’t
require neither the multiplication to be associative nor the existence of a
multiplicative unit. Subalgebras and ideals of a non-associative algebra can
be defined in the obvious way.

For the algebra A we define the commutator and associator brackets:

[x, y] = xy − yx, [x, y, z] = xy · z − x · yz.

Both maps are linear in every variable, and the commutator bracket is anti-
commutative. The commutator and associator brackets are linked with the
following identities.







[xy, z] + [yz, x] + [zx, y] = [x, y, z] + [y, z, x] + [z, x, y]
[[x, y], z] + [[y, z], x] + [[z, x], y] = [x, y, z]− [y, x, z] + [y, z, x]

−[z, y, x] + [z, x, y]− [x, z, y]
(6.1)

The algebra A is an alternative algebra when

x(xy) = x2y, x(yx) = (xy)x, (xy)y = xy2

64
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holds for all x, y ∈ A. These equations can be expressed with the associator
bracket: [x, x, y] = [x, y, x] = [x, y, y] = 0. By polarization, the associator
bracket turns out to be an alternating map from A × A × A to A. Con-
versely, the alternating property for the associator bracket implies A to be
an alternative algebra. For alternative algebras, the identities (6.1) become

{
3[x, y, z] = [xy, z] + [yz, x] + [zx, y],
6[x, y, z] = [[x, y], z] + [[y, z], x] + [[z, x], y].

(6.2)

That is, if char(K) 6= 2, 3, the commutator map determines the associator.
Furthermore, if char(K) 6= 3, a commutative alternative algebra is associative.

Let us now suppose that char(K) = 3 and A be a commutative algebra.
Then, [x, y, z] = −[z, y, x] holds for all x, y, z; thus, for A to be alternative,
it suffices to have [x, y, z] = −[y, x, z], which is equivalent to

xy · z + yz · x+ zx · y = 0. (6.3)

Proposition 6.1.1. The set A∗ of the units of a commutative alternative
algebra A form an algebraic commutative Moufang loop.

Proof. To see that A∗ is a CML, we take an element x ∈ A∗; this means
that there is an element x−1 ∈ A such that x−1x = 1. We have to show that
x−1 · xy = y holds for all y ∈ A. Let us first suppose xy = 0. By (6.3), we
have

xy · x−1 + yx−1 · x+ x−1x · y = 0,

thus, y = −x · x−1y. By [Sch66, p. 28.], alternative algebras satisfy the left
Bol identity (1.2), hence

x−1y = −x−1(x · x−1y) = −x−1y,

and x−1y = 0 = −x · x−1y = y. Let us now suppose y 6= 0, then xy 6= 0,
and because of xy = x(x−1 · xy), one has x(x−1 · xy − y) = 0. This gives us
x−1 · xy = y = yx · x−1 and A∗ is a loop.

On the other hand, the algebra multiplication is bilinear, hence given by
quadratic polynomials over K. The set A∗ is isomorphic to the Zariski closed
subset {x⊕ y ∈ A⊕A|xy = 1} of A⊕ A.

6.2 Bimodules and loop representations

For an associative K-algebra A and a K-vector space M , we use the concepts
of A-modules and A-bimodules in the usual sense.

Let now A be an alternative K-algebra. Following [Sch66, p. 65.], the K-
vector space M is said to be an A-bimodule , when the actions (a,m) 7→ a.m
and (m, a) 7→ m.a are given on both sides such that

a.(a.m) = a2.m a.(m.a) = (a.m).a (m.a).a = m.a2

(a.m).b− a.(m.b) = −a.(b.m) + ab.m = −(m.a).b+m.ab.
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Analogously to the associative case, this implies that the semidirect product
defined by

(a,m)(b, n) = (ab, a · n+m · b)

is an alternative algebra B = A + M with subalgebra A and nilideal M . If
A is commutative, then it suffices to define the action on one side and to
require the analogue of (6.3)

ab.m+ a.(b.m) + b.(a.m) = 0. (6.4)

An easy non-associative example for a commutative bimodule is the fol-
lowing. Let K be an arbitrary field of characteristic 3, A = K

2 a nilalgebra
and M = K

4 a vector space. Let us define the action of a = (x, y) on v ∈M
by

a.v =







0 x y 0
y

0 −x
0






· v.

Since a.(a.v) = 0 = a2.v, we have a.(b.v)+b.(a.v) = 0 by polarization, which
is enough because of ab = 0. Moreover, with a = (x, y) and a′ = (x′, y′),

a.(a′.v) =







0 0 0 xy′ − x′y
0

0 0
0






· v

is not zero in general, hence the semidirct sum B = A + M is a proper
commutative alternative algebra.

Let (L, ·) be a 2-divisible CML, M a K-space, char(K) = 3. The mapping
ρ : L→ GL(M) is by definition a representation of L if

ρ(x−1) = ρ(x)−1 and ρ(xy) =
1

2
(ρ(x)ρ(y) + ρ(y)ρ(x)) (6.5)

for all x, y ∈ L. If L is finite, then the condition ρ(x−1) = ρ(x)−1 can be
replaced by ρ(1) = 1. Furthermore, ρ(xyx) = ρ(x)ρ(y)ρ(x) follows from the
definition immediately.

A representation ρ of L is called linear , if for all x1, x2, x3 ∈ L holds

∑

{i,j,k}={1,2,3}

ρ(xi)ρ(xj)ρ(xk) = 0 (6.6)

Let us define the kernel ker ρ = {x ∈ L; ρ(x) = 1}. We claim that
ρ(x) = ρ(y) if and only if xy−1 ∈ ker ρ; the “if” part being trivial. Conversely,
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ρ(x) = ρ(xa) implies ρ(x
1
2 )2 = ρ(x

1
2 )ρ(a)ρ(x

1
2 ) and ρ(a) = 1. For any

n,m ∈ ker ρ and x, y ∈ L we have

ρ(xn · ym) = 1
2
(ρ(xn)ρ(ym) + ρ(ym)ρ(xn))

= 1
2
(ρ(x)ρ(y) + ρ(y)ρ(x))

= ρ(xy),

which means that ker ρ is a normal subloop of L and ρ̄(x · ker ρ) = ρ(x) is
a faithful representation of L/ ker ρ. A representation with trivial kernel is
called faithful.

Equation (6.3) implies that A∗ → GL(A), x 7→ Lx is a representation.
(1

2
= −1 (mod 3)). We remark, that A∗ 6= ∅ if and only if A has a multi-

plicative unit. In this case, this representation is faithful and linear, as we
shall show now.

For a representation ρ, the loop identity x · xy = x2y implies

ρ(x)2ρ(y) + ρ(x)ρ(y)ρ(x) + ρ(y)ρ(x)2 = 0. (6.7)

This gives the condition (6.6) after “polarization”. Of course, in general,
ρ(x)+ρ(y) 6= ρ(z). But in A∗, we have Lx+Ly = Lx+y, thus the polarization
method works, and the representation turns out to be linear. This proves
the following lemma.

Lemma 6.2.1. Let A be a commutative alternative algebra with unit 1. Then
the loop of units A∗ of A is not empty, and the map x 7→ Lx (x ∈ A∗) is a
faithful linear representation of A∗.

The next proposition shows that for a CML linear representations corre-
spond precisely to embeddings in commutative alternative algebras; this is
the reason for our choice of terminology.

Proposition 6.2.2. Let L be a finite CML. A homomorphism of L in the loop
of units of a commutative alternative algebra defines a linear representation of
L. Conversely, a linear representation of L defines a homomorphism L→ A∗

for some commutative alternative algebra A.

Proof. Lemma 6.2.1 proves the first statement. Let us now take a linear rep-
resentation ρ : L→ GL(M) and put M = ρ(L). On the one hand, M is closed
under the commutative, bilinear operation a ◦ b = 1

2
(ab+ ba), hence so does

the linear span A = 〈M〉, as well. In order to check the alternativity of the
commutative K-algebra (A, ◦) it suffices to show [a1, a2, a3]

◦ = −[a2, a1, a3]
◦

for the generating elements ai = ρ(xi) ∈ M (xi ∈ L, i = 1, 2, 3). But ρ is
linear and

[a1, a2, a3]
◦ + [a2, a1, a3]

◦ =
1

2

∑

{i,j,k}={1,2,3}

aiajak = 0

holds by (6.6). Hence, (A, ◦) is s commutative alternative algebra and ρ :
L→ (A∗, ◦) is a loop homomorphism.
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6.3 Commutative Moufang loop rings

Let T be a finite CML of odd order and K an arbitrary field of characteristic
3. We define the linear space V = KT , and its subspaces

V0 = 〈x− y; x, y ∈ T 〉, W0 = 〈x+ y + (xy)−1; x, y ∈ T 〉.

Obviously, V0 is just a hyperplane (sum of the coefficients is 0), and W0 ≤ V0.
A question arises naturally: “How big is W0 in V0?”. In Lemma 6.3.2, we
completely answer this question. We first prove a lemma.

Lemma 6.3.1.

(i) Let T = Z3 be the group of order 3. Then, dimV = 3, dimV0 = 2,
dimW0 = 1 and x− y ∈ W̃0 if and only if x = y.

(ii) For the elements x, y ∈ T , x− y ∈W0 if and only if 1− xy−1 ∈W0.

(iii) Let W1 some fixed subspace W0 ≤W1 ≤ V0. Then, S = {z ∈ T ; 1−z ∈
W1} is a subloop of L.

Proof. The (i) is trivial. (ii) follows from the congruence

1− xy−1 = (1 + x+ x−1)− (x−1 + y + xy−1) + y − x ≡ y − x (mod W0).

To show (iii), take two elements a, b ∈ S. Then, 1− ab−1 ≡ a− b = 1− b−
(1− a) ∈W1, thus S is a subloop.

Lemma 6.3.2.

(i) codimV0W0 = rank(T ), where rank(T ) is the minimal number of gen-
erators of T .

(ii) x− y ∈ W0 if and only if xy−1 ∈ T ′.

Proof. Let m = rank(T ) and choose a minimal generating set {x1, . . . , xm}
for T . Put W1 = 〈W0, 1− xi; i = 1, . . . , m〉. Then the subloop S associated
to W1 as in Lemma 6.3.1(ii) is equal to T , thus W1 = V0, and

codimV0W0 ≤ m = rank(T )

follows.
Let us now suppose that codimV0W0 < m, that is,

V0 = 〈W0, 1− xi; i = 1, . . . , m− 1〉.

Let S be a maximal subloop of T , containing x1, . . . , xm−1. Clearly, xm 6∈ S
and it is known that S is a normal subloop of index 3 in T (see [Bru58]).
The map α : T → T/S induces a surjective linear map A : V → Ṽ , which
maps V0 to Ṽ0 and W0 to W̃0 surjectively. Since for all i = 1, . . . , m − 1,
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α(1) = α(xi), we have A(1 − xi) = 0, thus A(V0) = A(W0), which implies
Ṽ0 = W̃0, a contradiction to Lemma 6.3.1(i). This proves (i).

To show (ii), we define the surjective homomorphism β : T → T̄ = T/T ′

and its induced B : V → V̄ , which is surjective as well. As before, one has
B(V0) = V̄0 and B(W0) = W̄0, which gives a surjective map V0/W0 → V̄0/W̄0.
On the other hand, rank(T ) = rank(T̄ ), thus, by (i), we get

dimV0/W0 = codimV0W0 = codimV̄0
W̄0 = dim V̄0/W̄0.

This means that the map V0/W0 → V̄0/W̄0 is an isomorphism, and kerB ≤
W0. This proves one direction of (ii), since for z ∈ T ′, B(1 − z) = β(1) −
β(z) = 0, 1− z ∈ kerB ≤W0.

If z 6∈ T ′, then there is a maximal normal subgroup of T not containing
z, and using the factorization trick, it follows from Lemma 6.3.1(i) that
1− z 6∈W0.

Let L be a CML and K be a field of characteristic 3. Let R be a system
of representatives of the cosets L/L′ with 1 ∈ R. We define the following
K-spaces.

B = KL,

W = 〈a+ b+ (ab)−1; a, b ∈ L′〉,

I = 〈rw;w ∈W, r ∈ R〉.

One calls B = KL the loop ring of L (cf. [JGM96]).

Clearly, the associator subloop L′ of L is invariant under the inner map-
ping λx,y. For a, b ∈ L′, this implies

x · y(a+ b+ (ab)−1) = xy · (a′ + b′ + (a′b′) (6.8)

with a′, b′ ∈ L′. Recall also that by the property (L4) of commutative Mo-
ufang loops, L′ has exponent 3.

Proposition 6.3.3.

(i) B is a commutative, distributive K-algebra.

(ii) I is a (two sided) ideal of B.

(iii) A = B/I is a commutative alternative K-algebra.

Proof. (i) is trivial. To show (ii), choose elements x ∈ L, r1 ∈ R and
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a1, b1 ∈ L
′. One has

x · r1(a1 + b1 + (a1b1)
−1) = xr1 · (a2 + b2 + (a2b2)

−1)
(a2, b2 ∈ L

′, by (6.8))
= r2c · (a2 + b2 + (a2b2)

−1)
(r2 ∈ R, c ∈ L

′, r2c = xr1)
= r2 · c(a3 + b3 + (a3b3)

−1)
(a3, b3 ∈ L

′)
= r2 · (ca3 + cb3 + ((ca3)(cb3))

−1)
(yields for CML’s of exp. 3)

= r2 · (a4 + b4 + (a4b4)
−1) ∈ I

(a4, b4 ∈ L
′),

which gives xI ⊆ I, proving (ii) by distributivity. For (iii) one only has to
show that x̄ȳ · z̄ + ȳz̄ · x̄ + z̄x̄ · ȳ = 0 holds for every x̄, ȳ, z̄ ∈ B/I. This is
equivalent to xy · z + yz · x+ zx · y ∈ I for all x, y, z ∈ B. However,

xy · z + yz · x+ zx · y = (xy · z)(1 + (x, y, z) + (z, x, y)−1),

where (x, y, z) = (xy · z)−1(x · yz). By [Bru58, VII. Lemma 5.5.], (x, y, z) =
(z, x, y). Therefore,

xy · z + yz · x+ zx · y = rb · (1 + a+ a−1) = r · (b+ ba1 + (b · ba1)
−1) ∈ I,

with xy · z = rb, (x, y, z) = a and rb · a = r · ba1 (r ∈ R, a, b, a1 ∈ L
′).

It turns out from this proof that the construction works also if we take

W ′ = 〈1 + (x, y, z) + (x, y, z)−1; x, y, z ∈ L〉

instead of W and put I ′ = BW ′. Moreover, I ′ is the smallest ideal of B such
that B/I ′ is an alternative algebra. It is not clear whether there are cases
when I ′ is properly contained in I. However, an advantage of choosing W
and I as we did is that in this case, we are able to compute the kernel of the
map L→ A∗.

Lemma 6.3.4. Let L be a finite CML and A be the alternative algebra con-
structed in Proposition 6.3.3. Then, ρ(x) = x̄, (x ∈ L) is a homomorphism
of L (e.i., it is a linear representation) in A∗ and ker ρ = L′′.

Proof. The element z ∈ L belongs to ker ρ if and only if z̄ā = ā for all ā ∈ A,
that is, (1− z)a ∈ I for all a ∈ B, and this is equivalent to 1− z ∈ I. Let us
write R# = R \ {1}. Then

A = KL′+̇K(R#L′) and I = W +̇R#W.

If z 6∈ L′ and 1− z ∈ I = W +̇R#W , then 1 ∈W and z ∈ R#W . But 1 ∈W
is impossible.
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Let us suppose z ∈ L′. Then, 1 − z ∈ I = W +̇R#W if and only if
1 − z ∈ W . Looking at the definition of W , one sees that deciding whether
1 − z ∈ W is exactly the problem solved in Lemma 6.3.2 b), where one
replaces T by L′ and W0 by W . Thus, 1− z ∈W if and only if z ∈ L′′.

As a corollary, we have the main result of this chapter.

Theorem 6.3.5. Any finite commutative Moufang loop (L, ·) of odd order
has a linear representation modulo L′′.

Proof. See Proposition 6.3.3 and Lemma 6.3.4.

Corollary 6.3.6. Any 2-divisible commutative Moufang loop L with solvabil-
ity class 2 can be embedded in the loop of units of a commutative alternative
algebra.

Remark. The class of 2-divisible CML’s with solvability class 2 is quite rich.
A series of examples is given on page 11; they also show that the bound on
the solvability class does not restrict the nilpotency class of L.
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[Nôn61] T. Nôno. Sur les familles triples locales de transformations locales
de Lie. J. Sci. Hiroshima Univ. Ser. A-I, 25:357–366, 1961.

[NS98] P.T. Nagy and K. Strambach. Loops, their cores and symmetric
spaces. Israel J. Math., 105:285–322, 1998.

[NS99] P.T. Nagy and K. Strambach. Sharply transitive sections in Lie
groups: A Lie theory of smooth loops. Manuscript, Debrecen-
Erlangen, 1999.

[Pfl90] H.O. Pflugfelder. Quasigroups and loops: Introduction. Number 7
in Sigma Series in Pure Mathematics. Heldermann Verlag, Berlin,
1990.



74 BIBLIOGRAPHY

[Ram64] C.P. Ramanujam. A note on automorphism groups of algebraic
varieties. Math. Annalen, 156:25–33, 1964.

[Ros56] M. Rosenlicht. Some basic theorems on algebraic groups. Amer.
J. Math., 78:401–443, 1956.

[Sab99] L.V. Sabinin. Smooth Quasigroups and Groups. Number 492 in
Mathematics and its applications. Kluwer Academic Publisher,
Dordrecht, 1999.

[Sch66] R.D. Schafer. An Introduction to nonassociative Algebras. Aca-
demic Press, New York and London, 1966.

[Sel67] G.B. Seligman. Modular Lie Algebras. Springer-Verlag, Berlin-
Heidelberg-New York, 1967.

[Sha94] I.R. Shafarevich. Basic Algebraic Geometry. Springer, Berlin, etc.,
1994.



LEBENSLAUF
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