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Threshold decoding of linear codes

A linear code C is a linear subspace of Fn
q.

Length, dimension, generator matrix, parity-check matrix.

Hamming weight, Hamming distance.

Threshold Decoding Problem
Given linear code C ≤ Fn

q, vector y ∈ Fn
q, and integer t . Find a

decomposition
y = x + e

such that x ∈ C, e ∈ Fn
q, and wt(e) ≤ t .

Minimum distance, d ≥ 2t + 1.

Singleton bound n + 1 ≥ d + k , Singleton defect, MDS codes.

Theorem (Berlekamp, McEliece, van Tilborg 1978)
The binary threshold decoding problem is NP-compete.
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Generalized Reed-Solomon codes

Definition: RS and GRS codes
Let q be a prime power, and 0 ≤ k ≤ n ≤ q integers,

Let α1, . . . , αn be distinct elements of Fq, and v1, . . . , vn be nonzero
elements of Fq.

Write α = (α1, . . . , αn), v = (v1, . . . , vn).

We define the following linear codes over Fq:

RSk (α) = {(f(α1), . . . , f(αn)) | deg(f) < k }

GRSk (α, v) = {(v1f(α1), . . . , vnf(αn)) | deg(f) < k }

d = n + 1 − k , GRS codes are MDS.

Efficient threshold decoding algorithms with t = ⌊n−k
2 ⌋.
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Trace codes and subfield subcodes

The trace map of the extension Fqm/Fq is

TrFqm /Fq(x) = x + xq + · · ·+ xqm−1
.

We define Tr(x) for vectors entry-by-entry.

Let C be a qm-ary [n, k , d]-code.

Definition

The subfield subcode of C is
C |Fq = C ∩ Fn

q.

The trace code of C is
Tr(C) = {TrFqm /Fq(x) | x ∈ C}.

Theorem (Delsartes 1975)

Tr(C⊥) = (C |Fq)
⊥.
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Parameters of trace codes and subfield subcodes

Length is n.

The minimum distance of C |Fq is at least d.

The dual minimum distance of Tr(C) is at least d⊥.

Threshold decoding algorithms keep working for C |Fq .

Open problem: The true dimension of subfield subcodes
We know:

dim(Tr(C)) ≤ mk .

dim(C |Fq) ≥ n −mk .

Partial results on some classes of subfield subcodes.

See Véron (1998-2005) and Byrne et al. (2023) on the parameters of
Trace Goppa Codes.
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Alternant codes and Goppa codes

Definition: Alternant codes
Let α = (α1, . . . , αn) ∈ Fqm be a vector with distinct entries and
v = (v1, . . . , vn) ∈ (F

∗
qm)

na vector with nonzero entries. An alternant code
of degree t is a code of the form

At(α, v) = (GRSt(α, v)⊥)|Fq = Tr(GRSt(α, v))⊥.

Efficient decoding algorithms with threshold ⌊t/2⌋.

Definition: Goppa codes
Let α = (α1, . . . , αn) ∈ Fqm be a vector with distinct entries, and
g ∈ Fqm(X) of degree t such that g(αi) , 0 for all i = 1, . . . , n. The Goppa
code associated to (g,α) is defined as

Γ(g;α) = At(α, (g(α1)
−1, . . . , g(αn)

−1)).

Γ(g;α) = Γ(g2;α) holds for q = 2 and square-free g(X).
Efficient decoding algorithms with threshold t .
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Public key of the classic McEliece scheme

Known parameters: n,m, t positive integers; k = n −mt , q = 2.

Randomly generated private key (g; (α1, . . . , αn))

1 Monic irreducible polynomial g(X) ∈ F2m [X ] of degree t .
2 Different elements α1, . . . , αn ∈ F2m .

Computed public key T
1 H = [In−k |T ] is the parity-check matrix of the binary Goppa code

Γ(g; (α1, . . . , αn)).
2 T is a (n − k) × k binary matrix.

“Las Vegas” TRY-and-REJECT if:
1 random irreducible polynomial g has degree < t ;
2 random elements α1, . . . , αn are not distinct;
3 the first mt = n − k columns of H are not linearly independent.
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1 H = [In−k |T ] is the parity-check matrix of the binary Goppa code

Γ(g; (α1, . . . , αn)).
2 T is a (n − k) × k binary matrix.

“Las Vegas” TRY-and-REJECT if:
1 random irreducible polynomial g has degree < t ;
2 random elements α1, . . . , αn are not distinct;
3 the first mt = n − k columns of H are not linearly independent.
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Motivation 1: The probability of success

“Las Vegas” TRY-and-REJECT if:
1 random irreducible polynomial g has degree < t ;
2 random elements α1, . . . , αn are not distinct;
3 the first mt = n − k columns of H are not linearly independent.

The probability of success is easy to compute for (1) and (2).

Classic McEliece NIST Proposal 2020
“Approximately 29% of choices of C have this form, so key generation
requires about 3.4 attempts on average [...]”

Problem 1
Why 29%?
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Motivation 2: Dimension of random alternant codes

1 The Goppa Code Distinguishing Problem (GDP) asks to
distinguish efficiently a generator matrix of a Goppa code from a
randomly drawn one.

2 The dimension of the square of alternant and Goppa codes is an
important cryptanalytic tool in GDP.

3 See Faugère et al. (2013) for experimental evidences and Mora,
Tillich (2022) for rigorous upper bounds.

Theorem [Mora, Tillich 2022]

dimFq(Ar(α, v)⊥)⋆2 ≤

(
rm + 1

2

)
−

m
2
(r − 1)(r − 2).

Problem 2
Find dimFq Ar(α, v) with uniformly random α and v.
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Outline

1 Subfield subcodes and trace codes

2 Random codes in McEliece cryptosystems

3 The Maximum Trace Dimension property
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New codes by multiplier vectors

Definition: New code by a multiplier vector
Let C ≤ Fn

q be a code of length n, and a = (a1, . . . , an) ∈ (F
∗
q)

n a vector
with nonzero entries. We define the code

Ca = {(a1x1, . . . , anxn) | (x1, . . . , xn) ∈ C}

with multiplier vector a.

Definition: Monomially equivalent codes
Two codes C ,D ≤ Fn

q are called monomially equivalent, if D = Ca for some
multiplier vector a ∈ (F∗q)

n.

Monomially equivalent codes have the same parameters.

GRSk (α, v) = RSk (α)v .
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The Maximum Trace Dimension property

Definition: Maximum Trace Dimension property
Let C ≤ Fqm be a linear code of length n and dimension k . We say that C
has maximum trace dimension if mk ≤ n and

dim(Tr(C)) = mk .

Theorem 1
Let C be an [n, k , d]qm -code and let h = n + 1 − k − d be its Singleton
defect. Let PC denote the proportion of multiplier vectors a ∈ (F∗qm)

n

such that the linear code Ca has maximum trace dimension. Then

PC ≥ 1 −
1 − q−m(h+k)

(q − 1)qn−m(h+k)
. (1)

In particular, if n ≥ m(k + h) then PC > 0.

Proof. We use results by Meneghetti, Pellegrini, Sala (2022) on the weight
distribution of almost MDS codes. □
Erdélyi, Hegedüs, Kiss, Nagy (Hungary) Max Trace Dimension Property Combi Szeged 15 / 19



The Maximum Trace Dimension property

Definition: Maximum Trace Dimension property
Let C ≤ Fqm be a linear code of length n and dimension k . We say that C
has maximum trace dimension if mk ≤ n and

dim(Tr(C)) = mk .

Theorem 1
Let C be an [n, k , d]qm -code and let h = n + 1 − k − d be its Singleton
defect. Let PC denote the proportion of multiplier vectors a ∈ (F∗qm)

n

such that the linear code Ca has maximum trace dimension. Then

PC ≥ 1 −
1 − q−m(h+k)

(q − 1)qn−m(h+k)
. (1)

In particular, if n ≥ m(k + h) then PC > 0.

Proof. We use results by Meneghetti, Pellegrini, Sala (2022) on the weight
distribution of almost MDS codes. □
Erdélyi, Hegedüs, Kiss, Nagy (Hungary) Max Trace Dimension Property Combi Szeged 15 / 19



Corollaries

Full support random alternant codes have maximum dimension with very
high probability:

Proposition
Assume n > mk . The random alternant code of length n, degree k ,
extension degree m over Fq has dimension n −mk with probability at least

1 −
1 − q−mk

(q − 1)qn−mk
. (2)

Maximum trace dimension property of AG-codes:

Theorem 2
Let C = CL(D,G) be a functional AG code of length n = deg(D) over the
finite field Fqm , m > 1. If deg(G) ≤ n/m − 1, then

PC ≥ 1 −
1 − q−m(deg(G)+1)

(q − 1)qn−m(deg(G)+1)
. (3)
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Maximum trace dimension for n ≤ mk

Theorem 3
Let C be an [n, k , d]qm -code and let h = n + 1 − k − d be its Singleton
defect. Let P′C denote the proportion of multiplier vectors a ∈ (F∗qm)

n

such that
dim(Tr(Ca)) ≥ n −mh.

Then

P′C ≥
qmh+1 − qmh − qn−mk + q−mk

qmh+1 − 1
. (4)

In particular:
1 If n ≤ m(k + h), or equivalently d ≤ n(1 − 1/m) + 1, then P′C > 0.
2 If C is MDS (h = 0) then

P′C ≥ 1 −
1 − q−n

(q − 1)qmk−n
. (5)
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Final remarks on the 29%

Let A be an n × n matrix over the finite field Fq, whose entries are
chosen uniformly at random.

As n → ∞, the probability that A has rank n converges very fast to

S(q) =
∞∏

i=1

(
1 −

1
qi

)
.

S(q) is also called the q-Pochhamer symbol (1/q; 1/q)∞.

For q = 2, a good estimate for S(2) is

0.288788095086603.

Numerical experiments show that with q = 2 and n = mk ,

PC ≈ 0.29

holds, if C is Reed-Solomon (h = 0) or Hermitian code
(h ≈ 2m−1(2m − 1))
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THANK YOU FOR YOUR
ATTENTION!
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