On Linear Codes with Random Multiplier Vectors and the Maximum Trace Dimension Property

Márton Erdélyi, Pál Hegedüs, Sándor Z. Kiss and Gábor P. Nagy

Budapest University of Technology and Economics (Hungary)
University of Szeged (Hungary)

Combinatorics Seminar Szeged
February 16, 2024

Outline

(1) Subfield subcodes and trace codes
(2) Random codes in McEliece cryptosystems
(3) The Maximum Trace Dimension property

Outline

(1) Subfield subcodes and trace codes

(2) Random codes in McEliece cryptosystems

(3) The Maximum Trace Dimension property

Threshold decoding of linear codes

- A linear code C is a linear subspace of \mathbb{F}_{q}^{n}.
- Length, dimension, generator matrix, parity-check matrix.
- Hamming weight, Hamming distance.

Threshold Decoding Problem

Given linear code $C \leq \mathbb{F}_{q}^{n}$, vector $\boldsymbol{y} \in \mathbb{F}_{q}^{n}$, and integer t. Find a decomposition
such that $x \in C, e \in \mathbb{F}_{q}^{n}$, and $w t(e) \leq t$

- Minimum distance, $d \geq 2 t+1$
- Singleton bound $n+1 \geq d+k$, Singleton defect, MDS codes.

Theorem (Berlekamp, McEliece, van Tilborg 1978)
The binary threshold decoding problem is NP-compete.

Threshold decoding of linear codes

- A linear code C is a linear subspace of \mathbb{F}_{q}^{n}.
- Length, dimension, generator matrix, parity-check matrix.
- Hamming weight, Hamming distance.
Threshold Decoding Problem
Given linear code $C \leq \mathbb{F}_{a}^{n}$, vector $\boldsymbol{y} \in \mathbb{E}_{0}^{n}$, and integer t. Find adecomposition
such that xand wt(e) \leq
- Minimum distance, $d \geq 2 t+1$
- Singleton bound $n+1 \geq d+k$, Singleton defect, MDS codes.
Theorem (Berlekamp, McEliece, van Tilborg 1978
The binary threshold decoding problem is NP-compete,

Threshold decoding of linear codes

- A linear code C is a linear subspace of \mathbb{F}_{q}^{n}.
- Length, dimension, generator matrix, parity-check matrix.
- Hamming weight, Hamming distance.

Threshold Decoding Problem
 Given linear code $C \leq \mathbb{F}_{q}^{n}$, vector $\boldsymbol{y} \in \mathbb{F}_{q}^{n}$, and integer t. Find a decomposition

such that X and $w t(e) \leq$

- Minimum distance, $d \geq 2 t+1$
- Singleton bound $n+1 \geq d+k$, Singleton defect, MDS codes.
\square
The binary threshold decoding problem is NP-compete.

Threshold decoding of linear codes

- A linear code C is a linear subspace of \mathbb{F}_{q}^{n}.
- Length, dimension, generator matrix, parity-check matrix.
- Hamming weight, Hamming distance.

Threshold Decoding Problem

Given linear code $C \leq \mathbb{F}_{q}^{n}$, vector $\boldsymbol{y} \in \mathbb{F}_{q}^{n}$, and integer t. Find a decomposition

$$
\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{e}
$$

such that $\boldsymbol{x} \in C, \boldsymbol{e} \in \mathbb{F}_{q}^{n}$, and $w t(\boldsymbol{e}) \leq t$.

- Minimum distance, $d \geq 2 t+1$.
- Singleton bound $n+1 \geq d+k$, Singleton defect, MDS codes.

Theorem (Berlekamp, McEliece, van Tilloorg 1978)
 The binary threshold decoding problem is NP-compete.

Threshold decoding of linear codes

- A linear code C is a linear subspace of \mathbb{F}_{q}^{n}.
- Length, dimension, generator matrix, parity-check matrix.
- Hamming weight, Hamming distance.

Threshold Decoding Problem

Given linear code $C \leq \mathbb{F}_{q}^{n}$, vector $\boldsymbol{y} \in \mathbb{F}_{q}^{n}$, and integer t. Find a decomposition

$$
\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{e}
$$

such that $\boldsymbol{x} \in C, \boldsymbol{e} \in \mathbb{F}_{q}^{n}$, and $w t(\boldsymbol{e}) \leq t$.

- Minimum distance, $d \geq 2 t+1$.
- Singleton bound $n+1 \geq d+k$, Singleton defect, MDS codes.
\square
Theorem (Berlekamp, McEliece, van Tilborg 1978) The binary threshold decoding problem is NP-compete.

Threshold decoding of linear codes

- A linear code C is a linear subspace of \mathbb{F}_{q}^{n}.
- Length, dimension, generator matrix, parity-check matrix.
- Hamming weight, Hamming distance.

Threshold Decoding Problem

Given linear code $C \leq \mathbb{F}_{q}^{n}$, vector $\boldsymbol{y} \in \mathbb{F}_{q}^{n}$, and integer t. Find a decomposition

$$
\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{e}
$$

such that $\boldsymbol{x} \in C, \boldsymbol{e} \in \mathbb{F}_{q}^{n}$, and $w t(\boldsymbol{e}) \leq t$.

- Minimum distance, $d \geq 2 t+1$.
- Singleton bound $n+1 \geq d+k$, Singleton defect, MDS codes.
\square
The binary threshold decoding problem is NP-compete

Threshold decoding of linear codes

- A linear code C is a linear subspace of \mathbb{F}_{q}^{n}.
- Length, dimension, generator matrix, parity-check matrix.
- Hamming weight, Hamming distance.

Threshold Decoding Problem

Given linear code $C \leq \mathbb{F}_{q}^{n}$, vector $\boldsymbol{y} \in \mathbb{F}_{q}^{n}$, and integer t. Find a decomposition

$$
\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{e}
$$

such that $\boldsymbol{x} \in C, \boldsymbol{e} \in \mathbb{F}_{q}^{n}$, and $w t(\boldsymbol{e}) \leq t$.

- Minimum distance, $d \geq 2 t+1$.
- Singleton bound $n+1 \geq d+k$, Singleton defect, MDS codes.

Theorem (Berlekamp, McEliece, van Tilborg 1978)

The binary threshold decoding problem is NP-compete.

Generalized Reed-Solomon codes

Definition: RS and GRS codes

- Let q be a prime power, and $0 \leq k \leq n \leq q$ integers,
- Let $\alpha_{1}, \ldots, \alpha_{n}$ be distinct elements of \mathbb{F}_{q}, and v_{1}, \ldots, v_{n} be nonzero elements of \mathbb{F}_{q}.
- Write $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$.

We define the following linear codes over \mathbb{F}_{q} :

$$
\mathbf{R S}_{k}(\alpha)=\left\{\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right) \mid \operatorname{deg}(f)<k\right\}
$$

$\operatorname{GRS}_{k}(\alpha, \boldsymbol{v})=\left\{\left(v_{1} f\left(\alpha_{1}\right), \ldots, v_{n} f\left(\alpha_{n}\right)\right) \mid \operatorname{deg}(f)<k\right\}$

Generalized Reed-Solomon codes

Definition: RS and GRS codes

- Let q be a prime power, and $0 \leq k \leq n \leq q$ integers,
- Let $\alpha_{1}, \ldots, \alpha_{n}$ be distinct elements of \mathbb{F}_{q}, and v_{1}, \ldots, v_{n} be nonzero elements of \mathbb{F}_{q}.
- Write $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$.

We define the following linear codes over \mathbb{F}_{q} :

$$
\begin{aligned}
\mathbf{R S}_{k}(\boldsymbol{\alpha}) & =\left\{\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right) \mid \operatorname{deg}(f)<k\right\} \\
\mathbf{G R S}_{k}(\boldsymbol{\alpha}, \boldsymbol{v}) & =\left\{\left(v_{1} f\left(\alpha_{1}\right), \ldots, v_{n} f\left(\alpha_{n}\right)\right) \mid \operatorname{deg}(f)<k\right\}
\end{aligned}
$$

Generalized Reed-Solomon codes

Definition: RS and GRS codes

- Let q be a prime power, and $0 \leq k \leq n \leq q$ integers,
- Let $\alpha_{1}, \ldots, \alpha_{n}$ be distinct elements of \mathbb{F}_{q}, and v_{1}, \ldots, v_{n} be nonzero elements of \mathbb{F}_{q}.
- Write $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$.

We define the following linear codes over \mathbb{F}_{q} :

$$
\begin{aligned}
\mathbf{R S}_{k}(\boldsymbol{\alpha}) & =\left\{\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right) \mid \operatorname{deg}(f)<k\right\} \\
\mathbf{G R S}_{k}(\boldsymbol{\alpha}, \boldsymbol{v}) & =\left\{\left(v_{1} f\left(\alpha_{1}\right), \ldots, v_{n} f\left(\alpha_{n}\right)\right) \mid \operatorname{deg}(f)<k\right\}
\end{aligned}
$$

- $d=n+1-k$, GRS codes are MDS.
- Efficient threshold decoding algorithms with $t=\left\lfloor\frac{n-k}{2}\right\rfloor$

Generalized Reed-Solomon codes

Definition: RS and GRS codes

- Let q be a prime power, and $0 \leq k \leq n \leq q$ integers,
- Let $\alpha_{1}, \ldots, \alpha_{n}$ be distinct elements of \mathbb{F}_{q}, and v_{1}, \ldots, v_{n} be nonzero elements of \mathbb{F}_{q}.
- Write $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$.

We define the following linear codes over \mathbb{F}_{q} :

$$
\begin{aligned}
\mathbf{R S}_{k}(\boldsymbol{\alpha}) & =\left\{\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right) \mid \operatorname{deg}(f)<k\right\} \\
\mathbf{G R S}_{k}(\boldsymbol{\alpha}, \boldsymbol{v}) & =\left\{\left(v_{1} f\left(\alpha_{1}\right), \ldots, v_{n} f\left(\alpha_{n}\right)\right) \mid \operatorname{deg}(f)<k\right\}
\end{aligned}
$$

- $d=n+1-k$, GRS codes are MDS.
- Efficient threshold decoding algorithms with $t=\left\lfloor\frac{n-k}{2}\right\rfloor$.

Trace codes and subfield subcodes

- The trace map of the extension $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$ is

$$
\operatorname{Tr}_{\mathbb{F}_{q^{m} / \mathbb{F}_{q}}}(x)=x+x^{q}+\cdots+x^{q^{m-1}}
$$

- We define $\operatorname{Tr}(\mathbf{x})$ for vectors entry-by-entry.
- Let C be a q^{m}-ary $[n, k, d]$-code.

Trace codes and subfield subcodes

- The trace map of the extension $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$ is

$$
\operatorname{Tr}_{\mathbb{F}_{q^{m} / \mathbb{F}_{q}}}(x)=x+x^{q}+\cdots+x^{q^{m-1}} .
$$

- We define $\operatorname{Tr}(\boldsymbol{x})$ for vectors entry-by-entry.
- Let C be a qmeary [n, $k, d]$-code.

Trace codes and subfield subcodes

- The trace map of the extension $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$ is

$$
\operatorname{Tr}_{\mathbb{F}_{q^{m} / \mathbb{F}_{q}}}(x)=x+x^{q}+\cdots+x^{q^{m-1}} .
$$

- We define $\operatorname{Tr}(\boldsymbol{x})$ for vectors entry-by-entry.
- Let C be a q^{m}-ary $[n, k, d]$-code.

Definition

Theorem (Delsartes 1975)

Trace codes and subfield subcodes

- The trace map of the extension $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$ is

$$
\operatorname{Tr}_{\mathbb{F}_{q^{m} / \mathbb{F}_{q}}}(x)=x+x^{q}+\cdots+x^{q^{m-1}}
$$

- We define $\operatorname{Tr}(\mathbf{x})$ for vectors entry-by-entry.
- Let C be a q^{m}-ary $[n, k, d]$-code.

Definition

- The subfield subcode of C is

- The trace code of C is

Theorem (Delsartes 1975)

Trace codes and subfield subcodes

- The trace map of the extension $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$ is

$$
\operatorname{Tr}_{\mathbb{F}_{q^{m} / \mathbb{F}_{q}}}(x)=x+x^{q}+\cdots+x^{q^{m-1}} .
$$

- We define $\operatorname{Tr}(\boldsymbol{x})$ for vectors entry-by-entry.
- Let C be a q^{m}-ary [$\left.n, k, d\right]$-code.

Definition

- The subfield subcode of C is

$$
\left.C\right|_{\mathbb{F}_{q}}=C \cap \mathbb{F}_{q}^{n} .
$$

- The trace code of C is

Theorem (Delsartes 1975)

Trace codes and subfield subcodes

- The trace map of the extension $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$ is

$$
\operatorname{Tr}_{\mathbb{F}_{q^{m} / \mathbb{F}_{q}}}(x)=x+x^{q}+\cdots+x^{q^{m-1}} .
$$

- We define $\operatorname{Tr}(\boldsymbol{x})$ for vectors entry-by-entry.
- Let C be a q^{m}-ary $[n, k, d]$-code.

Definition

- The subfield subcode of C is

$$
\left.C\right|_{\mathbb{F}_{q}}=C \cap \mathbb{F}_{q}^{n} .
$$

- The trace code of C is

$$
\operatorname{Tr}(C)=\left\{\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}(\boldsymbol{x}) \mid \boldsymbol{x} \in C\right\}
$$

Theorem (Delsartes 1975)

Trace codes and subfield subcodes

- The trace map of the extension $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$ is

$$
\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}(x)=x+x^{q}+\cdots+x^{q^{m-1}}
$$

- We define $\operatorname{Tr}(\mathbf{x})$ for vectors entry-by-entry.
- Let C be a q^{m}-ary $[n, k, d]$-code.

Definition

- The subfield subcode of C is

$$
\left.C\right|_{\mathbb{F}_{q}}=C \cap \mathbb{F}_{q}^{n} .
$$

- The trace code of C is

$$
\operatorname{Tr}(C)=\left\{\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}(\boldsymbol{x}) \mid \boldsymbol{x} \in C\right\}
$$

Theorem (Delsartes 1975)

$$
\operatorname{Tr}\left(C^{\perp}\right)=\left(\left.C\right|_{\mathbb{F}_{q}}\right)^{\perp}
$$

Parameters of trace codes and subfield subcodes

- Length is n.
- The minimum distance of $\left.C\right|_{\mathbb{F}_{q}}$ is at least d.
- The dual minimum distance of $\operatorname{Tr}(C)$ is at least d^{\perp}
- Threshold decoding algorithms keep working for $C l_{\text {or }}$

Open problem: The true dimension of subfield subcodes

We know:

- Partial results on some classes of subfield subcodes.
- See Véron (1998-2005) and Byrne et al. (2023) on the parameters of Trace Goppa Codes.

Parameters of trace codes and subfield subcodes

- Length is n.
- The minimum distance of $\left.C\right|_{\mathbb{F}_{q}}$ is at least d.
- The dual minimum distance of $\operatorname{Tr}(C)$ is at least d^{\perp}
- Threshold decoding algorithms keep working for $\left.C\right|_{\mathbb{F}_{q}}$

Open problem: The true dimension of subfield subcodes

We know:

- Partial results on some classes of subfield subcodes.
- See Véron (1998-2005) and Byrne et al. (2023) on the parameters of Trace Goppa Codes.

Parameters of trace codes and subfield subcodes

- Length is n.
- The minimum distance of $\left.C\right|_{\mathbb{F}_{q}}$ is at least d.
- The dual minimum distance of $\operatorname{Tr}(C)$ is at least d^{\perp}.
- Threshold decoding algorithms keep working for C|

Open problem: The true dimension of subfield subcodes

We know:

- Partial results on some classes of subfield subcodes.
- See Véron (1998-2005) and Byrne et al. (2023) on the parameters of Trace Goppa Codes.

Parameters of trace codes and subfield subcodes

- Length is n.
- The minimum distance of $\left.C\right|_{\mathbb{F}_{q}}$ is at least d.
- The dual minimum distance of $\operatorname{Tr}(C)$ is at least d^{\perp}.
- Threshold decoding algorithms keep working for $C \mathbb{E}_{q}$.

Open problem: The true dimension of subfield subcodes

We know:

- Partial results on some classes of subfield subcodes.
- See Véron (1998-2005) and Byrne et al. (2023) on the parameters of Trace Goppa Codes.

Parameters of trace codes and subfield subcodes

- Length is n.
- The minimum distance of $\left.C\right|_{\mathbb{F}_{q}}$ is at least d.
- The dual minimum distance of $\operatorname{Tr}(C)$ is at least d^{\perp}.
- Threshold decoding algorithms keep working for $\left.C\right|_{\mathbb{F}_{q}}$.

Open problem: The true dimension of subfield subcodes

We know:

- $\operatorname{dim}(\operatorname{Tr}(C)) \leq m k$.
- $\operatorname{dim}\left(\left.C\right|_{\mathbb{F}_{q}}\right) \geq n-m k$.
- Partial results on some classes of subfield subcodes.
- See Véron (1998-2005) and Byrne et al. (2023) on the parameters of Trace Goppa Codes.

Parameters of trace codes and subfield subcodes

- Length is n.
- The minimum distance of $\left.C\right|_{\mathbb{F}_{q}}$ is at least d.
- The dual minimum distance of $\operatorname{Tr}(C)$ is at least d^{\perp}.
- Threshold decoding algorithms keep working for $\left.C\right|_{\mathbb{F}_{q}}$.

Open problem: The true dimension of subfield subcodes

We know:

- $\operatorname{dim}(\operatorname{Tr}(C)) \leq m k$.
- $\operatorname{dim}\left(\left.C\right|_{\mathbb{F}_{q}}\right) \geq n-m k$.
- Partial results on some classes of subfield subcodes.
- See Véron (1998-2005) and Byrne et al. (2023) on the parameters of Trace Goppa Codes.

Parameters of trace codes and subfield subcodes

- Length is n.
- The minimum distance of $\left.C\right|_{\mathbb{F}_{q}}$ is at least d.
- The dual minimum distance of $\operatorname{Tr}(C)$ is at least d^{\perp}.
- Threshold decoding algorithms keep working for $\left.C\right|_{\mathbb{F}_{q}}$.

Open problem: The true dimension of subfield subcodes

We know:

- $\operatorname{dim}(\operatorname{Tr}(C)) \leq m k$.
- $\operatorname{dim}\left(\left.C\right|_{\mathbb{F}_{q}}\right) \geq n-m k$.
- Partial results on some classes of subfield subcodes.
- See Véron (1998-2005) and Byrne et al. (2023) on the parameters of Trace Goppa Codes.

Parameters of trace codes and subfield subcodes

- Length is n.
- The minimum distance of $\left.C\right|_{\mathbb{F}_{q}}$ is at least d.
- The dual minimum distance of $\operatorname{Tr}(C)$ is at least d^{\perp}.
- Threshold decoding algorithms keep working for $\left.C\right|_{\mathbb{F}_{q}}$.

Open problem: The true dimension of subfield subcodes

We know:

- $\operatorname{dim}(\operatorname{Tr}(C)) \leq m k$.
- $\operatorname{dim}\left(\left.C\right|_{\mathbb{F}_{q}}\right) \geq n-m k$.
- Partial results on some classes of subfield subcodes.
- See Véron (1998-2005) and Byrne et al. (2023) on the parameters of Trace Goppa Codes.

Parameters of trace codes and subfield subcodes

- Length is n.
- The minimum distance of $\left.C\right|_{\mathbb{F}_{q}}$ is at least d.
- The dual minimum distance of $\operatorname{Tr}(C)$ is at least d^{\perp}.
- Threshold decoding algorithms keep working for $\left.C\right|_{\mathbb{F}_{q}}$.

Open problem: The true dimension of subfield subcodes

We know:

- $\operatorname{dim}(\operatorname{Tr}(C)) \leq m k$.
- $\operatorname{dim}\left(\left.C\right|_{\mathbb{F}_{q}}\right) \geq n-m k$.
- Partial results on some classes of subfield subcodes.
- See Véron (1998-2005) and Byrne et al. (2023) on the parameters of Trace Goppa Codes.

Alternant codes and Goppa codes

Definition: Alternant codes

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}_{q^{m}}$ be a vector with distinct entries and $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right) \in\left(\mathbb{F}_{q^{m}}^{*}\right)^{n}$ a vector with nonzero entries. An alternant code of degree t is a code of the form

$$
\mathscr{A}_{t}(\boldsymbol{\alpha}, \boldsymbol{v})=\left.\left(\mathbf{G R S}_{t}(\boldsymbol{\alpha}, \mathbf{v})^{\perp}\right)\right|_{\mathbb{F}_{q}}=\operatorname{Tr}\left(\mathbf{G R S} \mathbf{S}_{t}(\boldsymbol{\alpha}, \mathbf{v})\right)^{\perp}
$$

- Efficient decoding algorithms with threshold $\lfloor t / 2\rfloor$

Definition: Goppa codes

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}_{a^{m}}$ be a vector with distinct entries, and $g \in \mathbb{F}_{q^{m}}(X)$ of degree t such that $g\left(\alpha_{i}\right) \neq 0$ for all $i=1, \ldots, n$. The Goppa code associated to (g, α) is defined as
> - $\Gamma(g ; \alpha)=\Gamma\left(g^{2} ; \alpha\right)$ holds for $q=2$ and square-free $g(X)$.

- Efficient decoding algorithms with threshold

Alternant codes and Goppa codes

Definition: Alternant codes

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}_{q^{m}}$ be a vector with distinct entries and $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right) \in\left(\mathbb{F}_{q^{m}}^{*}\right)^{n}$ a vector with nonzero entries. An alternant code of degree t is a code of the form

$$
\mathscr{A}_{t}(\boldsymbol{\alpha}, \boldsymbol{v})=\left.\left(\mathbf{G R S}_{t}(\boldsymbol{\alpha}, \boldsymbol{v})^{\perp}\right)\right|_{\mathbb{F}_{q}}=\operatorname{Tr}\left(\mathbf{G R S} \mathbf{S}_{t}(\boldsymbol{\alpha}, \boldsymbol{v})\right)^{\perp}
$$

- Efficient decoding algorithms with threshold $\lfloor t / 2\rfloor$.

- $\Gamma(g ; \alpha)=\Gamma\left(g^{2} ; \alpha\right)$ holds for $q=2$ and square-free $g(X)$.
- Efficient decoding algorithms with threshold

Alternant codes and Goppa codes

Definition: Alternant codes

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}_{q^{m}}$ be a vector with distinct entries and $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right) \in\left(\mathbb{F}_{q^{m}}^{*}\right)^{n}$ a vector with nonzero entries. An alternant code of degree t is a code of the form

$$
\mathscr{A}_{t}(\boldsymbol{\alpha}, \boldsymbol{v})=\left.\left(\mathbf{G R S}_{t}(\boldsymbol{\alpha}, \boldsymbol{v})^{\perp}\right)\right|_{\mathbb{F}_{q}}=\operatorname{Tr}\left(\mathbf{G R S} \mathbf{S}_{t}(\boldsymbol{\alpha}, \boldsymbol{v})\right)^{\perp}
$$

- Efficient decoding algorithms with threshold $\lfloor t / 2\rfloor$.

Definition: Goppa codes

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}_{q^{m}}$ be a vector with distinct entries, and $g \in \mathbb{F}_{q^{m}}(X)$ of degree t such that $g\left(\alpha_{i}\right) \neq 0$ for all $i=1, \ldots, n$. The Goppa code associated to (g, α) is defined as

$$
\Gamma(g ; \boldsymbol{\alpha})=\mathscr{A}_{t}\left(\boldsymbol{\alpha},\left(g\left(\alpha_{1}\right)^{-1}, \ldots, g\left(\alpha_{n}\right)^{-1}\right)\right)
$$

- $\Gamma(g ; \alpha)=\Gamma\left(g^{2} ; \alpha\right)$ holds for $q=2$ and square-free $g(X)$.

- Efficient decoding algorithms with threshold t

Alternant codes and Goppa codes

Definition: Alternant codes

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}_{q^{m}}$ be a vector with distinct entries and $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right) \in\left(\mathbb{F}_{q^{m}}^{*}\right)^{n}$ a vector with nonzero entries. An alternant code of degree t is a code of the form

$$
\mathscr{A}_{t}(\boldsymbol{\alpha}, \boldsymbol{v})=\left.\left(\mathbf{G R S}_{t}(\boldsymbol{\alpha}, \boldsymbol{v})^{\perp}\right)\right|_{\mathbb{F}_{q}}=\operatorname{Tr}\left(\mathbf{G R S} \mathbf{S}_{t}(\boldsymbol{\alpha}, \boldsymbol{v})\right)^{\perp}
$$

- Efficient decoding algorithms with threshold $\lfloor t / 2\rfloor$.

Definition: Goppa codes

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}_{q^{m}}$ be a vector with distinct entries, and $g \in \mathbb{F}_{q^{m}}(X)$ of degree t such that $g\left(\alpha_{i}\right) \neq 0$ for all $i=1, \ldots, n$. The Goppa code associated to (g, α) is defined as

$$
\Gamma(g ; \alpha)=\mathscr{A}_{t}\left(\alpha,\left(g\left(\alpha_{1}\right)^{-1}, \ldots, g\left(\alpha_{n}\right)^{-1}\right)\right)
$$

- $\Gamma(g ; \boldsymbol{\alpha})=\Gamma\left(g^{2} ; \boldsymbol{\alpha}\right)$ holds for $q=2$ and square-free $g(X)$.
- Efficient decoding algorithms with threshold

Alternant codes and Goppa codes

Definition: Alternant codes

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}_{q^{m}}$ be a vector with distinct entries and $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right) \in\left(\mathbb{F}_{q^{m}}^{*}\right)^{n}$ a vector with nonzero entries. An alternant code of degree t is a code of the form

$$
\mathscr{A}_{t}(\boldsymbol{\alpha}, \boldsymbol{v})=\left.\left(\mathbf{G R S}_{t}(\boldsymbol{\alpha}, \boldsymbol{v})^{\perp}\right)\right|_{\mathbb{F}_{q}}=\operatorname{Tr}\left(\mathbf{G R S}_{t}(\boldsymbol{\alpha}, \boldsymbol{v})\right)^{\perp}
$$

- Efficient decoding algorithms with threshold $\lfloor t / 2\rfloor$.

Definition: Goppa codes

Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}_{q^{m}}$ be a vector with distinct entries, and $g \in \mathbb{F}_{q^{m}}(X)$ of degree t such that $g\left(\alpha_{i}\right) \neq 0$ for all $i=1, \ldots, n$. The Goppa code associated to (g, α) is defined as

$$
\Gamma(g ; \boldsymbol{\alpha})=\mathscr{A}_{t}\left(\boldsymbol{\alpha},\left(g\left(\alpha_{1}\right)^{-1}, \ldots, g\left(\alpha_{n}\right)^{-1}\right)\right)
$$

- $\Gamma(g ; \boldsymbol{\alpha})=\Gamma\left(g^{2} ; \boldsymbol{\alpha}\right)$ holds for $q=2$ and square-free $g(X)$.
- Efficient decoding algorithms with threshold t.

Outline

(1) Subfield subcodes and trace codes

2 Random codes in McEliece cryptosystems
(3) The Maximum Trace Dimension property

Public key of the classic McEliece scheme

- Known parameters: n, m, t positive integers; $k=n-m t, q=2$.

Randomly generated private key ($\mathrm{g} ;\left(\alpha_{1}, \ldots, \alpha_{n}\right)$)

Computed public key T

"Las Vegas" TRY-and-REJECT if:

Public key of the classic McEliece scheme

- Known parameters: n, m, t positive integers; $k=n-m t, q=2$.

Randomly generated private key $\left(g ;\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$
(1) Monic irreducible polynomial $g(X) \in \mathbb{F}_{2 m}[X]$ of degree t.
(2) Different elements $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}_{2}$.

Computed public key T

"Las Vegas" TRY-and-REJECT if:

Public key of the classic McEliece scheme

- Known parameters: n, m, t positive integers; $k=n-m t, q=2$.

Randomly generated private key ($\mathrm{g} ;\left(\alpha_{1}, \ldots, \alpha_{n}\right)$)

(1) Monic irreducible polynomial $g(X) \in \mathbb{F}_{2^{m}}[X]$ of degree t.

Different elements $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}_{2 m}$.

Computed public key T

"Las Vegas" TRY-and-REJECT if:

Public key of the classic McEliece scheme

- Known parameters: n, m, t positive integers; $k=n-m t, q=2$.

Randomly generated private key ($\mathrm{g} ;\left(\alpha_{1}, \ldots, \alpha_{n}\right)$)

(1) Monic irreducible polynomial $g(X) \in \mathbb{F}_{2^{m}}[X]$ of degree t.
(2) Different elements $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}_{2^{m}}$. Computed public key T "Las Vegas" TRY-and-REJECT if:

Public key of the classic McEliece scheme

- Known parameters: n, m, t positive integers; $k=n-m t, q=2$.

Randomly generated private key $\left(g ;\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$

(1) Monic irreducible polynomial $g(X) \in \mathbb{F}_{2^{m}}[X]$ of degree t.
(2) Different elements $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}_{2^{m}}$.

Computed public key T

"Las Vegas" TRY-and-REJECT if:

Public key of the classic McEliece scheme

- Known parameters: n, m, t positive integers; $k=n-m t, q=2$.

Randomly generated private key $\left(g ;\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$
(1) Monic irreducible polynomial $g(X) \in \mathbb{F}_{2^{m}}[X]$ of degree t.
(2) Different elements $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}_{2^{m}}$.

Computed public key T
(1) $H=\left[I_{n-k} \mid T\right]$ is the parity-check matrix of the binary Goppa code $\Gamma\left(g ;\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$.
"(2) T is a $(n-k) \times k$ binary matrix.

Public key of the classic McEliece scheme

- Known parameters: n, m, t positive integers; $k=n-m t, q=2$.

Randomly generated private key $\left(g ;\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$
(1) Monic irreducible polynomial $g(X) \in \mathbb{F}_{2^{m}}[X]$ of degree t.
(2) Different elements $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}_{2^{m}}$.

Computed public key T
(1) $H=\left[I_{n-k} \mid T\right]$ is the parity-check matrix of the binary Goppa code $\Gamma\left(g ;\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$.
(2) T is a $(n-k) \times k$ binary matrix.

Public key of the classic McEliece scheme

- Known parameters: n, m, t positive integers; $k=n-m t, q=2$.

Randomly generated private key $\left(g ;\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$
(1) Monic irreducible polynomial $g(X) \in \mathbb{F}_{2^{m}}[X]$ of degree t.
(2) Different elements $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}_{2^{m}}$.

Computed public key T
(1) $H=\left[I_{n-k} \mid T\right]$ is the parity-check matrix of the binary Goppa code $\Gamma\left(g ;\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$.
(2) T is a $(n-k) \times k$ binary matrix.

"Las Vegas" TRY-and-REJECT if:

Public key of the classic McEliece scheme

- Known parameters: n, m, t positive integers; $k=n-m t, q=2$.

Randomly generated private key $\left(g ;\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$
(1) Monic irreducible polynomial $g(X) \in \mathbb{F}_{2^{m}}[X]$ of degree t.
(2) Different elements $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}_{2^{m}}$.

Computed public key T
(1) $H=\left[I_{n-k} \mid T\right]$ is the parity-check matrix of the binary Goppa code $\Gamma\left(g ;\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$.
(2) T is a $(n-k) \times k$ binary matrix.

"Las Vegas" TRY-and-REJECT if:

(1) random irreducible polynomial g has degree $<t$;
(2) random elements $\alpha_{1}, \ldots, \alpha_{n}$ are not distinct;
(3) the first $m t=n-k$ columns of H are not linearly independent.

Public key of the classic McEliece scheme

- Known parameters: n, m, t positive integers; $k=n-m t, q=2$.

Randomly generated private key $\left(g ;\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$
(1) Monic irreducible polynomial $g(X) \in \mathbb{F}_{2^{m}}[X]$ of degree t.
(2) Different elements $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}_{2^{m}}$.

Computed public key T
(1) $H=\left[I_{n-k} \mid T\right]$ is the parity-check matrix of the binary Goppa code $\Gamma\left(g ;\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$.
(2) T is a $(n-k) \times k$ binary matrix.

"Las Vegas" TRY-and-REJECT if:

(1) random irreducible polynomial g has degree $<t$;
(2) random elements $\alpha_{1}, \ldots, \alpha_{n}$ are not distinct;
the first $m t=n-k$ columns of H are not linearly independent.

Public key of the classic McEliece scheme

- Known parameters: n, m, t positive integers; $k=n-m t, q=2$.

Randomly generated private key $\left(g ;\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$
(1) Monic irreducible polynomial $g(X) \in \mathbb{F}_{2^{m}}[X]$ of degree t.
(2) Different elements $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}_{2^{m}}$.

Computed public key T
(1) $H=\left[I_{n-k} \mid T\right]$ is the parity-check matrix of the binary Goppa code $\Gamma\left(g ;\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)$.
(2) T is a $(n-k) \times k$ binary matrix.
"Las Vegas" TRY-and-REJECT if:
(1) random irreducible polynomial g has degree $<t$;
(2) random elements $\alpha_{1}, \ldots, \alpha_{n}$ are not distinct;
(3) the first $m t=n-k$ columns of H are not linearly independent.

Motivation 1: The probability of success

"Las Vegas" TRY-and-REJECT if:

(1) random irreducible polynomial g has degree $<t$;
(2) random elements $\alpha_{1}, \ldots, \alpha_{n}$ are not distinct;
(3) the first $m t=n-k$ columns of H are not linearly independent.

The probability of success is easy to compute for (1) and (2).

```
Classic McEliece NIST Proposal }202
"Approximately 29% of choices of C have this form, so key generation
requires about 3.4 attempts on average [...]
```

Problem 1 Why 29\%?

Motivation 1: The probability of success

"Las Vegas" TRY-and-REJECT if:

(1) random irreducible polynomial g has degree $<t$;
(2) random elements $\alpha_{1}, \ldots, \alpha_{n}$ are not distinct;
(3) the first $m t=n-k$ columns of H are not linearly independent.

The probability of success is easy to compute for (1) and (2).

Classic McEliece NIST Proposal 2020

"Approximately 29% of choices of C have this form, so key generation requires about 3.4 attempts on average [...]"

Motivation 1: The probability of success

"Las Vegas" TRY-and-REJECT if:

(1) random irreducible polynomial g has degree $<t$;
(2) random elements $\alpha_{1}, \ldots, \alpha_{n}$ are not distinct;
(3) the first $m t=n-k$ columns of H are not linearly independent.

The probability of success is easy to compute for (1) and (2).

Classic McEliece NIST Proposal 2020

"Approximately 29% of choices of C have this form, so key generation requires about 3.4 attempts on average [...]"

Problem 1

Why 29\%?

Motivation 2: Dimension of random alternant codes

(1) The Goppa Code Distinguishing Problem (GDP) asks to distinguish efficiently a generator matrix of a Goppa code from a randomly drawn one.
(2) The dimension of the square of alternant and Goppa codes is an important cryptanalytic tool in GDP.
(3) See Faugère et al. (2013) for experimental evidences and Mora. Tillich (2022) for rigorous upper bounds.

Theorem [Mora, Tillich 2022]

Problem 2
Find $\operatorname{dim}_{\mathbb{F}_{q}} \mathscr{A}_{r}(\alpha, v)$ with uniformly random α and v

Motivation 2: Dimension of random alternant codes

(1) The Goppa Code Distinguishing Problem (GDP) asks to distinguish efficiently a generator matrix of a Goppa code from a randomly drawn one.
(2) The dimension of the square of alternant and Goppa codes is an important cryptanalytic tool in GDP.
See Faugère et al. (2013) for experimental evidences and Mora, Tillich (2022) for rigorous upper bounds.

Motivation 2: Dimension of random alternant codes

(1) The Goppa Code Distinguishing Problem (GDP) asks to distinguish efficiently a generator matrix of a Goppa code from a randomly drawn one.
(2) The dimension of the square of alternant and Goppa codes is an important cryptanalytic tool in GDP.
(3) See Faugère et al. (2013) for experimental evidences and Mora, Tillich (2022) for rigorous upper bounds.

Motivation 2: Dimension of random alternant codes

(1) The Goppa Code Distinguishing Problem (GDP) asks to distinguish efficiently a generator matrix of a Goppa code from a randomly drawn one.
(2) The dimension of the square of alternant and Goppa codes is an important cryptanalytic tool in GDP.
(3) See Faugère et al. (2013) for experimental evidences and Mora, Tillich (2022) for rigorous upper bounds.

Theorem [Mora, Tillich 2022]

$$
\operatorname{dim}_{\mathbb{F}_{q}}\left(\mathscr{A}_{r}(\boldsymbol{\alpha}, \boldsymbol{v})^{\perp}\right)^{\star 2} \leq\binom{ r m+1}{2}-\frac{m}{2}(r-1)(r-2) .
$$

Problem 2
Find $\operatorname{dim}_{\mathbb{F}_{q}} \mathscr{A}_{r}(\alpha, v)$ with uniformly random α and v.

Motivation 2: Dimension of random alternant codes

(1) The Goppa Code Distinguishing Problem (GDP) asks to distinguish efficiently a generator matrix of a Goppa code from a randomly drawn one.
(2) The dimension of the square of alternant and Goppa codes is an important cryptanalytic tool in GDP.
(3) See Faugère et al. (2013) for experimental evidences and Mora, Tillich (2022) for rigorous upper bounds.

Theorem [Mora, Tillich 2022]

$$
\operatorname{dim}_{\mathbb{F}_{q}}\left(\mathscr{A}_{r}(\boldsymbol{\alpha}, \boldsymbol{v})^{\perp}\right)^{\star 2} \leq\binom{ r m+1}{2}-\frac{m}{2}(r-1)(r-2) .
$$

Problem 2

Find $\operatorname{dim}_{\mathbb{F}_{q}} \mathscr{A}_{r}(\alpha, \boldsymbol{v})$ with uniformly random α and \boldsymbol{v}.

Outline

(1) Subfield subcodes and trace codes

(2) Random codes in McEliece cryptosystems

(3) The Maximum Trace Dimension property

New codes by multiplier vectors

Definition: New code by a multiplier vector

Let $C \leq \mathbb{F}_{q}^{n}$ be a code of length n, and $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{n}$ a vector with nonzero entries. We define the code

$$
C_{\mathbf{a}}=\left\{\left(a_{1} x_{1}, \ldots, a_{n} x_{n}\right) \mid\left(x_{1}, \ldots, x_{n}\right) \in C\right\}
$$

with multiplier vector a.
Definition: Monomially equivalent codes
Two codes $C, D \leq \mathbb{F}_{q}^{n}$ are called monomially equivalent, if $D=C_{a}$ for some multiplier vector $\mathbf{a} \in\left(\mathbb{F}_{q}^{*}\right)^{n}$

- Monomially equivalent codes have the same parameters.
- $\boldsymbol{G R S}_{k}(\alpha, \boldsymbol{v})=\mathbf{R S}_{k}(\alpha)_{\mathbf{v}}$.

New codes by multiplier vectors

Definition: New code by a multiplier vector

Let $C \leq \mathbb{F}_{q}^{n}$ be a code of length n, and $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{n}$ a vector with nonzero entries. We define the code

$$
C_{\boldsymbol{a}}=\left\{\left(a_{1} x_{1}, \ldots, a_{n} x_{n}\right) \mid\left(x_{1}, \ldots, x_{n}\right) \in C\right\}
$$

with multiplier vector a.

Definition: Monomially equivalent codes

Two codes $C, D \leq \mathbb{F}_{q}^{n}$ are called monomially equivalent, if $D=C_{a}$ for some multiplier vector $\mathbf{a} \in\left(\mathbb{F}_{q}^{*}\right)^{n}$.
> - Monomially equivalent codes have the same parameters.
> - $\operatorname{GRS}_{k}(\boldsymbol{\alpha}, \boldsymbol{v})=\mathbf{R S}_{k}(\alpha)_{v}$.

New codes by multiplier vectors

Definition: New code by a multiplier vector

Let $C \leq \mathbb{F}_{q}^{n}$ be a code of length n, and $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{n}$ a vector with nonzero entries. We define the code

$$
C_{\boldsymbol{a}}=\left\{\left(a_{1} x_{1}, \ldots, a_{n} x_{n}\right) \mid\left(x_{1}, \ldots, x_{n}\right) \in C\right\}
$$

with multiplier vector a.

Definition: Monomially equivalent codes

Two codes $C, D \leq \mathbb{F}_{q}^{n}$ are called monomially equivalent, if $D=C_{a}$ for some multiplier vector $\mathbf{a} \in\left(\mathbb{F}_{q}^{*}\right)^{n}$.

- Monomially equivalent codes have the same parameters.
- $\operatorname{GRS}_{k}(\alpha, \boldsymbol{v})=\mathbf{R S}_{k}(\alpha)_{\mathrm{v}}$.

New codes by multiplier vectors

Definition: New code by a multiplier vector

Let $C \leq \mathbb{F}_{q}^{n}$ be a code of length n, and $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{n}$ a vector with nonzero entries. We define the code

$$
C_{\mathbf{a}}=\left\{\left(a_{1} x_{1}, \ldots, a_{n} x_{n}\right) \mid\left(x_{1}, \ldots, x_{n}\right) \in C\right\}
$$

with multiplier vector a.

Definition: Monomially equivalent codes

Two codes $C, D \leq \mathbb{F}_{q}^{n}$ are called monomially equivalent, if $D=C_{a}$ for some multiplier vector $\mathbf{a} \in\left(\mathbb{F}_{q}^{*}\right)^{n}$.

- Monomially equivalent codes have the same parameters.
- $\boldsymbol{G R S}_{k}(\alpha, \boldsymbol{v})=\mathbf{R} \mathbf{S}_{k}(\alpha)_{\mathbf{v}}$.

The Maximum Trace Dimension property

Definition: Maximum Trace Dimension property

Let $C \leq \mathbb{F}_{q^{m}}$ be a linear code of length n and dimension k. We say that C has maximum trace dimension if $m k \leq n$ and

$$
\operatorname{dim}(\operatorname{Tr}(C))=m k .
$$

In particular, if $n \geq m(k+h)$ then $P_{C}>0$.
Proof. We use results by Meneghetti, Pellegrini, Sala (2022) on the weight distribution of almost MDS codes.

The Maximum Trace Dimension property

Definition: Maximum Trace Dimension property

Let $C \leq \mathbb{F}_{q^{m}}$ be a linear code of length n and dimension k. We say that C has maximum trace dimension if $m k \leq n$ and

$$
\operatorname{dim}(\operatorname{Tr}(C))=m k
$$

Theorem 1

Let C be an $[n, k, d]_{q^{m}}$-code and let $h=n+1-k-d$ be its Singleton defect. Let P_{C} denote the proportion of multiplier vectors $\mathbf{a} \in\left(\mathbb{F}_{q^{m}}^{*}\right)^{n}$ such that the linear code C_{a} has maximum trace dimension. Then

$$
\begin{equation*}
P_{C} \geq 1-\frac{1-q^{-m(h+k)}}{(q-1) q^{n-m(h+k)}} \tag{1}
\end{equation*}
$$

In particular, if $n \geq m(k+h)$ then $P_{C}>0$.
Proof. We use results by Meneghetti, Pellegrini, Sala (2022) on the weight distribution of almost MDS codes.

Corollaries

Full support random alternant codes have maximum dimension with very high probability:

Proposition

Assume $n>m k$. The random alternant code of length n, degree k, extension degree m over \mathbb{F}_{q} has dimension $n-m k$ with probability at least

$$
\begin{equation*}
1-\frac{1-q^{-m k}}{(q-1) q^{n-m k}} . \tag{2}
\end{equation*}
$$

Maximum trace dimension property of AG-codes:

Corollaries

Full support random alternant codes have maximum dimension with very high probability:

Proposition

Assume $n>m k$. The random alternant code of length n, degree k, extension degree m over \mathbb{F}_{q} has dimension $n-m k$ with probability at least

$$
\begin{equation*}
1-\frac{1-q^{-m k}}{(q-1) q^{n-m k}} . \tag{2}
\end{equation*}
$$

Maximum trace dimension property of AG-codes:

Theorem 2

Let $C=C_{L}(D, G)$ be a functional AG code of length $n=\operatorname{deg}(D)$ over the finite field $\mathbb{F}_{q^{m}}, m>1$. If $\operatorname{deg}(G) \leq n / m-1$, then

$$
\begin{equation*}
P_{C} \geq 1-\frac{1-q^{-m(\operatorname{deg}(G)+1)}}{(q-1) q^{n-m(\operatorname{deg}(G)+1)}} \tag{3}
\end{equation*}
$$

Maximum trace dimension for $n \leq m k$

Theorem 3

Let C be an $[n, k, d]_{q^{m}}$-code and let $h=n+1-k-d$ be its Singleton defect. Let P_{C}^{\prime} denote the proportion of multiplier vectors $\mathbf{a} \in\left(\mathbb{F}_{q^{m}}^{*}\right)^{n}$ such that

$$
\operatorname{dim}\left(\operatorname{Tr}\left(C_{\mathbf{a}}\right)\right) \geq n-m h .
$$

Then

$$
\begin{equation*}
P_{C}^{\prime} \geq \frac{q^{m h+1}-q^{m h}-q^{n-m k}+q^{-m k}}{q^{m h+1}-1} \tag{4}
\end{equation*}
$$

In particular:
(1) If $n \leq m(k+h)$, or equivalently $d \leq n(1-1 / m)+1$, then $P_{C}^{\prime}>0$. (2) If C is MDS $(h=0)$ then

Maximum trace dimension for $n \leq m k$

Theorem 3

Let C be an $[n, k, d]_{q^{m}}$-code and let $h=n+1-k-d$ be its Singleton defect. Let P_{C}^{\prime} denote the proportion of multiplier vectors $\mathbf{a} \in\left(\mathbb{F}_{q^{m}}^{*}\right)^{n}$ such that

$$
\operatorname{dim}\left(\operatorname{Tr}\left(C_{\mathbf{a}}\right)\right) \geq n-m h .
$$

Then

$$
\begin{equation*}
P_{C}^{\prime} \geq \frac{q^{m h+1}-q^{m h}-q^{n-m k}+q^{-m k}}{q^{m h+1}-1} \tag{4}
\end{equation*}
$$

In particular:
(1) If $n \leq m(k+h)$, or equivalently $d \leq n(1-1 / m)+1$, then $P_{C}^{\prime}>0$.
(3) If C is $\operatorname{MDS}(h=0)$ then

Maximum trace dimension for $n \leq m k$

Theorem 3

Let C be an $[n, k, d]_{q^{m}}$-code and let $h=n+1-k-d$ be its Singleton defect. Let P_{C}^{\prime} denote the proportion of multiplier vectors $\mathbf{a} \in\left(\mathbb{F}_{q^{m}}^{*}\right)^{n}$ such that

$$
\operatorname{dim}\left(\operatorname{Tr}\left(C_{\mathbf{a}}\right)\right) \geq n-m h .
$$

Then

$$
\begin{equation*}
P_{C}^{\prime} \geq \frac{q^{m h+1}-q^{m h}-q^{n-m k}+q^{-m k}}{q^{m h+1}-1} \tag{4}
\end{equation*}
$$

In particular:
(1) If $n \leq m(k+h)$, or equivalently $d \leq n(1-1 / m)+1$, then $P_{C}^{\prime}>0$.
(2) If C is $\operatorname{MDS}(h=0)$ then

$$
\begin{equation*}
P_{C}^{\prime} \geq 1-\frac{1-q^{-n}}{(q-1) q^{m k-n}} . \tag{5}
\end{equation*}
$$

Final remarks on the 29\%

- Let A be an $n \times n$ matrix over the finite field \mathbb{F}_{q}, whose entries are chosen uniformly at random.
- As $n \rightarrow \infty$, the probability that A has rank n converges very fast to

- $S(q)$ is also called the q-Pochhamer symbol $(1 / q ; 1 / q)_{\infty}$.
- For $a=2$, a good estimate for $S(2)$ is
0.288788095086603.
- Numerical experiments show that with $q=2$ and $n=m k$,

holds, if C is Reed-Solomon $(h=0)$ or Hermitian code $\left(h \approx 2^{m-1}\left(2^{m}-1\right)\right)$

Final remarks on the 29\%

- Let A be an $n \times n$ matrix over the finite field \mathbb{F}_{q}, whose entries are chosen uniformly at random.
- As $n \rightarrow \infty$, the probability that A has rank n converges very fast to

$$
S(q)=\prod_{i=1}^{\infty}\left(1-\frac{1}{q^{i}}\right) .
$$

- $S(q)$ is also called the q-Pochhamer symbol $(1 / q ; 1 / q)$ a
- For $q=2$, a good estimate for $S(2)$ is
0.288788095086603.
- Numerical experiments show that with $q=2$ and $n=m k$ holds, if C is Reed-Solomon ($h=0$) or Hermitian code $\left(h \approx 2^{m-1}\left(2^{m}-1\right)\right)$

Final remarks on the 29\%

- Let A be an $n \times n$ matrix over the finite field \mathbb{F}_{q}, whose entries are chosen uniformly at random.
- As $n \rightarrow \infty$, the probability that A has rank n converges very fast to

$$
S(q)=\prod_{i=1}^{\infty}\left(1-\frac{1}{q^{i}}\right) .
$$

- $S(q)$ is also called the q-Pochhamer symbol $(1 / q ; 1 / q)_{\infty}$.
- For $q=2$, a good estimate for $S(2)$ is
0.288788095086603.
- Numerical experiments show that with $q=2$ and $n=m k$
holds, if C is Reed-Solomon ($h=0$) or Hermitian code $\left(h \approx 2^{m-1}\left(2^{m}-1\right)\right)$

Final remarks on the 29\%

- Let A be an $n \times n$ matrix over the finite field \mathbb{F}_{q}, whose entries are chosen uniformly at random.
- As $n \rightarrow \infty$, the probability that A has rank n converges very fast to

$$
S(q)=\prod_{i=1}^{\infty}\left(1-\frac{1}{q^{i}}\right) .
$$

- $S(q)$ is also called the q-Pochhamer symbol $(1 / q ; 1 / q)_{\infty}$.
- For $q=2$, a good estimate for $S(2)$ is

$$
0.288788095086603
$$

- Numerical experiments show that with $q=2$ and $n=m k$
holds, if C is Reed-Solomon $(h=0)$ or Hermitian code $\left(h \approx 2^{m-1}\left(2^{m}-1\right)\right)$

Final remarks on the 29\%

- Let A be an $n \times n$ matrix over the finite field \mathbb{F}_{q}, whose entries are chosen uniformly at random.
- As $n \rightarrow \infty$, the probability that A has rank n converges very fast to

$$
S(q)=\prod_{i=1}^{\infty}\left(1-\frac{1}{q^{i}}\right) .
$$

- $S(q)$ is also called the q-Pochhamer symbol $(1 / q ; 1 / q)_{\infty}$.
- For $q=2$, a good estimate for $S(2)$ is

0.288788095086603.

- Numerical experiments show that with $q=2$ and $n=m k$,

$$
P_{C} \approx 0.29
$$

holds, if C is Reed-Solomon ($h=0$) or Hermitian code ($h \approx 2^{m-1}\left(2^{m}-1\right)$)

THANK YOU FOR YOUR ATTENTION!

