Miklós Schweitzer Memorial Competition in Mathematics

29 October — 8 November 2004

1. The Lindelöf number L(X) of a topological space X is the least infinite cardinal λ with the property that every open covering of X has a subcovering of cardinality at most λ . Prove that if every non-countably infinite subset of a first countable space X has a point of condensation, then $L(X) = \sup L(A)$, where A runs over the separable closed subspaces of X.

(A point of condensation of a subset $H \subseteq X$ is a point $x \in X$ such that any neighbourhood of x intersects H in a non-countably infinite set.)

- 2. Write t(G) for the number of complete quadrilaterals in the graph G and $e_G(S)$ for the number of edges spanned by a subset S of vertices of G. Let G_1 , G_2 be two (simple) graphs on a common underlying set V of vertices, |V| = n, and assume that $|e_{G_1}(S) e_{G_2}(S)| \le n^2/1000$ holds for any subset $S \subseteq V$. Prove that $|t(G_1) t(G_2)| \le n^4/1000$.
- 3. Prove that there is a constant c > 0 such that for any $n \geq 3$ there exists a planar graph G with n vertices such that every straight-edged plane embedding of G has a pair of edges with ratio of lengths at least cn.
- 4. Determine all totally multiplicative and non-negative functions $f: \mathbb{Z} \to \mathbb{Z}$ with the property that if $a, b \in \mathbb{Z}$ and $b \neq 0$, then there exist integers q and r such that a = qb + r and f(r) < f(b).
- 5. Let G be a non-solvable finite group and let $\varepsilon > 0$. Show that there exist a positive integer k and a word $w \in F_k$ such that w assumes the value 1 with probability less than ε when its k arguments are considered to be independent and uniformly distributed random variables with values in G. (We write F_k for the free group generated by k elements.)
- 6. Is it true that if the perfect set $F \subset [0,1]$ is of zero Lebesgue measure then those functions in $C^1[0,1]$ which are one-to-one on F form a dense subset of $C^1[0,1]$?
 (We use the metric

$$d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)| + \sup_{x \in [0,1]} |f'(x) - g'(x)|$$

to define the topology in the space $C^1[0,1]$ of continuously differentiable real functions on [0,1].)

7. Suppose that the closed subset K of the sphere

$$S^{2} = \{(x, y, z) \in \mathbb{R}^{3} : x^{2} + y^{2} + z^{2} = 1\}$$

is symmetric with respect to the origin and separates any two antipodal points in $S^2\backslash K$. Prove that for any positive ε there exists a homogeneous polynomial P of odd degree such that the Hausdorff distance between

$$Z(P) = \{(x, y, z) \in S^2 : P(x, y, z) = 0\}$$

and K is less than ε .

- 8. Prove that for any $0 < \delta < 2\pi$ there exists a number $m \ge 1$ such that for any positive integer n and unimodular complex numbers z_1, \ldots, z_n with $z_1^{\nu} + \cdots + z_n^{\nu} = 0$ for all integer exponents $1 \le \nu \le m$, any arc of length δ of the unit circle contains at least one of the numbers z_1, \ldots, z_n .
- 9. Let F be a smooth (i.e., C^{∞}) closed surface. Call a continuous map f: $F \to \mathbb{R}^2$ an almost-immersion if there exists a smooth closed embedded curve γ (possibly disconnected) in F such that f is smooth and of maximal rank (i.e., rank 2) on $F \setminus \gamma$, and each point $p \in \gamma$ admits local coordinate charts (x, y) and (u, v) about p and f(p), respectively, such that the coordinates of p and f(p) are zero and the map f is given by $(x, y) \mapsto (u, v)$, u = |x|, v = y.

Determine the genera of those smooth, closed, connected, orientable surfaces F that admit an almost-immersion in the plane with the curve γ having a given positive number n of connected components.

10. Let \mathcal{N}_p stand for a p dimensional random variable of standard normal distibution. For $a \in \mathbb{R}^p$, let $H_p(a)$ stand for the expectation $E|\mathcal{N}_p + a|$. For p > 1, prove that

$$H_p(a) = (p-1) \int_0^\infty H_1\left(\frac{|a|}{\sqrt{1+r^2}}\right) \frac{r^{p-2}}{(1+r^2)^{\frac{p}{2}}} dr.$$

The deadline for submitting solutions is 12:00 (CET) 8 November, 2004. If the participant relies on knowledge not included in the standard curriculum, then (s)he should cite the exact source. For further information see the homepage http://www.cs.elte.hu/~schw04.